Algorithmic Stochastic Localization for the Sherrington-Kirkpatrick model

AHMED EL ALAOUI

Department of Statistics & Data Sciences, Cornell University

AGA Seminar, Georgia Tech

Feb 1, 2022

Joint work with Andrea Montanari & Mark Sellke

The Sherrington-Kirkpatrick model

The Boltzmann-Gibbs measure:

$$\mu(\sigma) \propto e^{-\langle \sigma, M\sigma \rangle/2}, \quad \sigma \in \{\pm 1\}^n.$$

 $M = (M_{ij})_{i,j=1}^n$: The interaction matrix

$$M = M^{\top}$$
 $M_{ij} \sim N(0, \beta^2/n)$ $i < j$

 β : The inverse temperature

 μ favors vectors (configurations) with low energy $\langle \sigma, M\sigma \rangle$

A phase transition

High temperature (paramagnetic) phase: $\beta \leq 1$

$$\sigma^1, \sigma^2 \sim \mu$$
 $\frac{1}{n} \langle \sigma^1, \sigma^2 \rangle \longrightarrow 0$

The model as "simple" characteristics

A phase transition

High temperature (paramagnetic) phase: $\beta \leq 1$

$$\sigma^1, \sigma^2 \sim \mu$$
 $\frac{1}{n} \langle \sigma^1, \sigma^2 \rangle \longrightarrow 0$

The model as "simple" characteristics

Low temperature (spin glass) phase: $\beta>1$

$$\frac{1}{n} \langle \sigma^1, \sigma^2 \rangle$$
 converges to a non-trivial random variable

Highly complex structure. Sophisticated mathematical description.

Main question

Can we approximately sample from the SK measure in polynomial time?

Folklore belief:

- 1. Sampling should be easy in the high temperature phase
- 2. Correct answer is unclear for low temperature

Glauber dynamics

- 1. $\sigma^0 \sim \text{Unif}(\{\pm 1\}^n)$.
- 2. At time $t: i \sim \text{Unif}(\{1, \dots, n\})$.
- 3. Sample $\varepsilon \sim \mu(\cdot|(\sigma_j^t)_{j\neq i})$. $\mu(\sigma_i|\sigma_{\sim i}) \propto e^{-\sigma_i(\sum_{j\neq i} M_{ij}\sigma_j)/2}.$
- 4. Set $\sigma_i^{t+1} = \varepsilon$, $\sigma_{\sim i}^{t+1} = \sigma_{\sim i}^t$.

Does this mix in polynomial time?

We say that μ satisfies a **Poincaré inequality (PI)** if

For all
$$f: \{-1,+1\}^n \to \mathbb{R}$$
 $\operatorname{Var}_{\mu}(f) \leq \frac{1}{\gamma} \mathcal{E}_{\mu}(f,f)$ for some $\gamma > 0$

$$\operatorname{Var}_{\mu}(f) = \mathbb{E}_{\mu} \left[(f(\sigma) - \mathbb{E}_{\mu} [f(\sigma)])^{2} \right]$$

Variance

$$\mathcal{E}_{\mu}(f, f) = \mathbb{E}_{\mu} \sum_{i=1}^{n} \left(\mathbb{E}_{\mu}[f(\sigma) | \sigma_{\sim i}] - f(\sigma) \right)^{2}$$

Dirichlet form

We say that μ satisfies a **Poincaré inequality (PI)** if

For all
$$f: \{-1, +1\}^n \to \mathbb{R}$$
 $\operatorname{Var}_{\mu}(f) \leq \frac{1}{\gamma} \mathcal{E}_{\mu}(f, f)$ for some $\gamma > 0$

$$\operatorname{Var}_{\mu}(f) = \mathbb{E}_{\mu} \big[(f(\sigma) - \mathbb{E}_{\mu} [f(\sigma)])^2 \big]$$
 Variance

$$\mathcal{E}_{\mu}(f,f) = \mathbb{E}_{\mu} \sum_{i=1}^{n} \left(\mathbb{E}_{\mu}[f(\sigma)|\sigma_{\sim i}] - f(\sigma) \right)^{2} \qquad \text{ Dirichlet form}$$

Lemma: If μ satisfies PI with constant γ then Glauber dynamics mixes after $t_{\rm mix} = O(n/\gamma)$ steps.

Theorem: μ satisfies PI with constant $\gamma=1-\Delta$

[Eldan-Koehler-Zeitouni 2020]

$$\Delta = \lambda_{\max}(M) - \lambda_{\min}(M) = 4\beta + o_n(1)$$

Proof: Reduction to rank-one model using Stochastic localization

Theorem: μ satisfies PI with constant $\gamma=1-\Delta$

[Eldan-Koehler-Zeitouni 2020]

$$\Delta = \lambda_{\max}(M) - \lambda_{\min}(M) = 4\beta + o_n(1)$$

Proof: Reduction to rank-one model using Stochastic localization

Therefore Glauber dynamics mixes in linear time for all $\beta < 1/4$

Theorem: μ satisfies PI with constant $\gamma=1-\Delta$

[Eldan-Koehler-Zeitouni 2020]

$$\Delta = \lambda_{\max}(M) - \lambda_{\min}(M) = 4\beta + o_n(1)$$

Proof: Reduction to rank-one model using Stochastic localization

Therefore Glauber dynamics mixes in linear time for all $\beta < 1/4$

Conjecture: Linear-time mixing for all $\beta < 1$

[Bauerschmidt-Beaudineau 2019]

Theorem:

$$\mu = \int \mu_{\tau} m(d\tau) \qquad \qquad \mu_{\tau}(\sigma) \propto e^{\langle \tau, \sigma \rangle}$$

m is log-concave for all $\beta < 1/4$

[Bauerschmidt-Beaudineau 2019]

Since $\sigma \in \{-1, +1\}^n$ we can add a diagonal term to M without affecting μ

$$M\longrightarrow M+\delta I$$
 so that
$$0\preceq M\preceq cI$$

$$c=(4\beta+o_n(1))$$

[Bauerschmidt-Beaudineau 2019]

Since $\sigma \in \{-1, +1\}^n$ we can add a diagonal term to M without affecting μ

$$M \longrightarrow M + \delta I$$

so that
$$0 \leq M \leq cI$$

$$c = (4\beta + o_n(1))$$

There exists $B\succeq 0$ such that $M^{-1}=B^{-1}+c^{-1}I$

[Bauerschmidt-Beaudineau 2019]

Since $\sigma \in \{-1, +1\}^n$ we can add a diagonal term to M without affecting μ

$$M \longrightarrow M + \delta I$$

so that $0 \leq M \leq cI$

$$c = (4\beta + o_n(1))$$

There exists $B\succeq 0$ such that $M^{-1}=B^{-1}+c^{-1}I$

$$\Longrightarrow e^{-\langle \sigma, M\sigma \rangle/2} = C \int e^{-c\|\varphi - \sigma\|^2/2} e^{-\langle \varphi, B\varphi \rangle/2} d\varphi.$$

[Bauerschmidt-Beaudineau 2019]

$$e^{-\langle \sigma, M\sigma \rangle/2} = C \int e^{-c\|\varphi - \sigma\|^2/2} e^{-\langle \varphi, B\varphi \rangle/2} d\varphi.$$

[Bauerschmidt-Beaudineau 2019]

$$e^{-\langle \sigma, M\sigma \rangle/2} = C \int e^{-c\|\varphi - \sigma\|^2/2} e^{-\langle \varphi, B\varphi \rangle/2} d\varphi.$$

1. Construct a joint distribution

$$\pi(d\sigma, d\varphi) \propto e^{-c\|\varphi - \sigma\|^2/2 - \langle \varphi, B\varphi \rangle/2} \mu_0(d\sigma) d\varphi$$

[Bauerschmidt-Beaudineau 2019]

$$e^{-\langle \sigma, M\sigma \rangle/2} = C \int e^{-c\|\varphi - \sigma\|^2/2} e^{-\langle \varphi, B\varphi \rangle/2} d\varphi.$$

1. Construct a joint distribution

$$\pi(d\sigma, d\varphi) \propto e^{-c\|\varphi - \sigma\|^2/2 - \langle \varphi, B\varphi \rangle/2} \mu_0(d\sigma) d\varphi$$

with marginal μ on σ .

2. The conditional $\pi(\cdot|\varphi)$ is a product measure: $\pi(d\sigma|\varphi) \propto e^{c\langle\varphi,\sigma\rangle}\mu_0(d\sigma)$.

[Bauerschmidt-Beaudineau 2019]

$$e^{-\langle \sigma, M\sigma \rangle/2} = C \int e^{-c\|\varphi - \sigma\|^2/2} e^{-\langle \varphi, B\varphi \rangle/2} d\varphi.$$

1. Construct a joint distribution

$$\pi(d\sigma, d\varphi) \propto e^{-c\|\varphi - \sigma\|^2/2 - \langle \varphi, B\varphi \rangle/2} \mu_0(d\sigma) d\varphi$$

- 2. The conditional $\pi(\cdot|\varphi)$ is a product measure: $\pi(d\sigma|\varphi) \propto e^{c\langle\varphi,\sigma\rangle}\mu_0(d\sigma)$.
- 3. The marginal on φ is $\nu(d\varphi) \propto e^{-\langle \varphi, (B+cI)\varphi \rangle/2 + \sum_{i=1}^n V(\varphi_i)} d\varphi,$ where $V(x) = \log \cosh(cx).$

[Bauerschmidt-Beaudineau 2019]

$$e^{-\langle \sigma, M\sigma \rangle/2} = C \int e^{-c\|\varphi - \sigma\|^2/2} e^{-\langle \varphi, B\varphi \rangle/2} d\varphi.$$

1. Construct a joint distribution

$$\pi(d\sigma, d\varphi) \propto e^{-c\|\varphi - \sigma\|^2/2 - \langle \varphi, B\varphi \rangle/2} \mu_0(d\sigma) d\varphi$$

- 2. The conditional $\pi(\cdot|\varphi)$ is a product measure: $\pi(d\sigma|\varphi) \propto e^{c\langle\varphi,\sigma\rangle}\mu_0(d\sigma)$.
- 3. The marginal on φ is $\nu(d\varphi) \propto e^{-\langle \varphi, (B+cI)\varphi \rangle/2 + \sum_{i=1}^n V(\varphi_i)} d\varphi,$ where $V(x) = \log \cosh(cx)$. Hess $\succeq cI$ Hess $\preceq c^2I$

[Bauerschmidt-Beaudineau 2019]

$$e^{-\langle \sigma, M\sigma \rangle/2} = C \int e^{-c\|\varphi - \sigma\|^2/2} e^{-\langle \varphi, B\varphi \rangle/2} d\varphi.$$

1. Construct a joint distribution

$$\pi(d\sigma, d\varphi) \propto e^{-c\|\varphi - \sigma\|^2/2 - \langle \varphi, B\varphi \rangle/2} \mu_0(d\sigma) d\varphi$$

- 2. The conditional $\pi(\cdot|\varphi)$ is a product measure: $\pi(d\sigma|\varphi) \propto e^{c\langle\varphi,\sigma\rangle}\mu_0(d\sigma)$.
- 3. The marginal on φ is $\nu(d\varphi) \propto e^{-\langle \varphi, (B+cI)\varphi \rangle/2 + \sum_{i=1}^n V(\varphi_i)} d\varphi$,

$$\implies \nu$$
 is log-concave if $c^2 \leq c$ i.e., if $\beta < 1/4$

The algorithm

1. Use Langevin dynamics to sample φ from ν (mixes in linear time).

2. Sample
$$\sigma \sim \pi(\cdot|\varphi)$$

$$\pi(d\sigma|\varphi) \propto e^{c\langle\varphi,\sigma\rangle} \mu_0(d\sigma)$$

$$\pi(d\sigma|\varphi) \propto e^{c\langle\varphi,\sigma\rangle} \mu_0(d\sigma).$$

$$\pi(\sigma_i = 1|\varphi) = \frac{e^{c\varphi_i}}{e^{c\varphi_i} + e^{-c\varphi_i}}$$

The algorithm

1. Use Langevin dynamics to sample φ from ν (mixes in linear time).

2. Sample
$$\sigma \sim \pi(\cdot|\varphi)$$

$$\pi(d\sigma|\varphi) \propto e^{c\langle\varphi,\sigma\rangle}\mu_0(d\sigma).$$

$$\pi(\sigma_i = 1|\varphi) = \frac{e^{c\varphi_i}}{e^{c\varphi_i} + e^{-c\varphi_i}}$$

The method relies on a clever decomposition. Works up to $\beta < 1/4$

Question: Is it possible to decompose μ into a mixture of tilts

$$\mu = \int \mu_{\tau} m(d\tau) \qquad \qquad \mu_{\tau}(\sigma) \propto e^{\langle \tau, \sigma \rangle}$$

where it is easy to sample from $\,m\,$ for all $\beta < 1\,?$

Perhaps recursively?

Main result

Theorem 2.1. For $\varepsilon > 0$ and $\beta < \frac{1}{2}$ there exists a polynomial-time randomized algorithm which takes (β, \mathbf{A}) as input and outputs a random point $\mathbf{x}^{\text{alg}} \in \{-1, +1\}^n$ with law $\mu_{\mathbf{A}}^{\text{alg}}$ such that with probability $1 - o_n(1)$ over \mathbf{A} ,

$$W_{2,n}(\mu_{\boldsymbol{A}}^{\text{alg}}, \mu_{\boldsymbol{A}}) \le \varepsilon. \tag{2.10}$$

Runtime: $poly(n, 1/\epsilon)$

$$W_{2,n}(\mu,
u)^2 = \inf_{\pi \in \mathcal{C}(\mu,
u)} rac{1}{n} \mathbb{E}_{\pi} \left[\left\| oldsymbol{X} - oldsymbol{Y}
ight\|_2^2
ight],$$

Result relies of a discretization of the stochastic localization process

Stochastic Localization

Stochastic localization

[Eldan 2013, 2018]

Fix a measure μ on \mathbb{R}^n

Construct a measure-valued process $(\mu_t)_{t\geq 0}$ as follows:

$$L_t(x) = \frac{\mathrm{d}\mu_t}{\mathrm{d}\mu}(x) \qquad L_0 = 1$$

$$\mathrm{d}L_t(x) = L_t(x) \langle x - m_t, \mathrm{d}B_t \rangle \qquad \forall t \ge 0$$

$$\forall x \in \mathbb{R}^n$$

$$m_t = \int x\mu_t(\mathrm{d}x)$$

 $(B_t)_{t>0}$ Brownian motion

Stochastic localization

[Eldan 2013, 2018]

Fix a measure μ on \mathbb{R}^n

Construct a measure-valued process $(\mu_t)_{t\geq 0}$ as follows:

$$L_t(x) = \frac{\mathrm{d}\mu_t}{\mathrm{d}\mu}(x) \qquad L_0 = 1$$

$$\mathrm{d}L_t(x) = L_t(x) \langle x - m_t, \mathrm{d}B_t \rangle \qquad \forall t \ge 0$$

$$\forall x \in \mathbb{R}^n$$

$$m_t = \int x\mu_t(\mathrm{d}x)$$

 $(B_t)_{t>0}$ Brownian motion

Strong solution exists under mild assumptions

 $(\mu_t)_{t\geq 0}$: stochastic localization process

Stochastic localization

[Eldan 2013, 2018]

Properties:

1.
$$(L_t)_{t\geq 0}$$
 , $(\mu_t)_{t\geq 0}$ and $(m_t)_{t\geq 0}$ are martingales In particular $\mu=\mathbb{E}\mu_t$

2.
$$\forall t \geq 0$$
 $\mathbb{E}\text{Cov}(\mu_t) \leq \frac{1}{t}I$

3. Consequence of 1 and 2:

$$m_t \xrightarrow[t \to \infty]{\mathrm{d}} m_\infty \sim \mu$$

Exponential tilts: For any $y \in \mathbb{R}^n$ define the measure

$$\mu_{t,y}(\mathrm{d}x) = \frac{1}{Z(t,y)} e^{\langle y,x\rangle - t||x||^2/2} \mu(\mathrm{d}x)$$

Exponential tilts: For any $y \in \mathbb{R}^n$ define the measure

$$\mu_{t,y}(\mathrm{d}x) = \frac{1}{Z(t,y)} e^{\langle y,x\rangle - t||x||^2/2} \mu(\mathrm{d}x)$$

Mean vector: $m(t,y) = \int x \mu_{t,y}(\mathrm{d}x)$

Exponential tilts: For any $y \in \mathbb{R}^n$ define the measure

$$\mu_{t,y}(\mathrm{d}x) = \frac{1}{Z(t,y)} e^{\langle y,x\rangle - t||x||^2/2} \mu(\mathrm{d}x)$$

Mean vector:

$$m(t,y) = \int x\mu_{t,y}(\mathrm{d}x)$$

Evolution of the tilting field:

$$dy_t = m(t, y_t)dt + dB_t, \quad y_0 = 0.$$

Exponential tilts: For any $y \in \mathbb{R}^n$ define the measure

$$\mu_{t,y}(\mathrm{d}x) = \frac{1}{Z(t,y)} e^{\langle y,x\rangle - t||x||^2/2} \mu(\mathrm{d}x)$$

Mean vector:

$$m(t,y) = \int x\mu_{t,y}(\mathrm{d}x)$$

Evolution of the tilting field:

$$dy_t = m(t, y_t)dt + dB_t, \quad y_0 = 0.$$

Lemma:

$$(\mu_{t,y_t})_{t\geq 0} \stackrel{\mathrm{d}}{=} (\mu_t)_{t\geq 0}$$

[Eldan, Shamir 2020]

Discretized SL

For
$$k = 0, 1, 2, \cdots$$

1. Given an external field y_ℓ compute the mean vector

$$m_{\ell} \simeq m(y_{\ell}) = \int x \mu_{y_{\ell}}(\mathrm{d}x)$$

Discretized SL

For
$$k = 0, 1, 2, \cdots$$

1. Given an external field y_ℓ compute the mean vector

$$m_{\ell} \simeq m(y_{\ell}) = \int x \mu_{y_{\ell}}(\mathrm{d}x)$$

2. Update the field

$$y_{\ell+1} = y_{\ell} + m_{\ell}\delta + w_{\ell}\sqrt{\delta} \qquad (w_{\ell})_{\ell \ge 0} \stackrel{iid}{\sim} N(0, I_n)$$

Discretized SL

For
$$k = 0, 1, 2, \cdots$$

1. Given an external field y_ℓ compute the mean vector

$$m_{\ell} \simeq m(y_{\ell}) = \int x \mu_{y_{\ell}}(\mathrm{d}x)$$

2. Update the field

$$y_{\ell+1} = y_{\ell} + m_{\ell}\delta + w_{\ell}\sqrt{\delta} \qquad (w_{\ell})_{\ell \ge 0} \stackrel{iid}{\sim} N(0, I_n)$$

Hope that the discretized iteration converges to the continuum SDE...

Conditions

We need to compute approximations $\widehat{m}(y)$ of the mean vector m(y) which are sufficiently accurate and regular:

Conditions

We need to compute approximations $\widehat{m}(y)$ of the mean vector m(y) which are sufficiently accurate and regular:

1. Approximation:
$$\frac{1}{n}\|\widehat{m}(y) - m(y)\|^2 = o_n(1)$$

Conditions

We need to compute approximations $\widehat{m}(y)$ of the mean vector m(y)which are sufficiently accurate and regular:

$$\frac{1}{n} \|\widehat{m}(y) - m(y)\|^2 = o_n(1)$$

2. **Regularity:**

 $y\mapsto \widehat{m}(y)$ Lipschitz uniformly in the approximation error

Then output
$$\widehat{m}_L$$
 for $L=T/\delta$ $\delta \to 0, T\to \infty$

$$\delta \to 0, T \to \infty$$

Log-Laplace transform:
$$\mathcal{L}[\nu](x) = \log \int_{\mathcal{C}_n} e^{\langle x,y \rangle} d\nu(y), \ \ \forall x \in \mathbb{R}^n.$$

Log-Laplace transform:

$$\mathcal{L}[\nu](x) = \log \int_{\mathcal{C}_n} e^{\langle x, y \rangle} d\nu(y), \ \forall x \in \mathbb{R}^n.$$

[Eldan, Shamir 2020]

Definition 1. (Semi log-concave measures). Given a measure ν on C_n , We say that ν is β -semi-log-concave if

$$\nabla^2 \mathcal{L}[\nu](x) \preceq \beta \mathbf{I}_n, \ \forall x \in \mathbb{R}^n,$$
 (2)

where the inequality is in the positive-definite sense.

Log-Laplace transform:

$$\mathcal{L}[\nu](x) = \log \int_{\mathcal{C}_n} e^{\langle x, y \rangle} d\nu(y), \ \forall x \in \mathbb{R}^n.$$

[Eldan, Shamir 2020]

Definition 1. (Semi log-concave measures). Given a measure ν on C_n , We say that ν is β -semi-log-concave if

$$\nabla^2 \mathcal{L}[\nu](x) \preceq \beta \mathbf{I}_n, \ \forall x \in \mathbb{R}^n,$$
 (2)

where the inequality is in the positive-definite sense.

Equivalent to $y\mapsto m(y)$ β -Lipschitz uniformly in n

Log-Laplace transform:

$$\mathcal{L}[\nu](x) = \log \int_{\mathcal{C}_n} e^{\langle x, y \rangle} d\nu(y), \ \forall x \in \mathbb{R}^n.$$

[Eldan, Shamir 2020]

Definition 1. (Semi log-concave measures). Given a measure ν on C_n , We say that ν is β -semi-log-concave if

$$\nabla^2 \mathcal{L}[\nu](x) \preceq \beta \mathbf{I}_n, \ \forall x \in \mathbb{R}^n,$$
 (2)

where the inequality is in the positive-definite sense.

Equivalent to $y\mapsto m(y)$ β -Lipschitz uniformly in n

Conjecture [Talagrand]: The SK measure is C-semi-log-concave for all $~\beta < 1$

Confirmed by Eldan-Koehler-Zeitouni 2020 for all ~eta < 1/4

Computing the means

Approximate message passing: Standard technology for computing $m(y_k)$

Computing the means

Approximate message passing: Standard technology for computing $m(y_k)$

Two issues technical issues (in the analysis):

1. y_k depends on A (we would rather have them be independent!)

Solved by introducing a *planted* model

Computing the means

Approximate message passing: Standard technology for computing $m(y_k)$

Two issues technical issues (in the analysis):

- 1. y_k depends on A (we would rather have them be independent!)

 Solved by introducing a *planted* model
- 2. The Lipschitz constant of AMP after k iterations blows up with k Solved by modifying the algorithm

Cause of the bottleneck $\beta < 1/2$

Another characterization of SL

1. Sample $x_0 \sim \mu$

2. Let
$$y_t = tx_0 + B_t$$

3. Look at
$$\mu_t = \text{Law}(x_0 \,|\, (y_s)_{s \le t})$$

Another characterization of SL

1. Sample
$$x_0 \sim \mu$$

2. Let
$$y_t = tx_0 + B_t$$

3. Look at
$$\mu_t = \operatorname{Law}(x_0 \mid (y_s)_{s \le t})$$

Lemma:
$$(\mu_t)_{t\geq 0} \stackrel{\mathrm{d}}{=} \mathrm{SL} \ \mathrm{process}$$

Random model

$$A \sim \text{GOE}(n)$$

$$dy_t = m(y_t)dt + dB_t$$

$$x \sim \mu_{A,y_t} \propto e^{(\beta/2)\langle x,Ax\rangle + \langle y_t,x\rangle}.$$

Random model

$$A \sim \text{GOE}(n)$$

$$dy_t = m(y_t)dt + dB_t$$

$$x \sim \mu_{A,y_t} \propto e^{(\beta/2)\langle x,Ax\rangle + \langle y_t,x\rangle}.$$

Planted model

$$x_0 \sim \text{Unif}(\{-1, +1\}^n)$$

$$A = \beta x_0 x_0^\top + W, W \sim \text{GOE}(n)$$

$$y_t = tx_0 + B_t$$

$$x \sim \mu(\cdot \mid A, y_t)$$

Random model

$$A \sim \text{GOE}(n)$$

$$dy_t = m(y_t)dt + dB_t$$

$$x \sim \mu_{A,y_t} \propto e^{(\beta/2)\langle x,Ax\rangle + \langle y_t,x\rangle}.$$

$$\mathbb{Q} = \operatorname{Law}(A, y)$$

Planted model

 $\mathbb{P} = \operatorname{Law}(A, y)$

$$x_0 \sim \text{Unif}(\{-1, +1\}^n)$$

$$A = \beta x_0 x_0^\top + W, W \sim \text{GOE}(n)$$

$$y_t = tx_0 + B_t$$

$$x \sim \mu(\cdot \mid A, y_t)$$

Random model

$$A \sim \text{GOE}(n)$$

$$dy_t = m(y_t)dt + dB_t$$

$$x \sim \mu_{A,y_t} \propto e^{(\beta/2)\langle x,Ax\rangle + \langle y_t,x\rangle}.$$

$$\mathbb{Q} = \operatorname{Law}(A, y)$$

Planted model

$$x_0 \sim \text{Unif}(\{-1, +1\}^n)$$

$$A = \beta x_0 x_0^\top + W, W \sim \text{GOE}(n)$$

$$y_t = tx_0 + B_t$$

$$x \sim \mu(\cdot \mid A, y_t)$$

$$\mathbb{P} = \text{Law}(A, y)$$

Lemma: \mathbb{P} and \mathbb{Q} are mutually contiguous for all $\beta < 1$

We can conduct the analysis on the planted model instead!

$$A_s = \sqrt{1 - s^2}A + sA'$$

Let

$$A_s = \sqrt{1 - s^2}A + sA'$$

Thm[stability]: Our algorithm is stable in the following sense:

For all
$$\beta > 0$$

$$\lim_{s \to 0} \lim_{n \to \infty} W_{2,n}(\mu_A^{\text{alg}}, \mu_{A_s}^{\text{alg}}) = 0$$

Let

$$A_s = \sqrt{1 - s^2}A + sA'$$

Thm[stability]: Our algorithm is stable in the following sense:

For all
$$\beta > 0$$

$$\lim_{s \to 0} \lim_{n \to \infty} W_{2,n}(\mu_A^{\text{alg}}, \mu_{A_s}^{\text{alg}}) = 0$$

 \Longrightarrow The same is true for the SK measure $\,\mu_A\,$ for all $\,eta < 1/2\,$

$$A_s = \sqrt{1 - s^2}A + sA'$$

Thm[stability]: Our algorithm is stable in the following sense:

For all
$$\beta > 0$$

$$\lim_{s \to 0} \lim_{n \to \infty} W_{2,n}(\mu_A^{\text{alg}}, \mu_{A_s}^{\text{alg}}) = 0$$

 \implies The same is true for the SK measure μ_A for all $\beta < 1/2$

Thm[chaos]: For all
$$\beta>1$$

$$\inf_{s\in(0,1)} \liminf_{n\to\infty} W_{2,n}(\mu_A,\mu_{A_s})>0$$

$$A_s = \sqrt{1 - s^2}A + sA'$$

Thm[stability]: Our algorithm is stable in the following sense:

For all
$$\beta > 0$$

$$\lim_{s \to 0} \lim_{n \to \infty} W_{2,n}(\mu_A^{\text{alg}}, \mu_{A_s}^{\text{alg}}) = 0$$

 \implies The same is true for the SK measure μ_A for all $\beta < 1/2$

Thm[chaos]: For all
$$\beta>1$$

$$\inf_{s\in(0,1)} \liminf_{n\to\infty} W_{2,n}(\mu_A,\mu_{A_s})>0$$

No stable algorithm can approximate the SK measure at low temperature