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The Sherrington-Kirkpatrick model

The Boltzmann-Gibbs measure:

(o) x e\ oMa/2 5 e L4117
M = (M;j); ;—1 : The interaction matrix

M=M" M;~N(Q0,pB/n) i<}
(3 : The inverse temperature

[ favors vectors (configurations) with low energy <g, M 0‘>
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A phase transition

High temperature (paramagnetic) phase: 5 <1

1
01,02N,u —{ot,0%) — 0

The model as “simple” characteristics

Low temperature (spin glass) phase: 5 > 1

1 . .
— (o', 0°) converges to a non-trivial random variable
n

Highly complex structure. Sophisticated mathematical description.



Main question

Can we approximately sample from the SK measure in polynomial time?

Folklore belief:

1. Sampling should be easy in the high temperature phase

2. Correct answer is unclear for low temperature



Glauber dynamics

1. 0% ~ Unif({Z£1}7).

2. At time t: i ~ Unif({1,--- ,n}).
3. Sample € ~ M('|(U§‘)J’7ﬁi)- p(oilo~i) o e 70 s Mis i)/,

4. Set afﬂ —¢g, ot =0t .

~1 ~1°

Does this mix in polynomial time?



Mixing time & Poincare inequality

We say that 1 satisfies a Poincaré inequality (Pl) if

1
Forall f:{-1,+1}" =R  Var,(f) < ;Su(f, f)  forsome ~y > 0

Var,(f) =E,[(f(o) = E,[f(0)])?] Variance
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We say that 1 satisfies a Poincaré inequality (Pl) if

1
Forall f:{-1,+1}" =R  Var,(f) < ;Su(f, f)  forsome ~y > 0

Var,(f) =E,[(f(o) = E,[f(0)])?] Variance

2
E, Z o)lo~i] — f(0)) Dirichlet form

Lemma: If |4 satisfies Pl with constant 7Y then Glauber dynamics mixes after

bmix = O(n//}/) StepS.
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Mixing time & Poincare inequality

Theorem: [l satisfies Pl with constant v =1 — A

[Eldan-Koehler-Zeitouni 2020]
A = Amax(M) — Amin(M) = 48 + 0,,(1)

Proof: Reduction to rank-one model using Stochastic localization

Therefore Glauber dynamics mixes in linear time forall g < 1/4

Conjecture: Linear-time mixing forall 5 < 1



Decomposition into a mixture of products

[Bauerschmidt-Beaudineau 2019]

Theorem:

0= / rm(dr) i () o ¢

m  is log-concave forall g <1/4
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Decomposition into a mixture of products

[Bauerschmidt-Beaudineau 2019]

Since o € {—1,+1}" we can add a diagonal term to M without affecting 1t

0.03

M — M + 61

0.02 -

sothat 0 <X M <Xcl foors

0.01+

c= (48 + on(1))

There exists B = 0 suchthat M1 =B 14711

. (o Ma) /2 _ / e—cllo=ol/2o—(0.Be) 24,
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Decomposition into a mixture of products

[Bauerschmidt-Beaudineau 2019]

(o Ma)/2 _ o / e—cllo=ol/2o~(0. B¢} 24,

1. Construct a joint distribution

7 (do, dp) oc e~ clle=ol*/2=4e.Be) /2, (o) di

with marginal ¢ on o.

2. The conditional 7(-|©) is a product measure: 7 (do|p) x €7 gy (do).

3. The marginal on @is v(dy) o e\ (BreDer/242 =, VI(ei) g,

— U islog-concaveif c¢* <c ie.,if 8<1/4
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1. Use Langevin dynamics to sample ¢ from IV (mixes in linear time).
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The algorithm

1. Use Langevin dynamics to sample ¢ from IV (mixes in linear time).

2. Sample o ~ 7(-|p) m(do|p) o< e g (do).

eccpi

eCPi - e~ C¥i

m(o; = 1lp) =

The method relies on a clever decomposition. Worksupto g < 1/4

Question: Is it possible to decompose U into a mixture of tilts

M= /MTm(dT) pr(0) o el

where it is easy to sample from m forall 5 < 17

Perhaps recursively?



Main result

Theorem 2.1. For e > 0 and 8 < % there exists a polynomial-time randomized algorithm which takes
(B,A) as input and outputs a random point x*¢ € {—1,+1}" with law p°%® such that with probability
1 — on(1) over A,

Wan (Wi a) <. (2.10)

Runtime: poly(n,1/¢)

: 1 2
Wanlr?= ol o [1X = Y]

Result relies of a discretization of the stochastic localization process



Stochastic Localization



Stochastic localization iedan 2013, 2018

Fix a measure 11 on R"

Construct a measure-valued process (,ut)tzo as follows:

d
Liw)="3:@)  Lo=1

Vt >0

st(Qj) — Lt(aj) <Qj — My, dBt> Vr € R™

my = / 21 (dz)

(Bt)tzo Brownian motion



Stochastic localization iedan 2013, 2018

Fix a measure 11 on R"

Construct a measure-valued process (,ut)tzo as follows:

d
Liw)="3:@)  Lo=1

Vt >0

st(Qj) — Lt(aj) <Qj — My, dBt> Vr € R™

my = / 21 (dz)

(Bt)tzo Brownian motion

Strong solution exists under mild assumptions

(1¢)¢>0 : stochastic localization process



Stochastic localization iedan 2013, 2018

Properties:

1. (Le)e>o | (,ut)tZ() and (mt)tzo are martingales

In particular 1 = Ky

1
2. \va’ > () "JCOV(,Ut) = z[
3. Consequence of 1 and 2:
d \
Mt > Moo ~ U
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An equivalent formulation

Exponential tilts: Forany y € R™ define the measure

1 2
dr) — (y,x)—tllzlI*/2 (g
Mean vector: m(t,y) = /CE}Lt’y(dZIZ‘)

Evolution of the tilting field:
dy; = m(t,y;)dt +dBy, yo=0.

d
Lemma: (Ht,ye )e>0 = (Ht)e>0

[Eldan, Shamir 2020]
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Discretized SL

For k=0,1,2,---
1. Given an external field Yy compute the mean vector

mo = m(ye) = [ oy, (do)

2. Update the field

11d

Yo+1 = Yo + My0 + weV 6 (we)e>0 ~ N(0, )

Hope that the discretized iteration converges to the continuum SDE...
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Conditions

We need to compute approximations m(y) of the mean vector m(y)

which are sufficiently accurate and regular:

L.
1. Approximation: —Im(y) — m(y)||* = on(1)
n

2. Regularity:

Y +— T/fz(y) Lipschitz uniformly in the approximation error

Then output my for L =T/ 6 =0, T — o0
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A remark: Semi log-concavity

Log-Laplace transform: L[V](z) = log / e dy(y), Vr € R™
Cn

[Eldan, Shamir 2020]

Definition 1. (Semi log-concave measures). Given a measure v on C,,, We say that v is 3-semi-
log-concave if

V2L[](z) < BL,, Yz €R", 2)

where the inequality 1s in the positive-definite sense.

Equivalentto vy +— m(y) 3 -Lipschitz uniformly in n

Conjecture [Talagrand]: The SK measure is C-semi-log-concave forall 5 <1

Confirmed by Eldan-Koehler-Zeitouni 2020 for all 5 < 1/4
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Computing the means

Approximate message passing: Standard technology for computing m(yk)

Two issues technical issues (in the analysis):

1. Y dependson A (we would rather have them be independent!)

Solved by introducing a planted model

2. The Lipschitz constant of AMP after k iterations blows up with k
Solved by modifying the algorithm

Cause of the bottleneck [ < 1/2
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Another characterization of SL

1. Sample xg ~ u

2. Let Yt — tCU() + Bt

3. Look at [t = Law(a:'o ‘ (ys)sgt)

Lemma: (1) e>0 < qL Process



‘Planted’ and ‘random’ models

Random model

A ~ GOE(n)
dyt — m(yt)dt + dBt

T~ piay o eB/DE AT (W)
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‘Planted’ and ‘random’ models

Random model Planted model
A ~ GOE(n) xo ~ Unif({—1,+1}")
dy; = m(y;)dt + dBy A = Bxoxry + W, W ~ GOE(n)
T~ LAy, O e(B/2)(x, Az)+(ye, ) vy = txg + By
Q = Law (A, y) P = Law(A, y)

Lemma: [P and Q are mutually contiguous for all g < 1

We can conduct the analysis on the planted model instead !
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Stability and Chaos

Let A, = V1 — 524 + s A’

Thm[stability]: Our algorithm is stable in the following sense:

: : al al
Forall 5 >0 ;1_I>I(1) nh_)rrgo Wan (132, 13%) =0

—> The same is true for the SK measure p4 forall 5 <1/2

Thm[chaos]: Forall g > 1 inf liminf Ws ,(ua, pa,) > 0

s€(0,1) n—o0

—> No stable algorithm can approximate the SK measure
at low temperature






