Isometries of the class of Ball-Bodies

Arnon Chor

Joint work with Shiri Artstein-Avidan and Dan Florentin AGA online seminar

11.3.25

1. The metric space S_n of ball-bodies

2. Surjective isometries and a geodesic appoach

3. General isometries and a more global approach

Ball bodies - definitions

Ball-bodies: convex bodies $K \in \mathcal{K}^n$ which are intersections of closed unit Euclidean balls: $K = \bigcap_{x \in A} (x + B_2^n)$ for some $A \subseteq \mathbb{R}^n$.

 $S_n :=$ the class of all ball-bodies.

Ball bodies - definitions

Ball-bodies: convex bodies $K \in \mathcal{K}^n$ which are intersections of closed unit Euclidean balls: $K = \bigcap_{x \in A} (x + B_2^n)$ for some $A \subseteq \mathbb{R}^n$.

 $S_n :=$ the class of all ball-bodies.

Equivalently (Maehara '84): summands of the unit Euclidean ball, i.e. bodies $K \in \mathcal{K}^n$ s.t. there exists $L \in \mathcal{K}^n : K + L = B_2^n$.

Ball bodies - definitions

Ball-bodies: convex bodies $K \in \mathcal{K}^n$ which are intersections of closed unit Euclidean balls: $K = \bigcap_{x \in A} (x + B_2^n)$ for some $A \subseteq \mathbb{R}^n$.

 $S_n :=$ the class of all ball-bodies.

Equivalently (Maehara '84): summands of the unit Euclidean ball, i.e. bodies $K \in \mathcal{K}^n$ s.t. there exists $L \in \mathcal{K}^n : K + L = B_2^n$.

Note: S_n is closed under Minkowski averages: If $K, L \in S_n$ with $K + K' = B_2^n$, $L + L' = B_2^n$: $\frac{1}{2}(K + L) + \frac{1}{2}(K' + L') = B_2^n \Rightarrow \frac{1}{2}(K + L) \in S_n$.

Equivalent definitions

Bodies which are "spindle convex": for any $x, y \in K$ the spindle

$$[x,y]_{\mathfrak{s}} := \bigcap_{z: \{x,y\}\subseteq z+B_2^n} z+B_2^n.$$

is contained in K (Bezdek, Lángi, Naszódi, Papez '07).

Equivalent definitions

Bodies which are "spindle convex": for any $x, y \in K$ the spindle

$$[x,y]_{\mathfrak{s}} := \bigcap_{z: \{x,y\}\subseteq z+B_2^n} z+B_2^n.$$

is contained in K (Bezdek, Lángi, Naszódi, Papez '07).

Bodies which slide freely in B_2^n : for any $x \in \partial B_2^n$ there is some $y \in \mathbb{R}^n$ such that $x \in y + K \subseteq B_2^n$. (We won't use this definition.)

A natural duality map on S_n

For $K \in \mathcal{K}^n$, define

A natural duality map on S_n

For $K \in \mathcal{K}^n$, define

$$K^c = \bigcap_{x \in K} x + B_2^n.$$

Equivalently, for $K \in S_n$: if $K + L = B_2^n$ then $K^c = -L$. \Rightarrow On S^{n-1} , $h_{K^c}(-u) + h_K(u) = 1$.

A natural duality map on S_n

For $K \in \mathcal{K}^n$, define

$$K^c = \bigcap_{x \in K} x + B_2^n.$$

Equivalently, for $K \in S_n$: if $K + L = B_2^n$ then $K^c = -L$. \Rightarrow On S^{n-1} , $h_{K^c}(-u) + h_K(u) = 1$.

Note: for any $K, L \in \mathcal{K}^n$:

- 1. $K \subseteq L \Rightarrow L^c \subseteq K^c$,
- 2. $K \subseteq K^{cc}$,
- 3. $K = K^{cc}$ if and only if $K \in S_n$,

i.e. c-duality is an "order-reversing quasi-involution".

For $K, L \in S_n$: $(\frac{1}{2}(K+L))^c = \frac{1}{2}(K^c + L^c)$ by the summands definition.

In '22 Artstein-Avidan, Sadovsky and Wyczesany gave a characterization of all order-reversing quasi-involutions of a set X: every such $T : \mathcal{P}(X) \to \mathcal{P}(X)$ is given by

$$T(K) = \bigcap_{x \in K} \{ y \in X \mid c(x, y) \ge 0 \}$$

for some symmetric $c : X \times X \rightarrow \{\pm 1\}$.

Specifically, the map $K \mapsto K^c$ is a cost-duality with the cost function $c : \mathbb{R}^n \times \mathbb{R}^n \to \{\pm 1\}$ given by

$$c(x,y) = egin{cases} 1 & |x-y| \leq 1 \ -1 & |x-y| > 1 \end{cases}.$$

Conjecture (Gromov '87)

A set $P = \{p_1, ..., p_N\} \subseteq \mathbb{R}^n$ is called a contraction of another set $Q = \{q_1, ..., q_N\} \subseteq \mathbb{R}^n$ if $\forall i, j : |p_i - p_j| \le |q_i - q_j|$.

Conjecture: If P is a contraction of Q then $Vol_n(P^c) \ge Vol_n(Q^c)$.

Some known special cases:

- 1. Bounded N: $N \le n+1$ (Gromov '87), $N \le n+3$ (Bezdek, Connelly '01).
- 2. Dimension 2 (Bezdek, Connelly '01).
- 3. Piecewise-smooth contractions (Bezdek, Connely '01).
- 4. Uniform contraction with $N \ge (1 + \sqrt{2})^n$ (Bezdek, Naszódi '17).
- 5. inradius instead of Voln (Bezdek, Lángi, Naszódi, Papez '07).

Constant-width-1 bodies are exactly *c*-self-dual bodies since $h_K(u) + h_{K^c}(-u) = 1$ on S^{n-1} . For *K* of constant width 1:

Constant-width-1 bodies are exactly *c*-self-dual bodies since $h_K(u) + h_{K^c}(-u) = 1$ on S^{n-1} . For *K* of constant width 1:

$$\underbrace{\left(\sqrt{3+\frac{2}{n+1}}-1\right)^{n}}_{\approx 0.73^{n}} Vol_{n}\left(\frac{1}{2}B_{2}^{n}\right) \stackrel{\text{Schramm '88}}{\leq} Vol_{n}(K)$$
Urysohn's ineq.
$$\underbrace{Vol_{n}\left(\frac{1}{2}B_{2}^{n}\right)}_{\leq}$$

Until recently: no examples asymptotically smaller than $\frac{1}{2}B_2^n$.

Arman, Bondarenko, Nazarov, Prymak, Radchenko '24 give a family $K_n \in S_n$ of constant width bodies with $Vol_n(K_n) \leq 0.9^n Vol_n(\frac{1}{2}B_2^n)$.

Theorem (Blaschke-Lebesgue)

The minimal area constant width body in \mathbb{R}^2 is the Reuleaux triangle.

The conjectured minimizers in \mathbb{R}^3 are the Meissner tetrahedra:

The two Meissner tetrahedra. Image: Meissner's mysterious bodies, Kawohl & Weber '11

Theorem (Blaschke-Lebesgue)

The minimal area constant width body in \mathbb{R}^2 is the Reuleaux triangle.

The conjectured minimizers in \mathbb{R}^3 are the Meissner tetrahedra:

The two Meissner tetrahedra. Image: Meissner's mysterious bodies, Kawohl & Weber '11

Open Question: Which constant width 1 bodies in \mathbb{R}^n have minimal volume?

Theorem (Carathéodory 1911)

Let $X \subseteq \mathbb{R}^n$. Then for any $y \in \text{conv}(X) = X^{\circ\circ}$ there are $x_0, x_1, ..., x_n \in X$ such that $y \in \text{conv}\{x_0, ..., x_n\}$.

Theorem (Carathéodory 1911)

Let $X \subseteq \mathbb{R}^n$. Then for any $y \in \text{conv}(X) = X^{\circ\circ}$ there are $x_0, x_1, ..., x_n \in X$ such that $y \in \text{conv}\{x_0, ..., x_n\}$.

An analogue for ball-bodies:

Theorem (Bezdek, Lángi, Naszódi, Papez '07)

Let $X \subseteq \mathbb{R}^n$ be closed. Then for any $y \in X^{cc}$ there are $x_0, x_1, ..., x_n \in X$ such that $y \in \{x_0, ..., x_n\}^{cc}$.

\mathcal{K}^n vs \mathcal{S}_n - Hadwiger-Boltjansky illumination

Definition

I(K) = the minimal number of directions which illuminate $K \in \mathcal{K}^n$.

Conjecture (Hadwiger conjecture)

For any convex body $K \in \mathcal{K}^n$, $I(K) \leq 2^n$.

Definition

I(K) = the minimal number of directions which illuminate $K \in \mathcal{K}^n$.

Conjecture (Hadwiger conjecture)

For any convex body $K \in \mathcal{K}^n$, $I(K) \leq 2^n$.

Theorem (Schramm '88)

For $K \in S_n$ of constant width, $I(K) \leq 5n\sqrt{n}(4 + \log n) \left(\frac{3}{2}\right)^{\frac{n}{2}} \ll 2^n$.

Theorem (Bezdek, Lángi, Naszódi, Papez '07)

If $A \subseteq \mathbb{R}^3$ with diam $A \leq 1$ then $I(A^c) \leq 6 < 2^3$.

In '08 Bezdek raised the question: is there c > 0 such that for any K of the form $K = A^c$ with A finite, $I(K) \le (2 - c)^n$?

Theorem (Böröczky, Schneider '08; Gruber '91)

Any order preserving (reversing) bijection $\mathcal{K}_0^n \to \mathcal{K}_0^n$ is induced by a linear transformation (a linear transformation composed with polarity).

 $[\]mathcal{K}_0^n$ is the set of convex bodies with 0 in their interior.

Theorem (Böröczky, Schneider '08; Gruber '91)

Any order preserving (reversing) bijection $\mathcal{K}_0^n \to \mathcal{K}_0^n$ is induced by a linear transformation (a linear transformation composed with polarity).

Theorem (Artstein-Avidan, Florentin '25)

Any order preserving (reversing) bijection $S_n \to S_n$ is induced by a rigid motion (a rigid motion composed with *c*-duality).

 $[\]mathcal{K}_0^n$ is the set of convex bodies with 0 in their interior.

...to isometries!

Equipping \mathcal{K}^n (and \mathcal{S}_n) with the Hausdorff metric δ :

$$\delta(K,L) = \min \{t \ge 0 \mid K + tB_2^n \supseteq L, \ L + tB_2^n \supseteq K\}$$

Theorem (Schneider '75)

Any bijective isometry $(\mathcal{K}^n, \delta) \to (\mathcal{K}^n, \delta)$ is induced by a rigid motion.

...to isometries!

Equipping \mathcal{K}^n (and \mathcal{S}_n) with the Hausdorff metric δ :

$$\delta(K,L) = \min \{t \ge 0 \mid K + tB_2^n \supseteq L, \ L + tB_2^n \supseteq K\}$$

Theorem (Schneider '75)

Any bijective isometry $(\mathcal{K}^n, \delta) \to (\mathcal{K}^n, \delta)$ is induced by a rigid motion.

Theorem (Artstein-Avidan, C., Florentin '25)

Any bijective isometry $(S_n, \delta) \rightarrow (S_n, \delta)$ is induced by either a rigid motion, or a rigid motion composed with *c*-duality.

...to isometries!

Equipping \mathcal{K}^n (and \mathcal{S}_n) with the Hausdorff metric δ :

$$\delta(K,L) = \min \{t \ge 0 \mid K + tB_2^n \supseteq L, \ L + tB_2^n \supseteq K\}$$

Theorem (Schneider '75)

Any bijective isometry $(\mathcal{K}^n, \delta) \to (\mathcal{K}^n, \delta)$ is induced by a rigid motion.

Theorem (Artstein-Avidan, C., Florentin '25)

Any bijective isometry $(S_n, \delta) \rightarrow (S_n, \delta)$ is induced by either a rigid motion, or a rigid motion composed with *c*-duality.

Remark

It can be seen that $K \mapsto K^c$ is an isometry (\Rightarrow continuous) on S_n by noting that $\delta(K, L) = \left\| h_K |_{S^{n-1}} - h_L |_{S^{n-1}} \right\|_{\infty}$, and $h_{K^c} = h_{B_2^n} - h_K$.

Let $T : S_n \to S_n$ be a bijective isometry.

1. Note: there exist bodies $K, L \in S_n$ with multiple midpoints ("discrete geodesics"):

Pairs (K, L) with a *unique* midpoint $\frac{K+L}{2}$ will be called S_n -cute.

2. T maps S_n -cute pairs to S_n -cute pairs (uses bijectiveness!), maps midpoint to midpoint.

- 3. Characterize cute pairs: assume (K, L) is S_n -cute, $\delta(K, L) \ge 4$. Then (K, L) are both points or both unit balls:
 - i Show the midpoint is a lens (i.e. an intersection of 2 unit balls).
 - ii Show that if the Minkowski average of 2 bodies (in S_n !) is a lens, then they are both translations of the same lens.
 - iii The only S_n -cute pairs of lens are either both points or both unit balls.
- 4. Either T maps all points to points, or T maps all points to unit balls.
- 5. If T maps points to points it is a rigid motion, if T maps points to balls it is a composition of a rigid motion with c-duality.

Theorem (Gruber, Lettl '80)

Any isometry $(\mathcal{K}^n, \delta) \to (\mathcal{K}^n, \delta)$ is induced by a rigid motion and Minkowski addition of some fixed convex body.

Theorem (Gruber, Lettl '80)

Any isometry $(\mathcal{K}^n, \delta) \to (\mathcal{K}^n, \delta)$ is induced by a rigid motion and Minkowski addition of some fixed convex body.

Theorem (Artstein-Avidan, C., Florentin '25)

Any isometry $(S_n, \delta) \to (S_n, \delta)$ is induced by either a rigid motion, or a rigid motion composed with c-duality.

Theorem (Gruber, Lettl '80)

Any isometry $(\mathcal{K}^n, \delta) \to (\mathcal{K}^n, \delta)$ is induced by a rigid motion and Minkowski addition of some fixed convex body.

Theorem (Artstein-Avidan, C., Florentin '25)

Any isometry $(S_n, \delta) \to (S_n, \delta)$ is induced by either a rigid motion, or a rigid motion composed with c-duality.

Corollary

Any isometry of S_n is bijective.

Let $T : S_n \to S_n$ be an isometry.

Lemma

There is a point in the image of T, and its preimage is either a point or a unit ball.

Lemma \Rightarrow Theorem is similar to Gruber and Lettl's proof: let $K \in S_n$ be the preimage (a point or a unit ball).

1. Define $M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$. Note $0 \notin M$.

Let $T : S_n \to S_n$ be an isometry.

Lemma

There is a point in the image of T, and its preimage is either a point or a unit ball.

Lemma \Rightarrow Theorem is similar to Gruber and Lettl's proof: let $K \in S_n$ be the preimage (a point or a unit ball).

- 1. Define $M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$. Note $0 \notin M$.
- 2. Show *M* is convex.

Let $T : S_n \to S_n$ be an isometry.

Lemma

There is a point in the image of T, and its preimage is either a point or a unit ball.

Lemma \Rightarrow Theorem is similar to Gruber and Lettl's proof: let $K \in S_n$ be the preimage (a point or a unit ball).

- 1. Define $M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$. Note $0 \notin M$.
- 2. Show *M* is convex. \Rightarrow there is a closed halfspace *H*: $H \cap M = \emptyset$.

Let $T : S_n \to S_n$ be an isometry.

Lemma

There is a point in the image of T, and its preimage is either a point or a unit ball.

Lemma \Rightarrow Theorem is similar to Gruber and Lettl's proof: let $K \in S_n$ be the preimage (a point or a unit ball).

- 1. Define $M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$. Note $0 \notin M$.
- 2. Show *M* is convex. \Rightarrow there is a closed halfspace *H*: $H \cap M = \emptyset$.
- 3. Assume $p \in M$, show that $T(K + p) \subseteq [p, p']$:

Assume $p \in M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$, show that $T(K + p) \subseteq [p, p']$:

W.L.O.G. $x \mapsto T(K + x)$ is identity on H.

Assume $p \in M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$, show that $T(K + p) \subseteq [p, p']$:

W.L.O.G. $x \mapsto T(K + x)$ is identity on H.

 $\forall x \in \partial H : \delta(T(K+p), x) = \delta(T(K+p), T(K+x)) = \delta(p, x) = |x-p|.$

Assume $p \in M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$, show that $T(K + p) \subseteq [p, p']$:

W.L.O.G. $x \mapsto T(K + x)$ is identity on H.

 $\forall x \in \partial H : \delta(T(K+p), x) = \delta(T(K+p), T(K+x)) = \delta(p, x) = |x-p|.$ $\Rightarrow T(K+p) \subseteq \bigcap_{x \in \partial H} x + |x-p|B_2^n = [p, p'].$

Assume $p \in M := \{x \in \mathbb{R}^n \mid T(K + x) \neq pt\}$, show that $T(K + p) \subseteq [p, p']$:

W.L.O.G. $x \mapsto T(K + x)$ is identity on H.

 $\forall x \in \partial H : \delta(T(K+p), x) = \delta(T(K+p), T(K+x)) = \delta(p, x) = |x-p|.$

$$\Rightarrow T(K+p) \subseteq \bigcap_{x \in \partial H} x + |x-p|B_2^n = [p,p'].$$

pt $\neq T(K + p) \in S_n$ has no interior, a contradiction $\Rightarrow M = \emptyset$. Therefore all translates of K map to points.

Lemma

There is a point in the image of T, and its preimage is either a point or a unit ball.

Main claim

There exist a point and a unit ball, both whose images have the same circumcenter.

Lemma

There is a point in the image of T, and its preimage is either a point or a unit ball.

Main claim

There exist a point and a unit ball, both whose images have the same circumcenter.

Claim \Rightarrow lemma:

1. Note that any point and any unit ball have Hausdorff distance ≥ 1 , but any two bodies in S_n with the same circumcenter have Hausdorff distance ≤ 1 .

Lemma

There is a point in the image of T, and its preimage is either a point or a unit ball.

Main claim

There exist a point and a unit ball, both whose images have the same circumcenter.

$\mathsf{Claim} \Rightarrow \mathsf{lemma:}$

- 1. Note that any point and any unit ball have Hausdorff distance ≥ 1 , but any two bodies in S_n with the same circumcenter have Hausdorff distance ≤ 1 .
- Moreover, if we have two bodies in S_n with the same circumcenter and in distance 1 from each other, one of them is a point.

Main claim

There exist a point and a unit ball, both whose T-images have the same circumcenter.

Proof.

Letting c(K) be the circumcenter of K, define $f_{pt}, f_{ball} : \mathbb{R}^n \to \mathbb{R}^n$:

$$f_{pt}(x) = c(T(x)),$$
 $f_{ball}(x) = c(T(x+B_2^n)).$

Main claim

There exist a point and a unit ball, both whose T-images have the same circumcenter.

Proof.

Letting c(K) be the circumcenter of K, define $f_{pt}, f_{ball} : \mathbb{R}^n \to \mathbb{R}^n$:

$$f_{pt}(x) = c(T(x)),$$
 $f_{ball}(x) = c(T(x + B_2^n))$

f_{pt}, *f_{ball}* are continuous, 2-isometries, namely:

$$||f_{pt}(x) - f_{pt}(y)| - |x - y|| \le 2,$$
 $||f_{ball}(x) - f_{ball}(y)| - |x - y|| \le 2.$

Main claim

There exist a point and a unit ball, both whose T-images have the same circumcenter.

Proof.

Letting c(K) be the circumcenter of K, define $f_{pt}, f_{ball} : \mathbb{R}^n \to \mathbb{R}^n$:

$$f_{pt}(x) = c(T(x)),$$
 $f_{ball}(x) = c(T(x + B_2^n))$

 f_{pt}, f_{ball} are continuous, 2-isometries, namely:

$$||f_{pt}(x) - f_{pt}(y)| - |x - y|| \le 2,$$
 $||f_{ball}(x) - f_{ball}(y)| - |x - y|| \le 2.$

 $\stackrel{*}{\Rightarrow}$ they are onto.

* Any continuous ε -isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ is onto.

Thank you.