Stochastic Localization with Non-Gaussian Tilts and Applications to Tensor Ising Models

Arianna Piana joint work with Dan Mikulincer (University Washington)

February 25, 2025

Contents

- Introduction
- 2 Stochastic Localization and two questions
- Naïve answers
- 4 Tensor Stochastic Localization
- 5 Another approach

The Ising model

We consider the *Ising model* defined on the *n*-dim. hypercube $C_n := \{-1, +1\}^n$.

Energy is given by the Hamiltonian

$$-\mathcal{H}(x) = \langle x, Jx \rangle + \langle h, x \rangle,$$

where *J* is the *interaction matrix* and *h* the *external field*.

The Gibbs measure is

$$\mu(x) = \frac{1}{Z_{\beta}} \exp(-\beta \mathcal{H}(x)).$$

Glauber Dynamics (GLD)

Markov chain $(X_t)_{t\geq 0}$ with $Law(X_t) \stackrel{t\to\infty}{\longrightarrow} \mu$.

- Start from a configuration $x = (x_1, ..., x_n)$.
- Repeat the following at each step
 - **1** pick a coordinate $i \in [n]$ uniformly at random,
 - ② update $(X_t)_i$ according to $\mu|(X_t)_{j\neq i}$.

GLD has an associated reversible transition kernel P_{GLD} .

The mixing time is defined as

$$t_{\mathsf{mix}}(\varepsilon) := \mathsf{min}\,\big\{t \geq 0: \ \forall x \in \mathcal{C}_n \ \|P^t_{\mathsf{GLD}}(x, \cdot) - \mu\|_{\mathsf{TV}} \leq \varepsilon\big\}.$$

Spectral gap and Poincaré inequality

Consider the eigenvalues of P_{GLD} : $1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n > -1$. The *spectral gap* is defined as

$$\mathsf{gap} := \lambda_1 - \lambda_2 = 1 - \lambda_2.$$

It holds:

$$t_{\mathsf{mix}}(\varepsilon) \leq \left\lceil \frac{n}{\mathsf{gap}} \left(\log \left(\frac{1}{\min_{x \in \mathcal{C}_n} \mu(x)} \right) + \log \left(\frac{1}{2\varepsilon} \right) \right) \right\rceil.$$

Fix $\varphi : \mathcal{C}_n \to \mathbb{R}$. For GLD, having gap is equivalent to satisfy a Poincaré inequality:

$$\mathsf{Var}_{\mu}(\varphi) \leq C_{\mathsf{P}}(\mu)\mathcal{E}_{\mu}(\varphi)$$
,

where

$$\mathcal{E}_{\mu}(\varphi) := \frac{1}{2} \sum_{\substack{x \ y \in C_n}} (\varphi(x) - \varphi(y))^2 \mu(x) P_{\mathsf{GLD}}(x, y),$$

and

$$\mathsf{Var}_{\mu}(\varphi) = \int \varphi^2 \mathsf{d}\mu - \left(\int \varphi \mathsf{d}\mu\right)^2$$
 .

Idea of Stochastic Localization (SL)

SL is a measure-valued process constructed by Eldan in 2013.

Start from a measure on C_n (or \mathbb{R}^n) of the form $\frac{dm(x)}{dx} = \exp(-w(x))$. Perturb it by a Gaussian tilt

$$\exp(-w(x)) \exp(\langle x, d \rangle - s||x||_2^2).$$

w must be "nice", for instance convex or quadratic.

SL definition

Fix μ on \mathcal{C}_n . Let $(B_t)_{t\geq 0}$ be a standard Brownian motion in \mathbb{R}^n . SL is a process of the form $\mu_t = \mathsf{F}_t \mu$, where F_t is the solution of

$$dF_t(x) = \langle x - a_t, C_t dB_t \rangle, \quad F_0(x) = 1,$$

 \bullet a_t is the barycenter:

$$a_t := \int x d\mu_t(x),$$

 \bullet C_t is the *driving matrix*: encodes constraints on the system.

Role of at

 a_t allows μ_t to be a probability measure. In fact:

$$d\int \mu_t(x)dx = d\int \mathsf{F}_t(x)\mu(x)dx = \left\langle \int x\mathsf{F}_t(x)\mu(x)dx - \mathsf{a}_t,\mathsf{C}_t \mathsf{d}B_t \right\rangle = 0.$$

SL is a Gaussian tilt

Apply Itô's formula:

$$d \log \mathsf{F}_t = \langle x - \mathsf{a}_t, \mathsf{C}_t \mathsf{d} B_t \rangle - \frac{1}{2} \| C_t (x - \mathsf{a}_t) \|_2^2 \mathsf{d} t.$$

We get:

$$\mu_t(x) = \exp\left(\int_0^t \langle x - \mathsf{a}_s, \mathsf{C}_s \mathsf{d}B_s \rangle - \frac{1}{2} \int_0^t \|\mathsf{C}_s(x - \mathsf{a}_s)\|_2^2 \mathsf{d}s\right)$$

$$\propto \exp\left(-\langle x, \mathsf{Q}_t x \rangle + \langle \mathsf{L}_t, x \rangle\right) \mu(x),$$

where

- L_t is some adapted process in \mathbb{R}^n ,
- $Q_t = \frac{1}{2} \int_0^t C_s^2 ds$ is a matrix-valued process.

Can we localize μ with a non-Gaussian tilt?

Poincaré inequality via SL

Let au be a suitable stopping time. Suppose we are able to prove

$$\mathsf{Var}_{\mu_{ au}}(arphi) \leq \mathcal{C}_{\mathsf{P}}(\mu_{ au})\mathcal{E}_{\mu_{ au}}(arphi)$$
 ,

Let $\mathsf{M}_t := \int_{\mathcal{C}_n} \varphi \, \mathrm{d}\mu_t$. Then

$$\mathsf{Var}_{\mu}(arphi) = \mathbb{E}ig[[\mathsf{M}]_tig] + \mathbb{E}ig[\mathsf{Var}_{\mu_t}(arphi)ig].$$

Suppose $[M]_t = 0$ a.s. Then

$$\mathsf{Var}_{\mu}(\varphi) = \mathbb{E}[\mathsf{Var}_{\mu_{\tau}}(\varphi)] \leq C_{\mathsf{P}}(\mu_{\tau})\mathbb{E}[\mathcal{E}_{\mu_{\tau}}(\varphi)] \leq C_{\mathsf{P}}(\mu_{\tau})\mathbb{E}[\mathcal{E}_{\mu}(\varphi)].$$

Eldan-Koehler-Zeitouni work: role of C_t

Consider $\mu(x) \propto \exp(\langle x, Jx \rangle)$. C_t encodes two constraints

- \bullet $\mathbb{E}_{\mu_t}[\varphi]$ constant in time $\Rightarrow \mathsf{Var}_{\mu_t}(\varphi)$ is a martingale.
- $J_t = J \int_0^t C_s^2 ds$ decreasing, if rank $J_t \ge 2$.

Define $\tau = \min\{t : \operatorname{rank}(J_t) = 1\}$. SL decomposes μ into a mixture of measures of the form

$$w_{u,v}(x) \propto \exp(\langle u, x \rangle^2 + \langle v, x \rangle).$$

It holds:

- $C_{P}(w_{u,v}) \leq (1-2||u||_{2}^{2})^{-1}$

If
$$||J||_{op} < \frac{1}{2} \Rightarrow C_{P}(\mu) \le (1 - 2||J||_{op})^{-1}$$
.

What happens if J is a fourth-order tensor?

About fourth-order tensors

- $T \in (\mathbb{R}^n)^{\otimes 4}$.
- $T: \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^n) \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^n)$. " $n^2 \times n^2$ matrix"
- T symmetric: $T_{i_1,i_2,i_3,i_4} = T_{i_{\sigma(1)},i_{\sigma(2)},i_{\sigma(3)},i_{\sigma(4)}}$ for any permutation σ .
- Injective norm: $||T||_{\text{inj}} = \sup_{x \in \mathbb{S}^{n-1}} |T(x, x, x, x)|$.

Naïve approach

Let $T \in (\mathbb{R}^n)^{\otimes 4}$. Consider $\nu(x) \propto \exp(T(x))$ on \mathcal{C}_n . Define the following version of SL: $\nu_t = \mathbb{F}_t \nu$, where \mathbb{F}_t solves

$$\mathrm{dF}_t(x) = \langle x^{\otimes 2} - \mathrm{a}_t, \mathrm{M}_t \mathrm{dW}_t \rangle_{\mathsf{HS}}, \quad \mathrm{F}_0(x) = 1,$$

with

$$\mathbf{a}_t = \int x^{\otimes 2} \mathrm{d} \nu_t(x),$$

and where W_t is a Dyson Brownian motion, and M_t is a fourth-order tensor operating on matrices.

16 / 29

Problems

Apply Itô's formula:

$$\begin{split} \nu_t(x) &= \exp\left(\int_0^t \langle x^{\otimes 2} - \mathbf{a}_s, \mathbf{M}_s \mathrm{d} \mathbf{W}_s \rangle_{\mathsf{HS}} - \frac{1}{2} \int_0^t \|\mathbf{M}_s(x^{\otimes 2} - \mathbf{a}_s)\|_{\mathsf{HS}}^2 \mathrm{d}s\right) \mu(x) \\ &\propto \exp\left(\left\langle x^{\otimes 2}, \left(T - \frac{1}{2} \int_0^t \mathbf{M}_s^2 \mathrm{d}s\right) x^{\otimes 2} \right\rangle_{\mathsf{HS}} + \left\langle \mathbf{L}_t, x^{\otimes 2} \right\rangle_{\mathsf{HS}}\right), \end{split}$$

where

$$L_t = \int_0^t \left(M_s dW_s - M_s^2 a_s ds \right).$$

Problems:

- $lackbox{1}{} \left\langle \mathbf{L}_t, \mathbf{x}^{\otimes 2} \right\rangle_{\mathsf{HS}}$ is not linear in \mathbf{x} . Spectral gap can deteriorate.
- **②** We treat T as a matrix $\Rightarrow T \frac{1}{2} \int_0^t M_s^2 ds$ collapses to a rank 1 matrix.

Arianna Piana Weizmann Institute February 25, 2025 17 / 29

Solution to problem 1

Problem: $L_t = \int_0^t (M_s dW_s - M_s^2 a_s ds)$ not linear in x.

Solution: eliminate it. How?

- lacktriangle Remove barycenter. Choose v_t such that L_t is arbitrarily small.
- **2** Encode in M_t a new constraint to fix $\int 1 d\nu_t$
- \Rightarrow M_t encodes mass preservation and variance martingale.

$$dF_t(x) = \langle x^{\otimes 2} - v_t, C_t dW_t \rangle_{HS}, \quad F_0(x) = 1,$$

with $\mu_t = F_t \mu$ and where

- C_t is a 4-tensor operating on matrices such that $C_t dW_t$ is a matrix.
- v_t satisfies:

Proposition \exists adapted drift process $v_t^{\delta} \in \mathsf{Mat}(\mathbb{R}^n, \mathbb{R}^n)$, st if X_t^{δ} satisfies

$$\mathrm{d}X_t^\delta = C_t \mathrm{d}W_t - C_t^2 v_t^\delta \mathrm{d}t, \quad X_0^\delta = 0,$$

then $\sup_{t\geq 0} \|X_t^{\delta}\|_{\mathsf{HS}} \leq \delta$ a.s.

Solution to problem 2

Define

$$T_t := T - \frac{1}{2} \int_0^t C_s^2 \mathrm{d}s \quad \text{and} \quad \tau = \inf\{t \geq 0 : \mathrm{rank}(T_t) \leq 2\}.$$

We can decompose the measure

$$\begin{split} \mu(x) &= \mathbb{E}[\mu_{\tau}] \\ &\propto \mathbb{E}[\exp(\langle x^{\otimes 2} \otimes x^{\otimes 2}, M_1 \otimes M_1 + M_2 \otimes M_2 \rangle_{\mathsf{HS}})] \\ &= \mathbb{E}[\exp(\langle x, M_1 x \rangle^2 + \langle x, M_2 x \rangle^2)] \end{split}$$

with $||M_1||_{OP}^2$, $||M_2||_{OP}^2 \le ||T||_{inj}$.

Decomposition of the measure $\mu(x) \propto \exp(T(x))$

Decomposition theorem

Let $\varphi: \mathcal{C}_n \to \mathbb{R}$ test function, let $\mu \propto \exp(T(x))$. Then, \exists decomposition

$$\mu = \int \mu_{ar{u},ar{v},ar{w},\ell} \eta(\mathrm{d}ar{u},\mathrm{d}ar{v},\mathrm{d}ar{w},\mathrm{d}\ell),$$

where $\bar{u} = \{u_1, u_2, u_3, u_4\}$, $\bar{v} = \{v_1, v_2, v_3, v_4\}$, and $\bar{w} = \{w_1, w_2\}$, with $u_i, v_i, w_j, \ell \in \mathbb{R}^n$ for $i \in [4]$ and j = 1, 2, and $\mu_{\bar{u}, \bar{v}, \bar{w}, \ell}$ are probability measures

$$\mu_{\bar{u},\bar{v},\bar{w},\boldsymbol{\ell}}(x) \propto \exp\left(\sum_{i,j=1}^{2} \langle u_i, x \rangle^2 \langle v_j, x \rangle^2 + \sum_{i,j=3}^{4} \langle u_i, x \rangle^2 \langle v_j, x \rangle^2 + \sum_{i=1}^{2} \langle x, w_i \rangle^2 + \langle \boldsymbol{\ell}, x \rangle\right)$$

Properties:

- For $i \in [4]$, $||u_i||_2^2$, $||v_i||_2^2 \le 2\sqrt{||T||_{\text{inj}}}$, $||w_i||_2^2 \le 4n||T||_{\text{inj}}$.
- Variance decomposition: $Var_{\mu}(\varphi) = \int Var_{\mu_{\bar{u},\bar{v},\bar{w},\ell}}(\varphi) \eta(d\bar{u}, d\bar{v}, d\bar{w}, d\ell)$.

Arianna Piana Weizmann Institute February 25, 2025

22 / 29

Spectral gap for tensor Ising model

Theorem Let μ be a measure on C_n given by $\mu(x) \propto \exp(T(x))$. Assume $\|T\|_{\text{inj}} \leq \frac{1}{336n}$. Then

$$C_{\mathsf{P}}(\mu) \le \frac{1}{1 - 336n\|T\|_{\mathsf{inj}}}.$$

Corollary T has independent $\mathcal{N}(0, n^{-3})$ off-diagonal entries and 0 everywhere else. Let μ be a measure on \mathcal{C}_n given by $\mu(x) \propto \exp(\beta T(x))$. If $\beta \lesssim \frac{1}{1205.568}$, then

$$C_{\mathsf{P}}(\mu) \le \frac{1}{1 - 1205.568\beta}.$$

Trick: Normalized variance

Let ν be an unormalized measure. Consider normalized variance

$$\overline{\mathsf{Var}}_{
u}(arphi) = \mathbb{E}_{
u}\left[arphi^2
ight] - rac{\mathbb{E}_{
u}\left[arphi
ight]^2}{\mathbb{E}_{
u}\left[1
ight]}.$$

Define $\tilde{\nu} = \frac{\nu}{\mathbb{E}_{\nu}[1]}$. Then

- $\overline{\operatorname{Var}}_{\nu}(\varphi) = \mathbb{E}_{\nu}[1] \operatorname{Var}_{\tilde{\nu}}(\varphi)$.
- If $C_{\mathsf{P}}(\tilde{\nu}) < \infty$. Then, $\forall \varphi : \mathcal{C}_n \to \mathbb{R}$

$$\overline{\mathsf{Var}}_{\nu}(\varphi) \leq C_{\mathsf{P}}(\tilde{\nu}) \mathbb{E}_{\nu}[1] \mathcal{E}_{\tilde{\nu}}(\varphi) = C_{\mathsf{P}}(\tilde{\nu}) \mathcal{E}_{\nu}(\varphi).$$

Adjustments to TSL

We allow $\mathbb{E}_{\mu_t}[1]$ to vary.

 \Rightarrow C_t has one constraint: $\frac{\mathbb{E}_{\nu_t}[\varphi]}{\mathbb{E}_{\nu_t}[1]}$ is constant. This allows to preserve $\overline{\mathrm{Var}}_{\nu_t}$.

Decomposition theorem bis

Let $\varphi : \mathcal{C}_n \to \mathbb{R}$ and $\mu \propto \exp(\mathcal{T}(x))$. Then, $\forall \delta > 0$, \exists decomposition

$$\mu = \int \mu_{u,v,w,\ell,\psi} \eta(\mathrm{d} u,\mathrm{d} v,\mathrm{d} w,\mathrm{d} \ell,\mathrm{d} \psi),$$

where with $u, v, w, \ell \in \mathbb{R}^n$ and $\psi : \mathcal{C}_n \to \mathbb{R}$, and $\mu_{u,v,w,\ell,\psi}$ is a non-negative measure of the form

$$\mu_{u,v,w,\ell,\psi}(x) \propto \exp\left(\langle u, x \rangle^2 \langle v, x \rangle^2 + \langle x, w \rangle^2 + \langle \ell, x \rangle + \psi(x)\right).$$

Properties:

- $||u||_2^2$, $||v||_2^2 \le 2\sqrt{||T||_{\text{inj}}}$, $||w||_2^2 \le 4n||T||_{\text{inj}}$.
- $\max_{x \in \mathcal{C}_n} |\psi(x)| \leq \delta$.
- Variance decomposition: $Var_{\mu}(\varphi) \leq \int \overline{Var}_{\mu_{u,v,w,\ell,\psi}}(\varphi) \eta(du, dv, dw, d\ell, d\psi) + \delta.$

Arianna Piana Weizmann Institute February 25, 2025 27 / 29

Spectral gap for tensor Ising model bis

Theorem Let μ be a measure on C_n given by $\mu(x) \propto \exp(T(x))$. Assume $||T||_{\text{inj}} \leq \frac{1}{56n}$. Then

$$C_{\mathsf{P}}(\mu) \leq \frac{1}{1 - 56n\|T\|_{\mathsf{inj}}}.$$

Corollary T has independent $\mathcal{N}(0, n^{-3})$ off-diagonal entries and 0 everywhere else. Let μ be a measure on \mathcal{C}_n given by $\mu(x) \propto \exp(\beta T(x))$. If $\beta \lesssim \frac{1}{200,928}$, then

$$C_{\mathsf{P}}(\mu) \le \frac{1}{1 - 200.928\beta}.$$

Thank you!