# On the Illumination Conjecture for convex bodies with many symmetries 

Beatrice-Helen Vritsiou joint work with Wen Rui Sun<br>University of Alberta

Online Asymptotic Geometric Analysis (AGA) Seminar 21 March, 2024

## Terminology and the conjecture

- $K$ convex body in $\mathbb{R}^{n}, x \in \partial K, d \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$.

We say that the direction d illuminates (or K-illuminates) $x$ if there exists $\epsilon>0$ such that $x+\epsilon d \in \operatorname{int}(K)$.

- A set $\left\{d_{1}, d_{2}, \ldots, d_{M}\right\}$ illuminates $K$ if $\forall x \in \partial K$ is illuminated by at least one direction $d_{i}$ in the set (call this an illuminating set for $K$ ).

- The minimum size of an illuminating set for $K$ is the illumination number $\Im(K)$ of $K$.


## Illumination conjecture (Hadwiger (1957, 1960); Boltyanski (1960))

For every convex body $K$ in $\mathbb{R}^{n}$ we have that $\mathfrak{J}(K) \leqslant 2^{n}$.
Moreover, $2^{n}$ directions are needed only if $K$ is the cube $[-1,1]^{n}$ or an affine image of the cube.



Vladimir Boltyanski (left, courtesy Annals of the Moscow University) and Hugo Hadwiger (right, courtesy Oberwolfach Photo Collection).
Figures on this slide, and photographs taken from the survey paper "K. Bezdek and M. A. Khan, The geometry of homothetic covering and illumination, in Discrete Geometry and Symmetry".

## An equivalent conjecture on covering numbers

- Let $A, B$ be bounded subsets of $\mathbb{R}^{n}$ with non-empty interior. The covering number of $A$ by $B$ is given by

$$
N(A, B):=\min \left\{M \in \mathbb{N}: \exists x_{1}, x_{2}, \ldots, x_{M} \in \mathbb{R}^{n} \text { such that } A \subseteq \bigcup_{i=1}^{M}\left(x_{i}+B\right)\right\}
$$

- Given a convex body $K$ in $\mathbb{R}^{n}$, we call the quantity

$$
N(K, \operatorname{int}(K))
$$

the covering number of $K$.

- We can check that, for every convex body $K$, its covering number and its illumination number are equal.


## An equivalent conjecture on covering numbers

- Let $A, B$ be bounded subsets of $\mathbb{R}^{n}$ with non-empty interior. The covering number of $A$ by $B$ is given by

$$
N(A, B):=\min \left\{M \in \mathbb{N}: \exists x_{1}, x_{2}, \ldots, x_{M} \in \mathbb{R}^{n} \text { such that } A \subseteq \bigcup_{i=1}^{M}\left(x_{i}+B\right)\right\}
$$

- Given a convex body $K$ in $\mathbb{R}^{n}$, we call the quantity

$$
N(K, \operatorname{int}(K))
$$

the covering number of $K$.

- We can check that, for every convex body $K$, its covering number and its illumination number are equal.


## Theorem (F. W. Levi, 1955)

For every convex body $K$ in $\mathbb{R}^{2}, \quad N(K, \operatorname{int}(K))=3$, unless $K$ is a parallelogram, in which case $N(K, \operatorname{int}(K))=4$.

- In 1957 Hadwiger states as an open problem the analogue of this theorem in higher dimensions.
- In full generality, still open for all $n>2$.


## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In $\operatorname{dim} 3$ : If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984).

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In $\operatorname{dim} 3$ : If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In dim 3: If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).
In general, $\Im(K) \leqslant 14$ (Prymak, 2023).

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In dim 3: If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).
In general, $\Im(K) \leqslant 14$ (Prymak, 2023).
In dim 4: $\Im(K) \leqslant 96$ (Prymak-Shepelska, 2020).
In $\operatorname{dim} 5$ and $6: ~ \Im(K) \leqslant 1002$ and $\mathfrak{I}(K) \leqslant 14140$ respectively (Diao, 2022).

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In dim 3: If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).
In general, $\Im(K) \leqslant 14$ (Prymak, 2023).
In dim 4: $\Im(K) \leqslant 96$ (Prymak-Shepelska, 2020).
In $\operatorname{dim} 5$ and $6: ~ \Im(K) \leqslant 1002$ and $\mathfrak{I}(K) \leqslant 14140$ respectively (Diao, 2022).

General upper bounds: Erdős-Rogers (1964) (+Rogers, Fejes Tóth, Rogers-Shephard):

$$
\Im(K)=N(K, \operatorname{int}(K)) \leqslant \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)}(n \ln n+n \ln (\ln n)+n+o(n))
$$

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In dim 3: If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).
In general, $\Im(K) \leqslant 14$ (Prymak, 2023).
In dim 4: $\Im(K) \leqslant 96$ (Prymak-Shepelska, 2020).
In $\operatorname{dim} 5$ and $6: ~ \Im(K) \leqslant 1002$ and $\mathfrak{I}(K) \leqslant 14140$ respectively (Diao, 2022).

General upper bounds: Erdős-Rogers (1964) (+Rogers, Fejes Tóth, Rogers-Shephard):

$$
\begin{aligned}
\Im(K)=N(K, \operatorname{int}(K)) & \leqslant \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)}(n \ln n+n \ln (\ln n)+n+o(n)) \\
& \leqslant\binom{ 2 n}{n}(n \ln n+n \ln (\ln n)+n+o(n))
\end{aligned}
$$

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In dim 3: If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).
In general, $\Im(K) \leqslant 14$ (Prymak, 2023).
In dim 4: $\Im(K) \leqslant 96$ (Prymak-Shepelska, 2020).
In $\operatorname{dim} 5$ and $6: ~ \Im(K) \leqslant 1002$ and $\mathfrak{I}(K) \leqslant 14140$ respectively (Diao, 2022).
General upper bounds: Erdős-Rogers (1964) (+Rogers, Fejes Tóth, Rogers-Shephard):

$$
\begin{aligned}
\Im(K)=N(K, \operatorname{int}(K)) & \leqslant \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)}(n \ln n+n \ln (\ln n)+n+o(n)) \\
& \leqslant\binom{ 2 n}{n}(n \ln n+n \ln (\ln n)+n+o(n))
\end{aligned}
$$

$\rightsquigarrow K \subset \mathbb{R}^{n}$ centrally-symmetric, then $\Im(K) \leqslant 2^{n} \cdot n \ln n(1+o(1))$.

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In dim 3: If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).
In general, $\Im(K) \leqslant 14$ (Prymak, 2023).
In dim 4: $\Im(K) \leqslant 96$ (Prymak-Shepelska, 2020).
In $\operatorname{dim} 5$ and $6: ~ \Im(K) \leqslant 1002$ and $\mathfrak{I}(K) \leqslant 14140$ respectively (Diao, 2022).
General upper bounds: Erdős-Rogers (1964) (+Rogers, Fejes Tóth, Rogers-Shephard):

$$
\begin{aligned}
\Im(K)=N(K, \operatorname{int}(K)) & \leqslant \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)}(n \ln n+n \ln (\ln n)+n+o(n)) \\
& \leqslant\binom{ 2 n}{n}(n \ln n+n \ln (\ln n)+n+o(n))
\end{aligned}
$$

$\rightsquigarrow K \subset \mathbb{R}^{n}$ centrally-symmetric, then $\Im(K) \leqslant 2^{n} \cdot n \ln n(1+o(1))$.
$K \subset \mathbb{R}^{n}$ not necessarily symmetric, then $\Im(K) \leqslant O\left(4^{n} \cdot \sqrt{n} \ln n\right)$.

## What we know

In dim 2: covering and illumination conjectures settled by Levi (1955).
In dim 3: If $K=-K$, then $\mathfrak{I}(K) \leqslant 8$ (Lassak, 1984). If $K$ has a plane symmetry, same (Dekster, 2000).
In general, $\Im(K) \leqslant 14$ (Prymak, 2023).
In dim 4: $\Im(K) \leqslant 96$ (Prymak-Shepelska, 2020).
In $\operatorname{dim} 5$ and $6: ~ \Im(K) \leqslant 1002$ and $\mathfrak{I}(K) \leqslant 14140$ respectively (Diao, 2022).
General upper bounds: Erdős-Rogers (1964) (+Rogers, Fejes Tóth, Rogers-Shephard):

$$
\begin{aligned}
\Im(K)=N(K, \operatorname{int}(K)) & \leqslant \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)}(n \ln n+n \ln (\ln n)+n+o(n)) \\
& \leqslant\binom{ 2 n}{n}(n \ln n+n \ln (\ln n)+n+o(n))
\end{aligned}
$$

$\rightsquigarrow K \subset \mathbb{R}^{n}$ centrally-symmetric, then $\Im(K) \leqslant 2^{n} \cdot n \ln n(1+o(1))$.
$K \subset \mathbb{R}^{n}$ not necessarily symmetric, then $\Im(K) \leqslant O\left(4^{n} \cdot \sqrt{n} \ln n\right)$.
Huang-Slomka-Tkocz-V (2018): $\Im(K) \leqslant O\left(4^{n} e^{-c \sqrt{n}}\right)$
Campos-van Hintum-Morris-Tiba (2022): $\Im(K) \leqslant 4^{n} \exp \left(-c n / L_{K}^{2}\right)$
Galicer-Singer (2024+): Alternative proof of the latter bound

## Conjecture settled for special classes of convex bodies

- smooth convex bodies (Levi);


## Conjecture settled for special classes of convex bodies

- smooth convex bodies (Levi);
- zonotopes and zonoids (and a superclass of those, belt polytopes and belt bodies) (Martini / Boltyanski)


## Conjecture settled for special classes of convex bodies

- smooth convex bodies (Levi);
- zonotopes and zonoids (and a superclass of those, belt polytopes and belt bodies) (Martini / Boltyanski)
- bodies of constant width ( $n=3$ and $n \geqslant 15$ ) (O. Schramm / K. Bezdek)
- "fat spindle convex bodies" ( $n=3$ and $n \geqslant 15$ ) (K. Bezdek)


## Conjecture settled for special classes of convex bodies

- smooth convex bodies (Levi);
- zonotopes and zonoids (and a superclass of those, belt polytopes and belt bodies) (Martini / Boltyanski)
- bodies of constant width ( $n=3$ and $n \geqslant 15$ ) (O. Schramm / K. Bezdek)
- "fat spindle convex bodies" ( $n=3$ and $n \geqslant 15$ ) (K. Bezdek)
- dual cyclic polytopes (Bezdek-Bisztriczky / Talata)


## Conjecture settled for special classes of convex bodies

- smooth convex bodies (Levi);
- zonotopes and zonoids (and a superclass of those, belt polytopes and belt bodies) (Martini / Boltyanski)
- bodies of constant width ( $n=3$ and $n \geqslant 15$ ) (O. Schramm / K. Bezdek)
- "fat spindle convex bodies" ( $n=3$ and $n \geqslant 15$ ) (K. Bezdek)
- dual cyclic polytopes (Bezdek-Bisztriczky / Talata)
- 1-symmetric convex bodies of sufficiently high dimension (Tikhomirov)


## Conjecture settled for special classes of convex bodies

- smooth convex bodies (Levi);
- zonotopes and zonoids (and a superclass of those, belt polytopes and belt bodies) (Martini / Boltyanski)
- bodies of constant width ( $n=3$ and $n \geqslant 15$ ) (O. Schramm / K. Bezdek)
- "fat spindle convex bodies" ( $n=3$ and $n \geqslant 15$ ) (K. Bezdek)
- dual cyclic polytopes (Bezdek-Bisztriczky / Talata)
- 1-symmetric convex bodies of sufficiently high dimension (Tikhomirov)
- bodies very close to the cube (Livshyts-Tikhomirov)


## Conjecture settled for special classes of convex bodies

- smooth convex bodies (Levi);
- zonotopes and zonoids (and a superclass of those, belt polytopes and belt bodies) (Martini / Boltyanski)
- bodies of constant width ( $n=3$ and $n \geqslant 15$ ) (O. Schramm / K. Bezdek)
- "fat spindle convex bodies" ( $n=3$ and $n \geqslant 15$ ) (K. Bezdek)
- dual cyclic polytopes (Bezdek-Bisztriczky / Talata)
- 1-symmetric convex bodies of sufficiently high dimension (Tikhomirov)
- bodies very close to the cube (Livshyts-Tikhomirov)
- symmetric spiky balls/cap bodies ( $n \leqslant 4$ and $n \geqslant 20$ ); and for all $n$, if +1 -unconditionality (Bezdek-Ivanov-Strachan)
- Tikhomirov (2017): there is $C$ such that,
if $n \geqslant C$ and $K \subset \mathbb{R}^{n} 1$-symmetric, not an affine image of the cube, then $\mathfrak{I}(K) \leqslant 2^{n}-1$.
- Tikhomirov (2017): there is C such that,
if $n \geqslant C$ and $K \subset \mathbb{R}^{n} 1$-symmetric, not an affine image of the cube, then $\Im(K) \leqslant 2^{n}-1$.

Recall: $K$ 1-unconditional: $x \in K \Rightarrow\left(\epsilon_{1} x_{1}, \epsilon_{2} x_{2}, \ldots, \epsilon_{n} x_{n}\right) \in K$, where $\epsilon_{i} \in\{ \pm 1\}$ $K$ 1-symmetric: $x \in K \Rightarrow\left(\epsilon_{1} x_{\sigma(1)}, \epsilon_{2} x_{\sigma(2)}, \ldots, \epsilon_{n} x_{\sigma(n)}\right) \in K$, where $\sigma$ permutation.

- Tikhomirov (2017): there is C such that,
if $n \geqslant C$ and $K \subset \mathbb{R}^{n} 1$-symmetric, not an affine image of the cube, then $\Im(K) \leqslant 2^{n}-1$.

Recall: $K$ 1-unconditional: $x \in K \Rightarrow\left(\epsilon_{1} x_{1}, \epsilon_{2} x_{2}, \ldots, \epsilon_{n} x_{n}\right) \in K$, where $\epsilon_{i} \in\{ \pm 1\}$
$K$ 1-symmetric: $x \in K \Rightarrow\left(\epsilon_{1} x_{\sigma(1)}, \epsilon_{2} x_{\sigma(2)}, \ldots, \epsilon_{n} x_{\sigma(n)}\right) \in K$, where $\sigma$ permutation.

Some other relevant results:

- Lassak (1984): if $K \subset \mathbb{R}^{3}$ centrally-symmetric, then $\Im(K) \leqslant 8$. illuminating sets consisting of pairs of opposite directions
- Tikhomirov (2017): there is C such that,
if $n \geqslant C$ and $K \subset \mathbb{R}^{n} 1$-symmetric, not an affine image of the cube, then $\Im(K) \leqslant 2^{n}-1$.

Recall: $K$ 1-unconditional: $x \in K \Rightarrow\left(\epsilon_{1} x_{1}, \epsilon_{2} x_{2}, \ldots, \epsilon_{n} x_{n}\right) \in K$, where $\epsilon_{i} \in\{ \pm 1\}$
$K$ 1-symmetric: $x \in K \Rightarrow\left(\epsilon_{1} x_{\sigma(1)}, \epsilon_{2} x_{\sigma(2)}, \ldots, \epsilon_{n} x_{\sigma(n)}\right) \in K$, where $\sigma$ permutation.

Some other relevant results:

- Lassak (1984): if $K \subset \mathbb{R}^{3}$ centrally-symmetric, then $\Im(K) \leqslant 8$. illuminating sets consisting of pairs of opposite directions
- Bezdek (1991): if $P \subset \mathbb{R}^{3}$ polytope with affine symmetry, then $\mathfrak{I}(K) \leqslant 8$.
- Tikhomirov (2017): there is C such that,

$$
\text { if } n \geqslant C \text { and } K \subset \mathbb{R}^{n} 1 \text {-symmetric, }
$$ not an affine image of the cube, then $\Im(K) \leqslant 2^{n}-1$.

Recall: $K$ 1-unconditional: $x \in K \Rightarrow\left(\epsilon_{1} x_{1}, \epsilon_{2} x_{2}, \ldots, \epsilon_{n} x_{n}\right) \in K$, where $\epsilon_{i} \in\{ \pm 1\}$
$K$ 1-symmetric: $x \in K \Rightarrow\left(\epsilon_{1} x_{\sigma(1)}, \epsilon_{2} x_{\sigma(2)}, \ldots, \epsilon_{n} x_{\sigma(n)}\right) \in K$, where $\sigma$ permutation.

Some other relevant results:

- Lassak (1984): if $K \subset \mathbb{R}^{3}$ centrally-symmetric, then $\Im(K) \leqslant 8$. illuminating sets consisting of pairs of opposite directions
- Bezdek (1991): if $P \subset \mathbb{R}^{3}$ polytope with affine symmetry, then $\mathfrak{I}(K) \leqslant 8$.
- Dekster (2000): if $K \subset \mathbb{R}^{3}$ symmetric about a plane, then $\Im(K) \leqslant 8$.


## Some basic remarks

- $\mathfrak{I}(K)$ is an affine invariant of $K$.


## Some basic remarks

- $\mathfrak{I}(K)$ is an affine invariant of $K$.
- If $\left\{d_{1}, d_{2}, \ldots, d_{M}\right\}$ illuminating set for $\operatorname{ext}(K)$, then all boundary points illuminated.


## Some basic remarks

- $\Im(K)$ is an affine invariant of $K$.
- If $\left\{d_{1}, d_{2}, \ldots, d_{M}\right\}$ illuminating set for $\operatorname{ext}(K)$, then all boundary points illuminated.
- K 1-unconditional, $x \in \partial K$. If $y$ satisfies: $\left|y_{i}\right|<\left|x_{i}\right|$ for all $i \in[n]$, then $y \in \operatorname{int}(K)$.


## Some basic remarks

- $\Im(K)$ is an affine invariant of $K$.
- If $\left\{d_{1}, d_{2}, \ldots, d_{M}\right\}$ illuminating set for $\operatorname{ext}(K)$, then all boundary points illuminated.
- K 1-unconditional, $x \in \partial K$. If $y$ satisfies: $\left|y_{i}\right|<\left|x_{i}\right|$ for all $i \in[n]$, then $y \in \operatorname{int}(K)$.
$\rightsquigarrow$ if $d \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$ satisfies: $d_{i} \cdot x_{i}<0$ for all $i \in[n]$, then $d$ illuminates $x$.
- $\Im(K)$ is an affine invariant of $K$.
- If $\left\{d_{1}, d_{2}, \ldots, d_{M}\right\}$ illuminating set for $\operatorname{ext}(K)$, then all boundary points illuminated.
- $K$ 1-unconditional, $x \in \partial K$. If $y$ satisfies: $\left|y_{i}\right|<\left|x_{i}\right|$ for all $i \in[n]$, then $y \in \operatorname{int}(K)$.
$\rightsquigarrow$ if $d \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$ satisfies: $d_{i} \cdot x_{i}<0$ for all $i \in[n]$, then $d$ illuminates $x$.


## Corollary

$K \subset \mathbb{R}^{n}$ 1-unconditional. Suppose that:

$$
\text { if } x \in \operatorname{ext}(K) \text {, then } x_{i} \neq 0 \text { for all } i \in[n] .
$$

Then $\mathfrak{I}(K) \leqslant 2^{n}$.
$K \subset \mathbb{R}^{n}$ 1-unconditional. Suppose that:
if $x \in \operatorname{ext}(K)$, then $x_{i} \neq 0$ for all $i \in[n]$.
Then $\mathfrak{I}(K) \leqslant 2^{n}$.

## Our results (Sun-V.)

$K \subset \mathbb{R}^{n}$ 1-unconditional. Suppose that:
if $x \in \operatorname{ext}(K)$, then $x_{i} \neq 0$ for all $i \in[n]$.
Then $\mathfrak{I}(K) \leqslant 2^{n}$.

## Theorem 1

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-symmetric and not an affine image of the cube. Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.

## Our results (Sun-V.)

$K \subset \mathbb{R}^{n}$ 1-unconditional. Suppose that:

$$
\text { if } x \in \operatorname{ext}(K) \text {, then } x_{i} \neq 0 \text { for all } i \in[n] \text {. }
$$

Then $\mathfrak{I}(K) \leqslant 2^{n}$.

## Theorem 1

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-symmetric and not an affine image of the cube. Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.

## Theorem 2

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-unconditional, not an affine image of the cube, having Property $(\dagger)$. Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.

## Our results (Sun-V.)

$K \subset \mathbb{R}^{n}$ 1-unconditional. Suppose that:
Then $\mathfrak{I}(K) \leqslant 2^{n}$.

$$
\text { if } x \in \operatorname{ext}(K) \text {, then } x_{i} \neq 0 \text { for all } i \in[n] .
$$

## Theorem 1

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-symmetric and not an affine image of the cube. Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.

## Theorem 2

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-unconditional, not an affine image of the cube, having Property $(\dagger)$. Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.

## Theorem 3

$K$ 1-unconditional in $\mathbb{R}^{3}$ or $\mathbb{R}^{4}$. Then $\Im(K) \leqslant 2^{n}-2$ (except for affine images of the cube).

Also, all illuminating sets consist of pairs of opposite directions.

Some comments on the tools and methods in Tikhomirov's approach and in ours

## A useful ("local-to-global") lemma

- $K \subset \mathbb{R}^{n}, H$ affine subspace of $\mathbb{R}^{n}$. Suppose $H \cap \operatorname{int}(K) \neq \emptyset$. If $p \in \operatorname{relint}(H \cap K)$, then $p \in \operatorname{int}(K)$.


## A useful ("local-to-global") lemma

- $K \subset \mathbb{R}^{n}, H$ affine subspace of $\mathbb{R}^{n}$. Suppose $H \cap \operatorname{int}(K) \neq \emptyset$.

If $p \in \operatorname{relint}(H \cap K)$, then $p \in \operatorname{int}(K)$.

- $\mathbf{B} \subset \mathbb{R}^{n} 1$-unconditional (or 1-symmetric), $x \in \partial \mathbf{B}$. Assume that $x_{i_{1}} \cdot x_{i_{2}} \cdots x_{i_{k}} \neq 0$, while $x_{j_{1}}=x_{j_{2}}=\cdots=x_{j_{n-k}}=0$.
Set $H_{x, 0}:=\left\{y \in \mathbb{R}^{n}: y_{j_{1}}=y_{j_{2}}=\cdots=y_{j_{n-k}}=0\right\}$, and consider the 1-unconditional convex subset $H_{x, 0} \cap \mathbf{B}$.


## A useful ("local-to-global") lemma

- $K \subset \mathbb{R}^{n}, H$ affine subspace of $\mathbb{R}^{n}$. Suppose $H \cap \operatorname{int}(K) \neq \emptyset$.

If $p \in \operatorname{relint}(H \cap K)$, then $p \in \operatorname{int}(K)$.

- $\mathbf{B} \subset \mathbb{R}^{n} 1$-unconditional (or 1-symmetric), $x \in \partial \mathbf{B}$. Assume that $x_{i_{1}} \cdot x_{i_{2}} \cdots x_{i_{k}} \neq 0$, while $x_{j_{1}}=x_{j_{2}}=\cdots=x_{j_{n-k}}=0$.
Set $H_{x, 0}:=\left\{y \in \mathbb{R}^{n}: y_{j_{1}}=y_{j_{2}}=\cdots=y_{j_{n-k}}=0\right\}$, and consider the 1 -unconditional convex subset $H_{x, 0} \cap \mathbf{B}$.

If $d \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$ is such that

$$
d_{i_{s}} \cdot x_{i_{s}}<0 \text { for all } s \in[k], \quad \text { and } d_{j}=0 \text { otherwise, }
$$

then $x+\varepsilon d \in \operatorname{relint}\left(H_{x, 0} \cap \mathbf{B}\right)$ for some $\varepsilon>0 \Rightarrow x+\varepsilon d \in \operatorname{int}(\mathbf{B})$.

## A useful ("local-to-global") lemma

- $K \subset \mathbb{R}^{n}, H$ affine subspace of $\mathbb{R}^{n}$. Suppose $H \cap \operatorname{int}(K) \neq \emptyset$.

If $p \in \operatorname{relint}(H \cap K)$, then $p \in \operatorname{int}(K)$.

- $\mathbf{B} \subset \mathbb{R}^{n} 1$-unconditional (or 1-symmetric), $x \in \partial \mathbf{B}$. Assume that $x_{i_{1}} \cdot x_{i_{2}} \cdots x_{i_{k}} \neq 0$, while $x_{j_{1}}=x_{j_{2}}=\cdots=x_{j_{n-k}}=0$.
Set $H_{x, 0}:=\left\{y \in \mathbb{R}^{n}: y_{j_{1}}=y_{j_{2}}=\cdots=y_{j_{n-k}}=0\right\}$, and consider the 1 -unconditional convex subset $H_{x, 0} \cap \mathbf{B}$.
If $d \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$ is such that

$$
d_{i_{s}} \cdot x_{i_{s}}<0 \text { for all } s \in[k], \quad \text { and } d_{j}=0 \text { otherwise, }
$$

then $x+\varepsilon d \in \operatorname{relint}\left(H_{x, 0} \cap \mathbf{B}\right)$ for some $\varepsilon>0 \Rightarrow x+\varepsilon d \in \operatorname{int}(\mathbf{B})$.

Corollary
B 1-unconditional or 1 -symmetric in $\mathbb{R}^{n} \Rightarrow$
$\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$ illuminating set for $\mathbf{B}$.

Preferred normalisations:

- B 1-unconditional or 1 -symmetric. $\exists$ diagonal matrix $D_{0}$ such that $\pm e_{i} \in \partial D_{0} \mathbf{B}$ for all $i \in[n]$.

Preferred normalisations:

- B 1-unconditional or 1-symmetric. $\exists$ diagonal matrix $D_{0}$ such that $\pm e_{i} \in \partial D_{0} \mathbf{B}$ for all $i \in[n]$.
If $\mathbf{B}$ already in such position, we will write $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$.

Preferred normalisations:

- B 1-unconditional or 1-symmetric. $\exists$ diagonal matrix $D_{0}$ such that $\pm e_{i} \in \partial D_{0} \mathbf{B}$ for all $i \in[n]$.
If $\mathbf{B}$ already in such position, we will write $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$.
- By the above, if $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$, then $\left|x_{i}\right| \leqslant 1$ for all $i \in[n]$. Thus $\mathbf{B} \subset[-1,1]^{n}$.

Preferred normalisations:

- B 1 -unconditional or 1-symmetric. $\exists$ diagonal matrix $D_{0}$ such that $\pm e_{i} \in \partial D_{0} \mathbf{B}$ for all $i \in[n]$.
If $\mathbf{B}$ already in such position, we will write $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$.
- By the above, if $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$, then $\left|x_{i}\right| \leqslant 1$ for all $i \in[n]$. Thus $\mathbf{B} \subset[-1,1]^{n}$.

Parameters to work with:
Distance to the cube (Tikhomirov)
If $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$, set

$$
\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)=\min \left\{\lambda \geqslant 1: \frac{1}{\lambda}[-1,1]^{n} \subset \mathbf{B}\right\} .
$$

In fact, $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)=\left\|e_{1}+e_{2}+\cdots+e_{n}\right\|_{\mathbf{B}}$.

Preferred normalisations:

- B 1-unconditional or 1-symmetric. $\exists$ diagonal matrix $D_{0}$ such that $\pm e_{i} \in \partial D_{0} \mathbf{B}$ for all $i \in[n]$.
If $\mathbf{B}$ already in such position, we will write $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$.
- By the above, if $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$, then $\left|x_{i}\right| \leqslant 1$ for all $i \in[n]$. Thus $\mathbf{B} \subset[-1,1]^{n}$.

Parameters to work with:
Distance to the cube (Tikhomirov)
If $\mathbf{B} \in \mathcal{U}^{n}$ or $\mathbf{B} \in \mathcal{S}^{n}$, set

$$
\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)=\min \left\{\lambda \geqslant 1: \frac{1}{\lambda}[-1,1]^{n} \subset \mathbf{B}\right\} .
$$

In fact, $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)=\left\|e_{1}+e_{2}+\cdots+e_{n}\right\|_{\mathbf{B}}$.
Largest unit subcube (Sun-V.)
Let $\mathbf{B} \in \mathcal{S}^{n}$. We set

$$
m_{\mathbf{B}}:=\max \left\{k \in[n]: e_{1}+e_{2}+\cdots+e_{k} \in \mathbf{B}\right\} .
$$

## Tikhomirov's method

- All illuminating sets are subsets of $\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$.


## Tikhomirov's method

- All illuminating sets are subsets of $\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$.
- Essentially he resorts to a dichotomy: he deals differently with 1 -symmetric $\mathbf{B} \in \mathcal{S}^{n}$ such that $1<\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)<2$,
and differently with those satisfying $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right) \geqslant 2$.


## Tikhomirov's method

- All illuminating sets are subsets of $\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$.
- Essentially he resorts to a dichotomy: he deals differently with 1 -symmetric $\mathbf{B} \in \mathcal{S}^{n}$ such that $1<\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)<2$,
and differently with those satisfying $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right) \geqslant 2$.
- Tikhomirov shows: if $\mathbf{B} \in \mathcal{S}^{n}$ and $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right) \geqslant 2$, then $\mathbf{B}$ is illuminated by a set of the form

$$
\left(\{-1,1\}^{n-1} \times\{0\}\right) \cup R_{0}
$$

where $R_{0}$ is any subset of $\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$ with the property:

$$
\begin{aligned}
& \text { for every } k \leqslant\left\lceil\frac{n}{2}\right\rceil \text {, and every } y \in\{-1,0,1\}^{n} \\
& \quad \text { with exactly } k \text { non-zero coordinates, } \\
& \exists z \in R_{0} \text { with exactly } 2 k-1 \text { non-zero coordinates } \\
& \text { agreeing with } y \text { in the non-zero coordinates of } y \text {. }
\end{aligned}
$$

## Tikhomirov's method

- All illuminating sets are subsets of $\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$.
- Essentially he resorts to a dichotomy: he deals differently with 1-symmetric $\mathbf{B} \in \mathcal{S}^{n}$ such that $1<\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)<2$, and differently with those satisfying $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right) \geqslant 2$.
- Tikhomirov shows: if $\mathbf{B} \in \mathcal{S}^{n}$ and $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right) \geqslant 2$, then $\mathbf{B}$ is illuminated by a set of the form

$$
\left(\{-1,1\}^{n-1} \times\{0\}\right) \cup R_{0}
$$

where $R_{0}$ is any subset of $\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$ with the property:

$$
\begin{aligned}
& \text { for every } k \leqslant\left\lceil\frac{n}{2}\right\rceil \text {, and every } y \in\{-1,0,1\}^{n} \\
& \quad \text { with exactly } k \text { non-zero coordinates, } \\
& \exists z \in R_{0} \text { with exactly } 2 k-1 \text { non-zero coordinates } \\
& \text { agreeing with } y \text { in the non-zero coordinates of } y \text {. }
\end{aligned}
$$

- He then uses a probabilistic argument to show that, if $n$ is sufficiently large, then we can find a set $R_{0}$ with this property which satisfies

$$
\left|R_{0}\right| \leqslant \frac{2^{n}}{n}<2^{n-1}
$$

Here the only need for the assumption $\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right) \geqslant 2$ is to ensure that $m_{\mathbf{B}} \leqslant \frac{n}{2}$.

## Thus we can 'simplify' his dichotomy a bit

- $n \geqslant 2, \mathbf{B} \in \mathcal{S}^{n}$ satisfies $1<\operatorname{dist}\left(\mathbf{B},[-1,1]^{n}\right)<2$ and
$\left\|e_{1}+e_{2}\right\|_{\mathbf{B}}=1$. Then $\mathbf{B}$ illuminated by

$$
\begin{aligned}
T_{1}: & =\left\{\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right) \in\{ \pm 1\}^{n}: \epsilon_{i}=-1 \text { for at least one } i \leqslant n-1\right\} \\
& \cup\left\{e_{1}+e_{2}+\cdots+e_{n-1}\right\} . \\
\rightsquigarrow & \mathfrak{I}(\mathbf{B}) \leqslant 2^{n}-1
\end{aligned}
$$

- $\mathbf{B} \in \mathcal{S}^{n}$ satisfies $m_{\mathbf{B}} \leqslant \frac{n}{2}$. Then $\mathbf{B}$ illuminated by

$$
T_{2}=\left(\{-1,1\}^{n-1} \times\{0\}\right) \cup R_{0}
$$

where $R_{0}$ a subset of $\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$ with the property stated before:
$\rightsquigarrow \Im(\mathbf{B}) \leqslant 2^{n-1}+\frac{2^{n}}{n}$ for $n$ sufficiently large.

## 'Obstacles' in low dimensions

'Tricky' convex body 1
Let $n \geqslant 3$, and consider the convex body $\mathbf{B}_{1} \in \mathcal{S}^{n}$ whose vertices are all the coordinate reflections and permutations of $e_{1}$ and of $\frac{1}{2}\left(e_{1}+e_{2}+\cdots+e_{n}\right)$.

## 'Obstacles' in low dimensions

## 'Tricky' convex body 1

Let $n \geqslant 3$, and consider the convex body $\mathbf{B}_{1} \in \mathcal{S}^{n}$ whose vertices are all the coordinate reflections and permutations of $e_{1}$ and of $\frac{1}{2}\left(e_{1}+e_{2}+\cdots+e_{n}\right)$.

## 'Tricky' convex body 2

Let $n \geqslant 9$, and consider the convex body $\mathbf{B}_{2} \in \mathcal{S}^{n}$ whose vertices are all coordinate reflections and permutations of $e_{1}$ and of $\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$.

## 'Obstacles' in low dimensions

## 'Tricky' convex body 1

Let $n \geqslant 3$, and consider the convex body $\mathbf{B}_{1} \in \mathcal{S}^{n}$ whose vertices are all the coordinate reflections and permutations of $e_{1}$ and of $\frac{1}{2}\left(e_{1}+e_{2}+\cdots+e_{n}\right)$.

## 'Tricky' convex body 2

Let $n \geqslant 9$, and consider the convex body $\mathbf{B}_{2} \in \mathcal{S}^{n}$ whose vertices are all coordinate reflections and permutations of $e_{1}$ and of $\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$.

Note: can show that, given any fixed $k \geqslant 1$, we can construct sufficiently high-dimensional convex bodies in $\mathcal{S}^{n}$ which cannot be illuminated by any set of the form

$$
\left(\{-1,1\}^{n-1} \times\{0\}\right) \cup R_{k}
$$

where $R_{k}$ will contain all $d \in\{-1,0,1\}^{n} \backslash\{\overrightarrow{0}\}$ with support size at most $k$.

## An alternative method

Let $n \geq 2, \delta \in(0,1)$. Consider the set

$$
G^{n}(\delta):=\left\{\epsilon_{j} e_{j}+\sum_{i \in[n] \backslash\{j\}} \epsilon_{i} \delta e_{i}: j \in[n], \epsilon_{i} \in\{ \pm 1\} \text { for all } i \in[n]\right\} .
$$

## An alternative method

Let $n \geq 2, \delta \in(0,1)$. Consider the set
$G^{n}(\delta):=\left\{\epsilon_{j} e_{j}+\sum_{i \in[n] \backslash\{j\}} \epsilon_{i} \delta e_{i}: j \in[n], \epsilon_{i} \in\{ \pm 1\}\right.$ for all $\left.i \in[n]\right\}$.

## Definition: Deep IIlumination

Let $x \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$. We say that $d \in G^{n}(\delta)$ deep illuminates $x$ if
(i) whenever $x_{i} \neq 0$, we have $\operatorname{sign}\left(d_{i}\right)=-\operatorname{sign}\left(x_{i}\right)$, AND
(ii) the maximum (in absolute value) coordinate $d_{i_{0}}$ of $d$ occurs at an index $i_{0} \in[n]$ for which $x_{i_{0}} \neq 0$.

## An alternative method

Let $n \geq 2, \delta \in(0,1)$. Consider the set
$G^{n}(\delta):=\left\{\epsilon_{j} e_{j}+\sum_{i \in[n] \backslash\{j\}} \epsilon_{i} \delta e_{i}: j \in[n], \epsilon_{i} \in\{ \pm 1\}\right.$ for all $\left.i \in[n]\right\}$.

## Definition: Deep IIlumination

Let $x \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$. We say that $d \in G^{n}(\delta)$ deep illuminates $x$ if
(i) whenever $x_{i} \neq 0$, we have $\operatorname{sign}\left(d_{i}\right)=-\operatorname{sign}\left(x_{i}\right)$, AND
(ii) the maximum (in absolute value) coordinate $d_{i_{0}}$ of $d$ occurs at an index $i_{0} \in[n]$ for which $x_{i_{0}} \neq 0$.

Note that, a priori, this is more of a 'combinatorial' property, rather than geometric.

For 1-symmetric convex bodies: if it deep illuminates, then it illuminates.

Lemma 1 (Sun-V.)
$n \geqslant 2, \mathbf{B} \in \mathcal{S}^{n}, x \in \partial \mathbf{B}$. Fix some positive $\delta<1 / n$. Then, if $d \in G^{n}(\delta)$ deep illuminates $x$, we will have

$$
x+\varepsilon d \in \operatorname{int}(\mathbf{B})
$$

for some $\varepsilon>0$.

# For 1-symmetric convex bodies: if it deep illuminates, then 

 it illuminates.
## Lemma 1 (Sun-V.)

$n \geqslant 2, \mathbf{B} \in \mathcal{S}^{n}, x \in \partial \mathbf{B}$. Fix some positive $\delta<1 / n$. Then, if $d \in G^{n}(\delta)$ deep illuminates $x$, we will have

$$
x+\varepsilon d \in \operatorname{int}(\mathbf{B})
$$

for some $\varepsilon>0$.
Also, a useful strengthening of this is the following:

## Lemma 2 (Sun-V.)

$n \geqslant 2, \mathbf{B} \in \mathcal{S}^{n}, x \in \partial \mathbf{B}$. Write $M_{x}:=\left\{k \in[n]:\left|x_{k}\right|=\|x\|_{\infty}\right\}$.
Fix some positive $\delta<1 / n$. If $d \in G^{n}(\delta)$ deep illuminates the projection
$\mathrm{P}_{M_{x}}(x)$ of $x$ (proj. onto the coord. subspace $\left[e_{k}: k \in M_{\times}\right]$, then

$$
x+\varepsilon d \in \operatorname{int}(\mathbf{B})
$$

for some $\varepsilon>0$.

## How to use these?

The above say that, if $\mathbf{B} \in \mathcal{S}^{n}$, and if $S$ is any subset of $G^{n}(\delta)$ (with $\delta<1 / n$ ) which deep illuminates every non-zero vector of $\mathbb{R}^{n}$, then $S$ is an illuminating set for $\mathbf{B}$.

## How to use these?

The above say that, if $\mathbf{B} \in \mathcal{S}^{n}$, and if $S$ is any subset of $G^{n}(\delta)$ (with $\delta<1 / n$ ) which deep illuminates every non-zero vector of $\mathbb{R}^{n}$, then $S$ is an illuminating set for $\mathbf{B}$.

Combine this with the following existence result:

## Theorem A (Sun-V.)

For all $n \geqslant 2$, there exists a subset $\mathcal{I}^{n}(\delta)$ of $G^{n}(\delta)$ with $\left|\mathcal{I}^{n}(\delta)\right|=2^{n}$ which deep illuminates all non-zero vectors of $\mathbb{R}^{n}$.

Thus $\mathcal{I}^{n}(\delta)$ illuminates all $\mathbf{B} \in \mathcal{S}^{n}$ (as long as $\delta<\frac{1}{n}$ ).
$\rightsquigarrow$ We get a common illuminating set of the 'right' size, but, attention, we haven't treated equality cases yet.

Geometric construction


## Combinatorial construction

$$
\begin{aligned}
- \text { Set } \mathcal{I}^{2}(\delta) & =\{(+1,+\delta),(-1,-\delta),(+\delta,-1),(-\delta,+1)\} \\
& =\{ \pm(+1,+\delta), \pm(+\delta,-1)\}
\end{aligned}
$$

## Combinatorial construction

$$
\begin{aligned}
- \text { Set } \mathcal{I}^{2}(\delta) & =\{(+1,+\delta),(-1,-\delta),(+\delta,-1),(-\delta,+1)\} \\
& =\{ \pm(+1,+\delta), \pm(+\delta,-1)\} .
\end{aligned}
$$

- To construct $\mathcal{I}^{3}(\delta)$ :
$((+1,+\delta),+\delta),((-1,-\delta),-\delta),((+\delta,-1),-\delta),((-\delta,+1),+\delta)$


## Combinatorial construction

$$
\begin{aligned}
- \text { Set } \mathcal{I}^{2}(\delta) & =\{(+1,+\delta),(-1,-\delta),(+\delta,-1),(-\delta,+1)\} \\
& =\{ \pm(+1,+\delta), \pm(+\delta,-1)\} .
\end{aligned}
$$

- To construct $\mathcal{I}^{3}(\delta)$ :

$$
\begin{array}{lll}
((+1,+\delta),+\delta), & ((-1,-\delta),-\delta), & ((+\delta,-1),-\delta), \\
((-\delta,+1),+\delta) \\
(+\delta,+\delta,-1), & (-\delta,-\delta,+1), & (+\delta,-\delta,+1), \\
(-\delta,+\delta,-1)
\end{array}
$$

## Equality cases for 1-symmetric convex bodies

Lemma 3 (Sun-V.)
Let $n \geqslant 3, \delta \in(0,1)$, and consider the combinatorially constructed $\mathcal{I}^{n}(\delta)$. Set

$$
\mathcal{I}_{-2}^{n}(\delta):=\mathcal{I}^{n}(\delta) \backslash\{ \pm(+\delta,+\delta, \ldots,+\delta,+\delta,-\delta,+1)\} .
$$

## Equality cases for 1 -symmetric convex bodies

Lemma 3 (Sun-V.)
Let $n \geqslant 3, \delta \in(0,1)$, and consider the combinatorially constructed $\mathcal{I}^{n}(\delta)$. Set

$$
\mathcal{I}_{-2}^{n}(\delta):=\mathcal{I}^{n}(\delta) \backslash\{ \pm(+\delta,+\delta, \ldots,+\delta,+\delta,-\delta,+1)\} .
$$

Then $\mathcal{I}_{-2}^{n}(\delta)$ deep illuminates all non-zero vectors in $\mathbb{R}^{n}$ with at least one zero coordinate.

## Equality cases for 1 -symmetric convex bodies

## Lemma 3 (Sun-V.)

Let $n \geqslant 3, \delta \in(0,1)$, and consider the combinatorially constructed $\mathcal{I}^{n}(\delta)$. Set

$$
\mathcal{I}_{-2}^{n}(\delta):=\mathcal{I}^{n}(\delta) \backslash\{ \pm(+\delta,+\delta, \ldots,+\delta,+\delta,-\delta,+1)\} .
$$

Then $\mathcal{I}_{-2}^{n}(\delta)$ deep illuminates all non-zero vectors in $\mathbb{R}^{n}$ with at least one zero coordinate.

## Theorem B (Sun-V.)

$n \geqslant 3, \mathbf{B} \in \mathcal{S}^{n}$ and suppose that $\operatorname{dist}\left(\mathbf{B},[-1,+1]^{n}\right)>1$ (equivalently, $m_{\mathbf{B}}<n$ ). Then we can find some sufficiently small $\eta=\eta_{\mathbf{B}}>0$ so that

$$
\begin{gathered}
{\left[\mathcal{I}_{-2}^{n}\left(\frac{1}{n+1}\right) \backslash\left\{ \pm\left(+1,+\frac{1}{n+1},+\frac{1}{n+1}, \ldots,+\frac{1}{n+1},+\frac{1}{n+1},+\frac{1}{n+1}\right)\right\}\right]} \\
\bigcup\left\{ \pm\left(+1,+\frac{1}{n+1},+\frac{1}{n+1}, \ldots,+\frac{1}{n+1}, \eta,+\frac{1}{n+1}\right)\right\}
\end{gathered}
$$

illuminates $\mathbf{B}$.
$\rightsquigarrow \mathfrak{I}(\mathbf{B}) \leqslant 2^{n}-2$

For 'thicker' 1-symmetric convex bodies, or for 'thick' 1-unconditional convex bodies we can do a bit better

Theorem C (Sun-V.)
$n \geqslant 3$, and let $\mathbf{B} \in \mathcal{U}^{n}, \mathbf{B} \neq[-1,1]^{n}$, such that

$$
\sum_{j \neq i} e_{j} \in \mathbf{B} \text { for all } i \in[n] .
$$

For 'thicker' 1-symmetric convex bodies, or for 'thick' 1-unconditional convex bodies we can do a bit better

Theorem C (Sun-V.)
$n \geqslant 3$, and let $\mathbf{B} \in \mathcal{U}^{n}, \mathbf{B} \neq[-1,1]^{n}$, such that

$$
\sum_{j \neq i} e_{j} \in \mathbf{B} \text { for all } i \in[n] .
$$

Then we can find sufficiently small $\delta=\delta_{\mathbf{B}}>0$ such that

$$
\mathcal{I}_{-2}^{n}(\delta)=\mathcal{I}^{n}(\delta) \backslash\{ \pm(+\delta,+\delta, \ldots,+\delta,+\delta,-\delta,+1)\}
$$

illuminates $\mathbf{B}$ (and thus $\Im(\mathbf{B}) \leqslant 2^{n}-2$ ).

## This is used to prove...

## Theorem 2

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-unconditional, not an affine image of the cube, having Property ( $\dagger$ ): that is,

$$
\text { if } x \in \operatorname{ext}(K) \text {, then } x_{i} \neq 0 \text { for all } i \in[n] \text {. }
$$

Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.

This is used to prove...

## Theorem 2

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-unconditional, not an affine image of the cube, having Property ( $\dagger$ ): that is,

$$
\text { if } x \in \operatorname{ext}(K) \text {, then } x_{i} \neq 0 \text { for all } i \in[n] \text {. }
$$

Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.
Proof. By induction in $n$.
Base case: results for (all) 1-uncond. in $\mathbb{R}^{3}$

## This is used to prove...

## Theorem 2

$n \geqslant 3, K \subset \mathbb{R}^{n} 1$-unconditional, not an affine image of the cube, having Property ( $\dagger$ ): that is,

$$
\text { if } x \in \operatorname{ext}(K) \text {, then } x_{i} \neq 0 \text { for all } i \in[n] \text {. }
$$

Then $\mathfrak{I}(K) \leqslant 2^{n}-2$.
Proof. By induction in $n$.
Base case: results for (all) 1-uncond. in $\mathbb{R}^{3}$
Cases where the inductive hypothesis cannot "kick in": can show that there is a 'maximal' unit subcube (can even reduce to the case where we have all 'maximal' unit subcubes, that is, to the assumptions in Thm C).

## Thank you for your attention!

