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Outline

1. The metric space S, of ball-bodies

2. Surjective isometries and a geodesic appoach

3. General isometries and a more global
approach
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Ball bodies - definitions

Ball-bodies: convex bodies K € K" which are intersections of closed
unit Euclidean balls: K = (1,4 (x + BS) for some A C R".

S, := the class of all ball-bodies.
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Ball bodies - definitions

Ball-bodies: convex bodies K € K" which are intersections of closed
unit Euclidean balls: K = (.4 (x 4 BJ) for some A C R".

S, := the class of all ball-bodies.

Equivalently (Maehara '84): summands of the unit Euclidean ball, i.e.
bodies K € K" s.t. there exists L € K" : K+ L = BJ.

Note: S, is closed under Minkowski averages:
If K,Le S, with K+ K' =BJ, L+ L' =Bj:
K+ + 3K +LU)=B = L(K+L)eSn
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Equivalent definitions

Bodies which are "spindle convex”: for any x,y € K the spindle

[x,y]s :== ﬂ z+ Bj.
z: {x,y}Cz+BJ

is contained in K (Bezdek, Langi, Naszddi, Papez '07).
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Equivalent definitions

Bodies which are "spindle convex”: for any x,y € K the spindle

[x,y]s :== ﬂ z+ Bj.
z: {x,y}Cz+BJ

is contained in K (Bezdek, Langi, Naszddi, Papez '07).

Bodies which slide freely in BJ: for any x € 0BJ there is some
y € R" such that x € y + K g an (We won't use this definition.)
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A natural duality map on S,

For K € K", define
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A natural duality map on S,

For K € K", define
K= () x+Bj.
xeK

Equivalently, for K € S;: if K+ L = Bj then K< = —L.
= On S" 1 hye(—u) + hi(u) = 1.
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A natural duality map on S,

For K € K", define
K= () x+Bj.

xeK

Equivalently, for K € S;: if K+ L = Bj then K< = —L.
= On S" 1 hye(—u) + hi(u) = 1.

Note: for any K, L € K":
1. KC L= L°CK¢,
2. KC Ke,
3. K=K< ifand only if K € S,

i.e. c-duality is an "order-reversing quasi-involution”.

For K,L € Sp: (A(K + L)) = L(K€ + L°) by the summands

definition.
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Ball bodies appear naturally - cost duality

In 22 Artstein-Avidan, Sadovsky and Wyczesany gave a
characterization of all order-reversing quasi-involutions of a set X:
every such T : P(X) — P(X) is given by

T(K)= () {y e X | clx,y) >0}
xeK

for some symmetric ¢ : X x X — {£1}.

Specifically, the map K — K€ is a cost-duality with the cost function
c:R" x R" — {£1} given by

(x.y) 1 Ix—y| <1
c(x,y) = .
Y -1 |x—y|>1
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Ball bodies appear naturally - Kneser-Poulsen conjecture

Conjecture (Gromov '87)

A set P={p1,...,pn} C R" is called a contraction of another set
Q={q1,.-,qn} CR" ifVi,j: |pi — pjl < |qi — gjl.

Conjecture: If P is a contraction of Q then Vol, (P<) > Vol, (Q°).

Some known special cases:

1. Bounded N: N < n+1 (Gromov '87), N < n+ 3 (Bezdek,
Connelly '01).

Dimension 2 (Bezdek, Connelly '01).

Piecewise-smooth contractions (Bezdek, Connely '01).

Uniform contraction with N > (1 4 1/2)" (Bezdek, Naszédi '17).
inradius instead of Vol, (Bezdek, Langi, Naszédi, Papez '07).

@l > 9 I
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Ball bodies appear naturally - constant width bodies

Constant-width-1 bodies are exactly c-self-dual bodies since
hi(u) + hge(—u) =1 on S"~1. For K of constant width 1:

3+ —— -1 "oty (L) 5 P
tag 1) Ve (58) TTE Mreno)

~0.73"

Urysohn's ineq. 1
< Vol (285> .
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Ball bodies appear naturally - constant width bodies

Constant-width-1 bodies are exactly c-self-dual bodies since
hi(u) + hge(—u) =1 on S"~1. For K of constant width 1:

3+ —— -1 "oty (L) 5 P
tag 1) Ve (58) TTE Mreno)

~0.73"
Urysohn's ineq. 1
< Vol (5B4).

Until recently: no examples asymptotically smaller than %Bﬁ’.

Arman, Bondarenko, Nazarov, Prymak, Radchenko '24 give a family
K, € Sy, of constant width bodies with Vol,(K,) < 0.9"Vol, (%Bz")
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Ball bodies appear naturally - constant width bodies

Theorem (Blaschke-Lebesgue)

The minimal area constant width body in R? is the Reuleaux triangle.

@

The conjectured minimizers in R3 are the Meissner tetrahedra:

The two Meissner tetrahedra. Image: Meissner's mysterious bodies, Kawohl & Weber '11
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Ball bodies appear naturally - constant width bodies

Theorem (Blaschke-Lebesgue)

The minimal area constant width body in R? is the Reuleaux triangle.

@

The conjectured minimizers in R3 are the Meissner tetrahedra:

The two Meissner tetrahedra. Image: Meissner's mysterious bodies, Kawohl & Weber '11

Open Question: Which constant width 1 bodies in R” have minimal
volume?
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K" vs S, - Carathéodory’s theorem

Theorem (Carathéodory 1911)

Let X CR". Then for any y € conv(X) = X°° there are
X0, X1, ---s Xn € X such that y € conv{xp, ..., X, }.
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K" vs S, - Carathéodory’s theorem

Theorem (Carathéodory 1911)

Let X CR". Then for any y € conv(X) = X°° there are
X0, X1, ---s Xn € X such that y € conv{xp, ..., X, }.

An analogue for ball-bodies:

Theorem (Bezdek, Langi, Naszédi, Papez '07)

Let X C R" be closed. Then for any y € X there are
X0y X1, .-y Xn € X such that y € {xq, ..., x,} €.
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K" vs S, - Hadwiger-Boltjansky illumination

I(K) = the minimal number of directions which illuminate K € K".

Conjecture (Hadwiger conjecture)
For any convex body K € K", I(K) < 2".
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K" vs S, - Hadwiger-Boltjansky illumination

I(K) = the minimal number of directions which illuminate K € K".

Conjecture (Hadwiger conjecture)

For any convex body K € K", I(K) < 2".

Theorem (Schramm '88)

hn

For K € S, of constant width, I(K) < 5ny/n(4 + log n) (3)? < 2".

Theorem (Bezdek, Langi, Naszédi, Papez '07)
If A C R with diam A < 1 then I(A°) < 6 < 23.

In '08 Bezdek raised the question: is there ¢ > 0 such that for any K
of the form K = A€ with A finite, I(K) < (2 —¢)"?
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From order preserving/reversing...

Theorem (Boroczky, Schneider '08; Gruber '91)

Any order preserving (reversing) bijection ICf — KCf is induced by a
linear transformation (a linear transformation composed with

polarity).

K3 is the set of convex bodies with 0 in their interior.
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From order preserving/reversing...

Theorem (Boroczky, Schneider '08; Gruber '91)

Any order preserving (reversing) bijection ICf — KCf is induced by a
linear transformation (a linear transformation composed with

polarity).

Theorem (Artstein-Avidan, Florentin '25)

Any order preserving (reversing) bijection S, — S, is induced by a
rigid motion (a rigid motion composed with c-duality).

Kg is the set of convex bodies with 0 in their interior.
13/22



...to isometries!

Equipping K" (and S,) with the Hausdorff metric 4:

O(K,L)=min{t>0| K+tBy DL, L+tB O K}

Theorem (Schneider '75)
Any bijective isometry (K", ) — (K",0) is induced by a rigid motion.
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...to isometries!

Equipping K" (and S,) with the Hausdorff metric 4:

O(K,L)=min{t>0| K+tBy DL, L+tB O K}

Theorem (Schneider '75)
Any bijective isometry (K", ) — (K",0) is induced by a rigid motion.

Theorem (Artstein-Avidan, C., Florentin '25)

Any bijective isometry (S,,0) — (Sp,9) is induced by either a rigid
motion, or a rigid motion composed with c-duality.

Remark

It can be seen that K — K€ is an isometry (= continuous) on S, by

noting that 0(K, L) =

hK|5n—1 — hL|5n—1 p and hKc = hlgg — hK.

(e}
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Proof sketch

Let T:S, — S, be a bijective isometry.

1. Note: there exist bodies K, L € S, with multiple midpoints
(" discrete geodesics”):

Pairs (K, L) with a unique midpoint “5=

2. T maps S,-cute pairs to Sp-cute pairs (uses bijectiveness!),
maps midpoint to midpoint.

will be called S,-cute.

15/22



Proof sketch

3. Characterize cute pairs: assume (K, L) is Sp-cute, 6(K, L) > 4.
Then (K, L) are both points or both unit balls:
i Show the midpoint is a lens (i.e. an intersection of 2 unit balls).
i Show that if the Minkowski average of 2 bodies (in Sp,!) is a lens,
then they are both translations of the same lens.
iii The only S,-cute pairs of lens are either both points or both unit

balls.
4. Either T maps all points to points, or T maps all points to unit
balls.
5. If T maps points to points it is a rigid motion, if T maps points
to balls it is a composition of a rigid motion with c-duality.
O
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What about non-surjective isometries?

Theorem (Gruber, Lettl '80)

Any isometry (IC",6) — (K", 0) is induced by a rigid motion and
Minkowski addition of some fixed convex body.
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What about non-surjective isometries?

Theorem (Gruber, Lettl '80)

Any isometry (IC",0) — (K", 0) is induced by a rigid motion and
Minkowski addition of some fixed convex body.

Theorem (Artstein-Avidan, C., Florentin '25)

Any isometry (S,,0) — (Sp,0) is induced by either a rigid motion, or
a rigid motion composed with c-duality.

Corollary
Any isometry of S, is bijective.
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Proof sketch

Let T:S, — S, be an isometry.

Lemma

There is a point in the image of T, and its preimage is either a point
or a unit ball.

Lemma = Theorem is similar to Gruber and Lettl's proof: let K € S,
be the preimage (a point or a unit ball).

1. Define M := {x € R" | T(K + x) # pt}. Note 0 & M.
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Proof sketch

Let T:S, — S, be an isometry.

Lemma

There is a point in the image of T, and its preimage is either a point
or a unit ball.

Lemma = Theorem is similar to Gruber and Lettl's proof: let K € S,
be the preimage (a point or a unit ball).
1. Define M := {x € R" | T(K + x) # pt}. Note 0 & M.
2. Show M is convex. = there is a closed halfspace H: HN'M = ().
3. Assume p € M, show that T(K + p) C [p, p’]:

M 1707707707 777777777777.

H
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Proof sketch

={x e R"| T(K + x) # pt}, show that

T(K+p) C[p, Pl

Assume p € M

ANANUNNUNNNNNNNNNNNNNNSY

I

dentity on H.

is i

L.O.G. x = T(K +x)
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Assume p € M

ANANUNNUNNNNNNNNNNNNNNSY

iy

dentity on H.

is i

L.O.G. x = T(K +x)

6(p,x) = [x—pl.

0(T(K+p), T(K+x)) =

2 O(T(K+p),x)

Vx € OH
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Proof sketch

={x e R"| T(K + x) # pt}, show that

T(K+p) C[p, Pl

Assume p € M

ANANUNNUNNNNNNNNNNNNNNSY

iy

dentity on H.

is i

L.O.G. x = T(K +x)

6(p,x) = [x—pl.

0(T(K+p), T(K+x)) =

2 O(T(K+p),x)

Vx € OH

= T(K+p)C () x+Ix—plBS =[p,P].

x€OH
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Proof sketch

Assume p € M := {x € R" | T(K + x) # pt}, show that
T(K+p) < [p Pl

M

W.L.O.G. x — T(K + x) is identity on H.
Vx € OH : 6(T(K+p), x) = 6(T(K+p), T(K+x)) = 6(p, x) = |x—pl.

= T(K+p)C () x+Ix—plBS =[p,P].
x€oH
pt # T(K + p) € S, has no interior, a contradiction = M = ().

Therefore all translates of K map to points. O
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Proof sketch - the lemma

Lemma
There is a point in the image of T, and its preimage is either a point
or a unit ball.

Main claim
There exist a point and a unit ball, both whose images have the same

circumcenter.
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Lemma
There is a point in the image of T, and its preimage is either a point
or a unit ball.

Main claim
There exist a point and a unit ball, both whose images have the same

circumcenter.

Claim = lemma:
1. Note that any point and any unit ball have Hausdorff distance
> 1, but any two bodies in S, with the same circumcenter have
Hausdorff distance < 1.
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Proof sketch - the lemma

Lemma
There is a point in the image of T, and its preimage is either a point
or a unit ball.

Main claim
There exist a point and a unit ball, both whose images have the same
circumcenter.

Claim = lemma:

1. Note that any point and any unit ball have Hausdorff distance
> 1, but any two bodies in S, with the same circumcenter have
Hausdorff distance < 1.

2. Moreover, if we have two bodies in S, with the same
circumcenter and in distance 1 from each other, one of them is a
point.

]

20/22



Proof sketch - main claim

Main claim

There exist a point and a unit ball, both whose T-images have the
same circumcenter.

Proof.
Letting c(K) be the circumcenter of K, define fy¢, fpay : R” — R™:

for(x) = (T (x)), foain(x) = c(T(x + B3)).
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Proof sketch - main claim

Main claim

There exist a point and a unit ball, both whose T-images have the
same circumcenter.

Proof.
Letting c(K) be the circumcenter of K, define fy¢, fpay : R” — R™:

for(x) = (T (x)), fhanl(x) = c(T(x + B)).

fot, fpa are continuous, 2-isometries, namely:

fpr(x) — for ()] — |X—yw <2, | fpan (x) — fpan(y)| — |x = y|| < 2.

= they are onto. O

* Any continuous e-isometry f : R” — R" is onto.
21/22



Thank you.
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