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Outline

1. The metric space Sn of ball-bodies

2. Surjective isometries and a geodesic appoach
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Ball bodies - definitions

Ball-bodies: convex bodies K ∈ Kn which are intersections of closed
unit Euclidean balls: K =

⋂
x∈A (x + Bn

2 ) for some A ⊆ Rn.

Sn := the class of all ball-bodies.

Equivalently (Maehara ’84): summands of the unit Euclidean ball, i.e.
bodies K ∈ Kn s.t. there exists L ∈ Kn : K + L = Bn

2 .

Note: Sn is closed under Minkowski averages:
If K , L ∈ Sn with K + K ′ = Bn

2 , L+ L′ = Bn
2 :

1
2(K + L) + 1

2(K
′ + L′) = Bn

2 ⇒ 1
2(K + L) ∈ Sn.
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Equivalent definitions

Bodies which are ”spindle convex”: for any x , y ∈ K the spindle

[x , y ]s :=
⋂

z: {x ,y}⊆z+Bn
2

z + Bn
2 .

is contained in K (Bezdek, Lángi, Naszódi, Papez ’07).

Bodies which slide freely in Bn
2 : for any x ∈ ∂Bn

2 there is some
y ∈ Rn such that x ∈ y + K ⊆ Bn

2 . (We won’t use this definition.)
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A natural duality map on Sn

For K ∈ Kn, define
K c =

⋂
x∈K

x + Bn
2 .
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A natural duality map on Sn

For K ∈ Kn, define
K c =

⋂
x∈K

x + Bn
2 .

Equivalently, for K ∈ Sn: if K + L = Bn
2 then K c = −L.

⇒ On Sn−1, hK c (−u) + hK (u) = 1.

Note: for any K , L ∈ Kn:

1. K ⊆ L ⇒ Lc ⊆ K c ,

2. K ⊆ K cc ,

3. K = K cc if and only if K ∈ Sn,

i.e. c-duality is an ”order-reversing quasi-involution”.

For K , L ∈ Sn:
(
1
2(K + L)

)c
= 1

2(K
c + Lc) by the summands

definition.
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Ball bodies appear naturally - cost duality

In ’22 Artstein-Avidan, Sadovsky and Wyczesany gave a
characterization of all order-reversing quasi-involutions of a set X :
every such T : P(X ) → P(X ) is given by

T (K ) =
⋂
x∈K

{y ∈ X | c(x , y) ≥ 0}

for some symmetric c : X × X → {±1}.

Specifically, the map K 7→ K c is a cost-duality with the cost function
c : Rn × Rn → {±1} given by

c(x , y) =

{
1 |x − y | ≤ 1

−1 |x − y | > 1
.
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Ball bodies appear naturally - Kneser-Poulsen conjecture

Conjecture (Gromov ’87)

A set P = {p1, ..., pN} ⊆ Rn is called a contraction of another set
Q = {q1, ..., qN} ⊆ Rn if ∀i , j : |pi − pj | ≤ |qi − qj |.

Conjecture: If P is a contraction of Q then Voln (P
c) ≥ Voln (Q

c).

Some known special cases:

1. Bounded N: N ≤ n + 1 (Gromov ’87), N ≤ n + 3 (Bezdek,
Connelly ’01).

2. Dimension 2 (Bezdek, Connelly ’01).

3. Piecewise-smooth contractions (Bezdek, Connely ’01).

4. Uniform contraction with N ≥ (1 +
√
2)n (Bezdek, Naszódi ’17).

5. inradius instead of Voln (Bezdek, Lángi, Naszódi, Papez ’07).
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Ball bodies appear naturally - constant width bodies

Constant-width-1 bodies are exactly c-self-dual bodies since
hK (u) + hK c (−u) = 1 on Sn−1. For K of constant width 1:

(√
3 +

2

n + 1
− 1

)n

︸ ︷︷ ︸
≈0.73n

Voln

(
1

2
Bn
2

)
Schramm ’88

≤ Voln(K )

Urysohn’s ineq.
≤ Voln

(
1

2
Bn
2

)
.

Until recently: no examples asymptotically smaller than 1
2B

n
2 .

Arman, Bondarenko, Nazarov, Prymak, Radchenko ’24 give a family
Kn ∈ Sn of constant width bodies with Voln(Kn) ≤ 0.9nVoln

(
1
2B

n
2

)
.
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Ball bodies appear naturally - constant width bodies

Theorem (Blaschke-Lebesgue)

The minimal area constant width body in R2 is the Reuleaux triangle.

The conjectured minimizers in R3 are the Meissner tetrahedra:

The two Meissner tetrahedra. Image: Meissner’s mysterious bodies, Kawohl & Weber ’11

Open Question: Which constant width 1 bodies in Rn have minimal
volume?
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Kn vs Sn - Carathéodory’s theorem

Theorem (Carathéodory 1911)

Let X ⊆ Rn. Then for any y ∈ conv(X ) = X ◦◦ there are
x0, x1, ..., xn ∈ X such that y ∈ conv{x0, ..., xn}.

An analogue for ball-bodies:

Theorem (Bezdek, Lángi, Naszódi, Papez ’07)

Let X ⊆ Rn be closed. Then for any y ∈ X cc there are
x0, x1, ..., xn ∈ X such that y ∈ {x0, ..., xn}cc .
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Kn vs Sn - Hadwiger-Boltjansky illumination

Definition

I (K ) = the minimal number of directions which illuminate K ∈ Kn.

Conjecture (Hadwiger conjecture)

For any convex body K ∈ Kn, I (K ) ≤ 2n.

Theorem (Schramm ’88)

For K ∈ Sn of constant width, I (K ) ≤ 5n
√
n(4 + log n)

(
3
2

) n
2 ≪ 2n.

Theorem (Bezdek, Lángi, Naszódi, Papez ’07)

If A ⊆ R3 with diamA ≤ 1 then I (Ac) ≤ 6 < 23.

In ’08 Bezdek raised the question: is there c > 0 such that for any K
of the form K = Ac with A finite, I (K ) ≤ (2− c)n?
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From order preserving/reversing...

Theorem (Böröczky, Schneider ’08; Gruber ’91)

Any order preserving (reversing) bijection Kn
0 → Kn

0 is induced by a
linear transformation (a linear transformation composed with
polarity).

Theorem (Artstein-Avidan, Florentin ’25)

Any order preserving (reversing) bijection Sn → Sn is induced by a
rigid motion (a rigid motion composed with c-duality).

Kn
0 is the set of convex bodies with 0 in their interior.
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...to isometries!

Equipping Kn (and Sn) with the Hausdorff metric δ:

δ(K , L) = min {t ≥ 0 | K + tBn
2 ⊇ L, L+ tBn

2 ⊇ K}

Theorem (Schneider ’75)

Any bijective isometry (Kn, δ) → (Kn, δ) is induced by a rigid motion.

Theorem (Artstein-Avidan, C., Florentin ’25)

Any bijective isometry (Sn, δ) → (Sn, δ) is induced by either a rigid
motion, or a rigid motion composed with c-duality.

Remark

It can be seen that K 7→ K c is an isometry (⇒ continuous) on Sn by

noting that δ(K , L) =

∥∥∥∥hK |Sn−1 − hL|Sn−1

∥∥∥∥
∞
, and hK c = hBn

2
− hK .
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Proof sketch

Let T : Sn → Sn be a bijective isometry.

1. Note: there exist bodies K , L ∈ Sn with multiple midpoints
(”discrete geodesics”):

KL

Pairs (K , L) with a unique midpoint K+L
2 will be called Sn-cute.

2. T maps Sn-cute pairs to Sn-cute pairs (uses bijectiveness!),
maps midpoint to midpoint.

15 / 22



Proof sketch

3. Characterize cute pairs: assume (K , L) is Sn-cute, δ(K , L) ≥ 4.
Then (K , L) are both points or both unit balls:

i Show the midpoint is a lens (i.e. an intersection of 2 unit balls).
ii Show that if the Minkowski average of 2 bodies (in Sn!) is a lens,

then they are both translations of the same lens.
iii The only Sn-cute pairs of lens are either both points or both unit

balls.

4. Either T maps all points to points, or T maps all points to unit
balls.

5. If T maps points to points it is a rigid motion, if T maps points
to balls it is a composition of a rigid motion with c-duality.
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What about non-surjective isometries?

Theorem (Gruber, Lettl ’80)

Any isometry (Kn, δ) → (Kn, δ) is induced by a rigid motion and
Minkowski addition of some fixed convex body.

Theorem (Artstein-Avidan, C., Florentin ’25)

Any isometry (Sn, δ) → (Sn, δ) is induced by either a rigid motion, or
a rigid motion composed with c-duality.

Corollary

Any isometry of Sn is bijective.
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Proof sketch

Let T : Sn → Sn be an isometry.

Lemma

There is a point in the image of T , and its preimage is either a point
or a unit ball.

Lemma ⇒ Theorem is similar to Gruber and Lettl’s proof: let K ∈ Sn

be the preimage (a point or a unit ball).

1. Define M := {x ∈ Rn | T (K + x) ̸= pt}. Note 0 ̸∈ M.

2. Show M is convex. ⇒ there is a closed halfspace H: H ∩M = ∅.
3. Assume p ∈ M, show that T (K + p) ⊆ [p, p′]:

p p′
H

M
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Proof sketch

Assume p ∈ M := {x ∈ Rn | T (K + x) ̸= pt}, show that
T (K + p) ⊆ [p, p′]:

p p′
H

M

W.L.O.G. x 7→ T (K + x) is identity on H.

∀x ∈ ∂H : δ(T (K+p), x) = δ(T (K+p),T (K+x)) = δ(p, x) = |x−p|.

⇒ T (K + p) ⊆
⋂

x∈∂H
x + |x − p|Bn

2 = [p, p′].

pt ̸= T (K + p) ∈ Sn has no interior, a contradiction ⇒ M = ∅.
Therefore all translates of K map to points.

19 / 22



Proof sketch

Assume p ∈ M := {x ∈ Rn | T (K + x) ̸= pt}, show that
T (K + p) ⊆ [p, p′]:

p p′
H

M

W.L.O.G. x 7→ T (K + x) is identity on H.

∀x ∈ ∂H : δ(T (K+p), x) = δ(T (K+p),T (K+x)) = δ(p, x) = |x−p|.

⇒ T (K + p) ⊆
⋂

x∈∂H
x + |x − p|Bn

2 = [p, p′].

pt ̸= T (K + p) ∈ Sn has no interior, a contradiction ⇒ M = ∅.
Therefore all translates of K map to points.

19 / 22



Proof sketch

Assume p ∈ M := {x ∈ Rn | T (K + x) ̸= pt}, show that
T (K + p) ⊆ [p, p′]:

p p′
H

M

W.L.O.G. x 7→ T (K + x) is identity on H.

∀x ∈ ∂H : δ(T (K+p), x) = δ(T (K+p),T (K+x)) = δ(p, x) = |x−p|.

⇒ T (K + p) ⊆
⋂

x∈∂H
x + |x − p|Bn

2 = [p, p′].

pt ̸= T (K + p) ∈ Sn has no interior, a contradiction ⇒ M = ∅.
Therefore all translates of K map to points.

19 / 22



Proof sketch

Assume p ∈ M := {x ∈ Rn | T (K + x) ̸= pt}, show that
T (K + p) ⊆ [p, p′]:

p p′
H

M

W.L.O.G. x 7→ T (K + x) is identity on H.

∀x ∈ ∂H : δ(T (K+p), x) = δ(T (K+p),T (K+x)) = δ(p, x) = |x−p|.

⇒ T (K + p) ⊆
⋂

x∈∂H
x + |x − p|Bn

2 = [p, p′].

pt ̸= T (K + p) ∈ Sn has no interior, a contradiction ⇒ M = ∅.
Therefore all translates of K map to points.

19 / 22



Proof sketch - the lemma

Lemma

There is a point in the image of T , and its preimage is either a point
or a unit ball.

Main claim

There exist a point and a unit ball, both whose images have the same
circumcenter.

Claim ⇒ lemma:

1. Note that any point and any unit ball have Hausdorff distance
≥ 1, but any two bodies in Sn with the same circumcenter have
Hausdorff distance ≤ 1.

2. Moreover, if we have two bodies in Sn with the same
circumcenter and in distance 1 from each other, one of them is a
point.
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Proof sketch - main claim

Main claim

There exist a point and a unit ball, both whose T -images have the
same circumcenter.

Proof.

Letting c(K ) be the circumcenter of K , define fpt , fball : Rn → Rn:

fpt(x) = c(T (x)), fball(x) = c(T (x + Bn
2 )).

fpt , fball are continuous, 2-isometries, namely:∣∣∣∣|fpt(x)− fpt(y)|− |x − y |
∣∣∣∣ ≤ 2,

∣∣∣∣|fball(x)− fball(y)|− |x − y |
∣∣∣∣ ≤ 2.

∗⇒ they are onto.

* Any continuous ε-isometry f : Rn → Rn is onto.
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Thank you.
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