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Notation

• Rn – the n−dimensional space

• | · | or | · |k (for a set) – Lebesgue k−dimensional volume

• | · | (for a vector) – Euclidean length

• ⟨·, ·⟩ – the scalar product in Rn.

• For x ∈ Rn, denote x2 = ⟨x, x⟩ = |x|2.
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• Bn
2 – the Euclidean ball

• Sn−1 – the unit sphere

• A+B – Minkowski sum of sets

• x⊥ = {y ∈ Rn : ⟨x, y⟩ = 0} (for a vector x ∈ Rn \ {0})

1 Volumes in High dimensions, hands-on computations

and pretty pictures.

1.1 Introduction

The first lecture is all about some pretty pictures (including the one from the course website)
and getting our hands onto some basic volume computations in high dimensions. We will
generally work in Rn and assume that the dimension is very large (tends to infinity). High-
dimensional phenomena manifests when complex systems that depend on many parameters
actually behave in a simple way. Concentration of measure phenomena can be viewed as
part of it. Roughly speaking, it tells that Lipshitz functions in certain high dimensional
spaces behave similarly to constant functions. In high dimensions, if you walk a bit far, you
quickly end up nowhere.

Where do the concentration phenomena stem from?

Example 1.1 (Central Limit Theorem). Let X1, · · · , Xn be i.i.d. uniform random variables
on the interval [−1, 1]. Then as n tends to infinity, the random variable

n−1/2(X1 + · · ·+Xn)

converges, in distribution, to the Gaussian random variable with density 1√
2π
e−

t2

2c , for the
appropriate constant c > 0.

To get a geometric interpretation of this, note that the vector X := (X1, · · · , Xn) is dis-
tributed uniformly over the unit cubeB∞

n := [−1, 1]n. Given the vector θ = (1/
√
n, · · · , 1/

√
n)

the above example says that the random variable ⟨X, θ⟩ is distributed roughly as a normal
random variable.

What is the geometric meaning of the density f(t) of ⟨X, θ⟩? After thinking a little, we
see that

f(t) = |B∞
n ∩ {⟨x, θ⟩ = t}|n−1.

Thus f(t) the n − 1 dimensional area of the hyperplane section of the cube perpendicular
to θ, distance t from the origin. Although sections of cubes are hard to compute exactly, as
the dimension goes to infinity they resemble a normal random variable, which is a simple
object.
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This phenomenon appears to stem from independence. However, this fact is true not just
about cubes! For any convex body there exists a direction θ (in fact, many of them) for
which ⟨X, θ⟩ behaves a bit like a Gaussian (in the appropriate sense). This is the content of
the Central Limit Theorem for convex bodies from 2007 due to Bo’az Klartag.

In fact, it turns out that a lot of concentration type phenomena stems from independence,
while some other concentration phenomena stems from convexity and isoperimetry. While
concentration via independence is often simpler and better understood, it is also often less
general. This semester, we will only discuss concentration stemming from convexity and
isoperimetry, while concentration via independence will be discussed next semester in the
HDP course.

1.2 Computing the volumes of the cube, the cross-polytope and
the Euclidean ball.

We define an Lp-ball to be the set

Bn
p = {x ∈ Rn :

n∑
i=1

|xi|p ≤ 1}.

The set Bn
2 is called the Euclidean ball, while the set Bn

1 is called the cross-polytope, or
diamond. The set

Bn
∞ = {x ∈ Rn : maxi=1,...,n|xi| ≤ 1}

is called the unit cube. Note that Bn
p ⊂ Bn

q if p ≤ q.
For a Borel-measurable set A ⊂ Rn, denote by |A| or |A|n its Lebesgue volume. In this

course we always consider sets which are Borel-measurable. Note (a small home work) that

|Bn
∞| = 2n,

while

|Bn
1 | =

2n

n!
.

Computing the volume of the ball Bn
2 is a bit harder. To get started we denote the unit

sphere (the boundary of the unit ball) as

Sn−1 = {x ∈ Rn : |x| = 1}.
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Lemma 1.2. |Sn−1|n−1 = n|Bn
2 |.

Proof. Use polar coordinates:

|Bn
2 | =

ˆ
Bn2

dx =

ˆ
Sn−1

ˆ ∞

0

1Bn2 (tθ)tn−1 dt dθ =

ˆ
Sn−1

ˆ 1

0

tn−1 dt dθ =
1

n

ˆ
Sn−1

dθ =
1

n
|Sn−1|

with the change of variables x = tθ, θ ∈ Sn−1, t ≥ 0.

Now we want to compute the area of Sn−1. Building towards that, we show

Lemma 1.3.
´
R exp(−x2/2) dx =

√
2π.

Proof. Let us consider the following two-dimensional integral:
¨

R2

exp(−(x2 + y2)/2)

We first use the fact that it equals
(´

R exp(−x2/2) dx
)2

(follows from Fubini). On the other
hand, rewriting

´
R exp(−(x2 + y2)/2) in polar coordinates you get

ˆ
S1

ˆ ∞

0

te−t
2/2 dt dθ = |S1| = 2π.

Now we tie this back to what we originally wanted.

Lemma 1.4.

|Sn−1| = (2π)
n
2

Jn−1

,

where Jn−1 :=
´∞
0
tn−1e−

t2

2 dt.

Proof. Again by Fubini’s theorem,

ˆ
Rn

exp(−x2/2) dx =

ˆ ∞

−∞
· · ·

ˆ ∞

−∞

n∏
k=1

exp(−x2i /2) dx1 · · · dxn =

(ˆ ∞

−∞
e−

t2

2 dt

)n
=
√

2π
n
.

Again we use polar coordinates to rewrite this as
ˆ
Rn
e−x

2/2 dx = |Sn−1|n−1 ·
ˆ ∞

0

tn−1e−t
2/2 dt = |Sn−1|n−1 · Jn−1.

From which we conclude the Lemma.

Next, we need to evaluate Jn−1. One could reduce it to Gamma function, but we employ
the so-called Laplace Method, which is a useful tool in handling integrals of this type.

7



Proposition 1.5 (An example of the use of the Laplace method). Let F : R → R be a
real-valued function, and m be a positive number. We make the following assumptions.

• F attains the absolute maximum at the point s0, and for every s ̸= s0 we have F (s) <
F (s0).

• Further, assume that there exist numbers a, b > 0 such that F (s) < F (s0)− b whenever
|s− s0| > a.

• Suppose that the integral
´
eF (s)ds <∞.

• Suppose that F is twice differentiable in some neighborhood of s0.

• Suppose that F ′′(s0) < 0.

When m→∞, the integral

ˆ
emF (s)ds = (1 + o(1))emF (s0)

√
2π√

−mF ′′(s0)
.

Proof. See home work with a series of hints!

Consider
Fn(t) = (n− 1) log(t)− t2/2.

Setting the Fn(t) to 0 one can check that Fn(t) has a maximum at t0 =
√
n− 1. One can

also check that F ′′
n (t0) = −(n− 1)/t20 − 1 = −2. Thus Proposition 1.5 gives

Jn−1 =

ˆ ∞

0

e−t
2/2tn−1 dt =

ˆ ∞

0

e−Fn(t) dt

= (1 + on(1))e−Fn(t0) ·
√

2π√
−F ′′

n (t0)

(1 + o(1))e−
n−1
2 (n− 1)

n−1
2 ·
√

2π√
2
.

Combining the above with Lemma 1.4, we conclude

Corollary 1.6.

|Sn−1| = (2π)n/2

Jn−1

= (1 + on(1)) · (2π)n/2e
n−1
2

(n− 1)
n−1
2
√
π
.

Remark 1.7. The volume and surface area of euclidean balls tends to 0 as n tends to infinity,
but non-montonically (|Bn

2 | is increasing in n up to roughly n = 16).

Remark 1.8. Note that
|Bn−1

2 |n−1

|Bn
2 |n

= (1 + o(1))

√
n√
2π
.
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1.3 The first taste of the Concentration phenomena

Let ϵ > 0. Consider the problem of computing

|Bn
2 ∩ {|⟨x, θ⟩| ≤ ε}|,

where θ ∈ Sn−1. We can write this volume (using Fubini and homogeneity of the volume) as

|Bn
2 ∩ {|⟨x, θ⟩| ≤ ε}| =

ˆ ε

−ε
|
√

1− t2Bn−1
2 |n−1 dt =

ˆ ε

−ε
(1− t2)

n−1
2 |Bn−1

2 |n−1 dt.

We could evaluate this using Laplace’s method but instead we write out a coarse bound: by
Remark 1.8, and since the function (1− t2)(n−1)/2 decreases on [0, ϵ], we get

|Bn
2 ∩ {|⟨x, θ⟩|
|Bn

2 |
=
|Bn−1

2 |n−1

|Bn
2 |n

·
ˆ ε

−ε
(1− t2)(n−1)/2 dt ≥ (1 + o(1))

√
n√
2π
· 2ϵ · (1− ϵ2)(n−1)/2.

Now for ε = 1/
√
n the above ratio is at least

(1 + o(1))
2

e
√

2π
≈ 0.294.

Suppose n is very large. Then the slab of width 2√
n

that we are considering is very thin. We

see that he volume of the intersection of the ball with a very thin slab is more than 29% of
the volume of the ball!

This means that for n = 1000000, a constant fraction of the mass of the unit ball lies
0.001 away from the equator! Any equator!!!

Remark 1.9. A more honest estimate using the Laplace Method would give 99%, provided
that the slab has width C√

n
for an appropriate C > 0.

This begs a question: maybe this means that most of the mass of the ball lies near the
center? We will shortly see that the answer is “no”, and it couldn’t be more “no”!
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1.4 About the thin annulus around the ball

Last time we concluded that the a sphere (even though it is convex) has its mass concentrated
near the equator, so it “looks like a spinning top in every direction”. That would suggest
that most of the mass is contained in the center (because the center is contained in all the
slabs). However it is actually all concentrated near the boundary of the ball.

Define the annulus Aε = Bn
2 \ (1− ε)Bn

2 . Then

|Aε| = |Bn
2 | · (1− (1− ε))n = |Bn

2 | · (nε−O(ε2))

assuming ε ≤ c/n for c a constant say.
Conclusion: almost all the mass of the unit ball is located 1− c/n away from the origin!!!

1.5 First hand-wavy glance into the connection between isoperime-
try and concentration: most of the mass of a convex body is
near the boundary.

Definition 1.10. A set K ⊂ Rn is called convex if for every pair of x, y ∈ Rn and every
λ ∈ [0, 1] one has λx+ (1− λ)y ∈ K.

Remark 1.11. We note that the interval connecting vectors x and y in Rn can be written
as

[x, y] = {λx+ (1− λ)y : λ ∈ [0, 1]}.

Definition 1.12. We say that K is a convex body if it is a compact convex set with non-
empty interior.

Note that the definition of convex body doesn’t allow for infinite cylinders or disks (In
the former case because it is not compact and the latter because it has empty interior), even
though both sets are convex.

We now want to argue that most of the mass of a convex body is near its boundary. For
a convex body K we consider an annulus Aε

Aε = {x ∈ K : : dist(x, ∂K) ≤ ε}

Recall also

Definition 1.13 (Minkowski sum). For A,B ⊂ Rn define their Minkowski sum as

A+B = {x+ y : x ∈ A, y ∈ B}.

Definition 1.14 (Perimeter). For a Borel measurable set A ⊂ Rn define perimeter as

|∂A| = lim inf
ε→0

|A+ εBn
2 \ A|

ε
.
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Claim 1.15 (a very hand-wavy part). When ε is sufficiently small (depending on K,n) we
have |Aε| ≈ ε|∂K|n−1.

A nice way to lower bound the perimeter is via the isoperimetric inequality:

Theorem 1.16 (The isoperimetric inequality). Balls minimize perimeter relative to volume.
In other words, for any Borel-measurable set K in Rn such that |K| = |RBn

2 |, for the right
R > 0, one has

|∂K| ≥ |∂(RBn
2 )|.

A fable has it that Roman soldiers wanted to maximize the amount of land they received
as payment for military service:)

Cameti

Note that the expression |∂K|
|K|

n−1
n

is invariant under dilations of K: indeed, the volume is

n−homogeneous while the perimeter is (n− 1)-homogeneous, and therefore for any t > 0:

|∂(tK)|
|tK|n−1

n

=
tn−1|∂(K)|
tn

n−1
n |K|n−1

n

=
|∂(K)|
|K|n−1

n

.
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Therefore, the isoperimetric inequality is equivalent to the fact that for any Borel-
measurable set K in Rn,

|∂K|
|K|n−1

n

≥ |∂Bn
2 |

|Bn
2 |

n−1
n

.

Thus by taking ε = c/
√
n for c a sufficiently large constant we conclude that |Aε|/|K| ≥

99% (we leave out some details).

Remark 1.17. Please note that the above is not a mathematical argument but merely a
hand waving. The point is to provide the very first illustration of concentration arising from
isoperimetry!

1.6 Some more fun regarding metric estimates in high dimension

Consider the cube Bn
∞ and place a copy of Bn

2 centered at each vertex of Bn
∞ (see the Figure

below). Note that the largest ball you can place at the center of B∞ without intersecting
any of the copies of Bn

2 will have radius
√
n− 1. This might be somewhat surprising, since

in many directions the ball extends out much further from the origin than the cube does,
when n is large.

↑2i
IO1 / ↳

& d
- * &

e

-1

1

- -
1

-2(x - 1) [ 1998
⑳

↑ ⑳ -

* E * S

↳S2 O 2

-

&

&
- ↑-2

n
=2

n = 1000000

1.7 Home work

Question 1.18 (1 point). Let F : R → R be a real-valued function, and m be a positive
number. We make the following assumptions.

• F attains the absolute maximum at the point s0, and for every s ̸= s0 we have F (s) <
F (s0).

• Further, assume that there exist numbers a, b > 0 such that F (s) < F (s0)− b whenever
|s− s0| > a.

12



• Suppose that the integral
´
eF (s)ds <∞.

• Suppose that F is twice differentiable in some neighborhood of s0.

• Suppose that F ′′(s0) < 0.

Prove that when m→∞, the integralˆ
emF (s)ds = (1 + o(1))emF (s0)

√
2π√

−mF ′′(s0)
.

Hint 1: Observe that WLOG s0 = F (s0) = 0, and that F is equal to −∞ outside of the
support.

Hint 2: Pick any ϵ > 0 and note that one may find a δ > 0 so that for all s ∈ (−δ, δ) we
have

|F (s)− F ′′(0)s2

2
| ≤ ϵ.

Hint 3: Find an estimate for ˆ δ

−δ
emF (s)ds.

Hint 4: Note that the assumptions imply that for every δ > 0 there is η(δ) > 0 such that
F (s) < F (s0)− η(δ);

Hint 5: Find an estimate for
´∞
δ
emF (s)ds and

´ −δ
−∞ emF (s)ds; to do that, use the previous

hint, and also note that emF (s) = e(m−1)F (s)eF (s). Use the assumption about the converging
integral as well.

Hint 6: Carefully make sure that the assumptions allow you to let m→∞ and ϵ→ 0.

Question 1.19 (1 point). All the questions below require an answer up to a multiplicative
factor of 1 + o(1), when n→∞.

a) Find
|Bn2 |n

|Bn−1
2 |n−1

.

Hint: Use the formula from Question 1 and the Fubbini theorem. Note that this method
is alternative to the one we used in class to express |Bn

2 |n.
b) Find the volume of

{x ∈ Rn : |x| ≤ 2, x1 ∈ [a, b]},
where b1) a = 0, b = 0.1; b2) a = − 1√

n logn
, b = 1

n
.

Hint: Use the expression for |Bk
2 |k which we derived in class.

c) Using any method you like, find the volume of

conv({x ∈ Rn : |x| < 3, x2 = 0} ∪ {x ∈ Rn : |x− e2| < 1, x2 = 1}).

d) Let γ be the standard Gaussian measure on Rn with density 1√
2π
n e−

|x|2
2 . For each

t ∈ (0,∞), find γ({x : |x| > t}), depending on t (find the best approximation you can for
each range).

e) Let µ be the probability measure with density C(n)e−|x|3. Find C(n).
f) Let µ be as above. Let R ∈ (0,∞) be such that µ(RBn

2 ) = 1
2
. Find R.

13



Question 1.20 (1 point). Let A be a convex set in Rn satisfying x1 = 0 for all x ∈ A. Find
the volume of conv(A,Re1), in terms of |A|n−1, R and n

Question 1.21 (1 point). a) Using Laplace’s method, prove that at least 99% of the volume
of the n−dimensional Euclidean ball is contained in a strip of width 100√

n
around any equator,

for a sufficiently large n.
b) Prove the same fact on the sphere. (hint: use Fubbini’s theorem directly on the sphere,
but be careful about how the curvature of the sphere impacts your integral.)

Question 1.22 (2 points). Find a function F : R+ → R+ such that for every symmetric
convex body K in Rn with |K|n = 1, there exists a vector u ∈ Sn−1 (possibly depending on the
body), such that |K ∩ u⊥|n−1 ≥ F (n). Acceptable answers could be F (t) = 20t−t, F (t) = 5−t,

F (t) = 3t−2, F (t) = 1
t
, F (t) = 10√

t
, F (t) = 100t−

1
4 , F (t) = 1

log t
, F (t) = 0.00001, F (t) =

√
2,

etc.

2 Background from Convexity

2.1 Convexity: basic concepts

We start with some more definitions.

Definition 2.1 (Convex and concave functions). A function f : Rn → R̄ is called convex if
for every pair of x, y ∈ Rn and every λ ∈ [0, 1] one has f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).
Similarly, a function f is concave if −f is convex.

Recall that we also defined a convex set and a convex body in subsection 3.2. Given a
convex set K, one example of a convex function is the function

1
∞
K (x) =

{
0 x ∈ K
+∞ x ̸∈ K

Note also that a hypergraph of any convex function is a convex set (recall that a hypergraph
of a function on Rn is the set of points in Rn+1 which are located above the graph of f).

Recall that if a convex f ∈ C2(R) then f ′′(x) ≥ 0. The Hessian of a C2 function f is the
matrix

∇2f =

(
∂2f

∂xi∂xj

)
.

Recall also that a matrix A is called non-negative definite if for all x ∈ Rn we have

⟨Ax, x⟩ ≥ 0.

Claim 2.2. If f ∈ C2(Rn) is convex then the Hessian of f is non-negative definite.

Proof. See home work with hints!
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This fact is classical and important:

Theorem 2.3 (Jensen’s inequality). For any convex function F and probability measure µ,
we have

F

(ˆ
fdµ

)
≤
ˆ
F (f)dµ.

2.2 Minkowski functional of a convex body and the radial function

Definition 2.4 (origin-symmetry). We say that a convex body K is origin symmetric if
x ∈ K =⇒ −x ∈ K.

Definition 2.5 (Minkowksi functional of a convex body). Given a convex body K ⊆ Rn we
define the associated Minkowski functional ∥·∥K : Rn → [0,∞) according to

∥x∥K = inf{λ > 0 : x ∈ λK}.
Definition 2.6 (Radial function of a convex body). We can define the radial function ρK
of a convex body K according to ρK(x) = ∥x∥−1

K .

Remark 2.7. Pick θ ∈ Sn−1. Note that ρK(θ) equals the distance between the origin and the
furthest point from the origin inside K, in the direction θ.

~
Igo
a

We now list some properties of the Minkowski functional:

• If t ≥ 0 then ∥tx∥K = t∥x∥K .

• ∥x∥K ≥ 0 and ∥x∥K = 0 ⇐⇒ x = 0.

• If K is symmetric then ∥x∥K = ∥−x∥K .

• triangle inequality: ∥x+ y∥K ≤ ∥x∥K + ∥y∥K .

Note that if K is a symmetric convex body then its associated Minkowski functional is a
norm. Conversely, given a norm ∥·∥ in Rn, the unit ball with respect to this norm is a
symmetric convex body. Recall that the unit ball of a norm ∥ · ∥ is defined to be

{∥x∥ ≤ 1}.

15



2.3 Hahn-Banach theorem and the supporting hyperplanes

For θ ∈ Sn−1, we denote the proper subspace perpendicular to θ as

θ⊥ = {x ∈ Rn : ⟨x, θ⟩ = 0},

and the affine subspace as

θ⊥ + tθ = {x ∈ Rn : ⟨x, θ⟩ = t}.

More generally, for a proper subspace H ⊆ Rn of dimension k we define

H⊥ = {x ∈ Rn : ⟨x, y⟩ = 0 ∀y ∈ H}.

This set is a subspace of dimension n− k.

Definition 2.8 (supporting hyperplane of a convex body). Given a convex body K and a
direction θ ∈ Sn−1, a supporting hyperplane is the affine hyperplane {θ⊥ + tθ}, such that K
is fully contained in the half-space {⟨x, θ⟩ ≤ t}, while no points of K are contained in the
half-space {⟨x, θ⟩ > t}.

~d

Now, we state:

Theorem 2.9 (a version of Hahn-Banach in Rn). Let K be a convex body in Rn. Then for
all θ ∈ Sn−1 there exists tθ ∈ R such that the hyperplane θ⊥+tθθ is the supporting hyperplane
of K in the direction θ.

Proof. Homework!

Note that the intersection of convex sets is convex. In particular, intersection of half-
spaces is always a convex set.

Remark 2.10. For any convex body K we have

K =
⋂

θ∈Sn−1

{x : ⟨x, θ⟩ ≤ tθ}

where θ⊥ + tθθ is the supporting hyperplane.

Let us give a name to this tθ...
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2.4 Support function of a convex set

Definition 2.11 (Support function of a convex body). The support function hK : Rn → R
of a convex body K ⊆ Rn is defined as

hK(x) = sup
y∈K
⟨x, y⟩.

Remark 2.12. Note the geometric meaning of the support function when θ ∈ Sn−1 is a unit
vector: hK(θ) is the (sometimes signed) distance from the origin to the supporting hyperplane
of K which is orthogonal to θ.

a

The support function has a few nice properties:

• hK is 1-homogeneous: hK(tx) = thK(x) for all t ≥ 0.

• For all θ ∈ Sn−1, θ⊥ + hK(θ)θ is the support hyperplane for K.

• hK is a convex function.

• If K is symmetric, then hK is a norm.

2.5 Duality/Polarity

Definition 2.13 (Duality/Polarity). Suppose K is a set in Rn. The polar of K is

K◦ = {x ∈ Rn : ∀y ∈ K, ⟨x, y⟩ ≤ 1}

.

Letting the half-space Hy = {x ∈ Rn : ⟨x, y⟩ ≤ 1}, we see that Ko = ∩y∈KHy. Therefore,
the polar set is always convex (even if K is not). Note also the following:

Claim 2.14. K◦ is the unit ball under the norm hK. In other words, hK and ∥ · ∥K are dual
norms: for all x ∈ Rn we have hK(x) = ∥x∥K◦.
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Example 2.15. For instance, a symmetric interval and a strip are polar to one another.

[−aθ, aθ]◦ = {x ∈ Rn : |⟨x, θ⟩| ≤ 1/a}.

Definition 2.16. The convex hull of a set Ω ⊆ Rn is

conv Ω =

{
k∑
i=1

λix
i :

k∑
i=1

λi = 1, λi ≥ 0, xi ∈ Ω

}
.

Definition 2.17. A polytope K ⊆ Rn is the convex hull of finitely many points: There exist
θ1, . . . , θk ∈ Sn−1, a1, . . . , ak ∈ R, such that

K = conv {a1θ1, . . . , akθk}.

Equivalently, one may define a polytope as an intersection of finitely-many half-spaces
(see home work).

Remark 2.18. For a polytope K = conv {a1θ1, . . . , akθk} we have

K◦ =
k⋂
i=1

{x ∈ Rn : ⟨x, θi⟩ ≤ 1/ai}.

Some other examples:

18



• K◦ = K if and only if K = Bn
2 .

• (10Bn
2 )◦ = 0.1Bn

2 .

• (Bn
∞)◦ = Bn

1 , and more generally (Bn
p )◦ = Bn

q where p−1 + q−1 = 1.

A few more definitions:

Definition 2.19 (Section of a convex body). Let H be an affine k-dimensional hyperplane.
A section of K with H is K ∩H.

Definition 2.20 (Projection of a convex body). Let H be an affine k-dimensional hyper-
plane. The projection of K onto H is

K|H = {x ∈ H : ∃y ∈ H⊥, x+ y ∈ K}.

Now, some more properties of polarity:

(a) (K◦)◦ = K.

(b) Let T be an invertible linear operator. Then (TK)◦ = (T⊤)−1K◦. A special case is
(aK)◦ = a−1K◦. Also, ellipsoids are closed under taking polarity.

(c) (K|H)◦ ∩H = K◦ ∩H for all proper hyperplanes H.

(d) K ⊆ L implies that L◦ ⊆ K◦.

Recall the Minkowski sum of K,L ⊆ Rn is

K + L = {x+ y : x ∈ K, y ∈ L}

Claim 2.21. hK+L = hK + hL

Proof. Homework!

Equivalently,

ρK◦+L◦ =

(
1

ρK◦
+

1

ρL◦

)−1

.

Later in the course, we will discuss the following related notion:

Definition 2.22 (Legendre transform). Let ϕ : Rn → R̄. The Legendre transform of ϕ is
the function ϕ∗ : Rn → R defined as

ϕ∗(x) = sup
y∈Rn

(⟨x, y⟩ − ϕ(y))

The following connection between the Legendre transform and polarity is important to
remember: for a convex body K, h∗K = 1

∞
K◦ where, as before,

1
∞
K (x) =

{
0 x ∈ K
+∞ x ̸∈ K
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2.6 Home work

Question 2.23 (1 point). Prove that for any convex body K in Rn and for any point
x ∈ Rn \K, there exists a vector θ ∈ Sn−1 and a number ρ ∈ R such that ⟨x, θ⟩ > ρ and for
all y ∈ K, ⟨y, θ⟩ < ρ. (this is a finite-dimensional version of the Khan-Banach Theorem)

Question 2.24 (1 point). Prove that a convex hull of a finite number of points in Rn either
has an empty interior, or can be expressed as an intersection of a finite number of half spaces.

Question 2.25 (1 point). Show that the Minkowski functional of a symmetric convex body
is a norm on Rn.

Question 2.26 (1 point). Show that for a convex set Q containing the origin we have

|Q| = 1

n

ˆ
Sn−1

ρnQ(θ)dθ =
1

n

ˆ
Sn−1

∥θ∥−nQ dθ.

Question 2.27 (1 point). a) Show that for any pair of convex bodies K,L we have

hK+L(x) = hK(x) + hL(y).

b) Show that for a > 0, hK(ax) = ahK(x) = haK(x).
c) Pick v ∈ Rn. Show that h[−v,v](x) = |⟨v, x⟩|. Here [−v, v] is the interval connecting vectors
−v and v.

3 Brunn-Minkowski inequality and friends

3.1 Brunn-Minkowski inequality and the Isoperimetric inequality

Theorem 3.1. Let K,L ⊆ Rn be Borel-measurable sets. Then

|K + L|1/n ≥ |K|1/n + |L|1/n

Some remarks:

• Note that for λ > 0 we have |λK| = λn|K|. So, the theorem is equivalent to the
statement that for all λ ∈ [0, 1],

|λK + (1− λ)L|1/n ≥ λ|K|1/n + (1− λ)|L|1/n

In other words, the Lebesgue measure to the power 1/n is “concave” under Minkowski
addition.

• The theorem admits a dimension-free reformulation: For all λ ∈ [0, 1],

|λK + (1− λ)L| ≥ |K|λ|L|1−λ. (1)
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Note that for all a, b ≥ 0, λ ∈ [0, 1], p > 0,

(λap + (1− λ)bp)1/p ≥ aλb1−λ.

by which the Theorem 3.1 implies (1). The other direction is a homework problem
using the homogeneity of the Lebesgue measure.

We now define log-concavity.

Definition 3.2 (Log-concave function). A function f : Rn → R is log-concave if log f is
concave:

log f(λx+ (1− λ)y) ≥ λ log f(x) + (1− λ) log f(y)

for all x, y ∈ Rn, 0 ≤ λ ≤ 1. Equivalently,

f(λx+ (1− λ)y) ≥ fλ(x)f 1−λ(y).

Definition 3.3 (Log-concave measure). A measure µ on Rn is log-concave if suppµ has
nonempty interior and for all Borel-measurable K,L and 0 ≤ λ ≤ 1,

µ(λK + (1− λ)L) ≥ µ(K)λµ(L)1−λ

Recall once again

Theorem 3.4 (the Isoperimetric inequality). For all K ⊆ R,

|∂K|n−1

|K|n−1
n

≥ |∂B
n
2 |n−1

|Bn
2 |

n−1
n

.

Proof. (Using Brunn-Minkowski) We have

|∂K|n−1 = lim inf
ε→0

|K + εBn
2 | − |K|
ε

≥ lim inf
ε→0

(|K|1/n + |εBn
2 |1/n)n − |K|
ε

= lim inf
ε→0

(|K|1/n + ε|Bn
2 |1/n)n − |K|
ε

= lim inf
ε→0

|K|+ n|K|n−1
n ε|Bn

2 |1/n +O(ε2)− |K|
ε

= lim inf
ε→0

n|K|n−1
n ε|Bn

2 |1/n

ε

= n|K|
n−1
n |Bn

2 |1/n.

Rearranging, we have
|∂K|n−1

|K|n−1
n

≥ n|Bn
2 |1/n =

|∂Bn
2 |n−1

|Bn
2 |

n−1
n

.

21



Claim 3.5. We have the equality

|K + L|1/n = |K|1/n + |L|1/n

if and only if K = tL+ v, t ≥ 0, v ∈ Rn.

3.2 Proof of the Brunn-Minkowski inequality, due to Lazar Lyusternik
in 1935.

Remark 3.6. Unfortunately, Lazar Lyusternik is also known for his actively negative role
in the Luzin affair.

Step 1. Suppose K and L are coordinate boxes, i.e. K = [0, a1] × · · · × [0, an], L =
[0, b1]× · · · × [0, bn]. We have

K + L = [0, a1 + b1]× · · · × [0, an + bn],

so

|K + L| =
n∏
i=1

(ai + bi).

Hence, it will suffice to show that

n∏
i=1

(ai + bi)
1/n ≥

n∏
i=1

a
1/n
i +

n∏
i=1

b
1/n
i .

Using AM-GM (the arithmetic-geometric mean inequality),

n∏
i=1

(
ai

ai + bi

)1/n

+
n∏
i=1

(
bi

ai + bi

)1/n

≤ 1

n

n∑
i=1

ai
ai + bi

+
1

n

n∑
i=1

bi
ai + bi

=
1

n

n∑
i=1

ai + bi
ai + bi

= 1.

from which the claim follows.

Step 2. Suppose K and L are finite unions of disjoint boxes. We will proceed by induction
on the total number of boxes comprising K and L. The base case with 2 boxes was proved
in step 1. So, suppose the Brunn-Minkowski inequality holds for N boxes. Let H = θ⊥ + tθ
be a hyperplane which does not intersect at least one of the boxes that form K, and set

H+ = {x ∈ Rn : ⟨x, θ⟩ > t}

and H− = Rn \ H+. Note that on each of the sides of H there is no more than N boxes.
Next, by shifting L we may ensure that

|K ∩H+|
|K|

=
|L ∩H+|
|L|

= a ∈ [0, 1].
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By induction, we have

|K + L| ≥ |K ∩H+ + L ∩H+|+ |K ∩H− + L ∩H−|
≥
(
|K ∩H+|1/n + |L ∩H+|1/n

)n
+
(
|K ∩H−|1/n + |L ∩H−|1/n

)n
=
(
a1/n|K|1/n + a1/n|L|1/n

)n
+
(
(1− a)1/n|K|1/n + (1− a)1/n|L|1/n

)n
= a

(
|K|1/n + |L|1/n

)n
+ (1− a)

(
|K|1/n + |L|1/n

)n
=
(
|K|1/n + |L|1/n

)n
which gives the result.

Step 3. The statement follows by approximation, using the definition of Borel-measurable
sets. □

3.3 Steiner symmetrization

Throughout this subsection, we assume that the sets involved are convex.

Steiner symmetrization is a technique used by Jacob Steiner to prove the isoperimetric
inequality in 1837. Loosely, given a hyperplane θ⊥ and a set K, we will take every interval
of K along θ and shift them to be symmetric about θ⊥.

Definition 3.7 (Steiner symmetrization). Let θ ∈ Sn−1, and K ⊆ Rn Borel-measurable.
The Steiner symmetrization of K is

Sθ(K) =
⋃
y∈θ⊥

Sθ(K ∩ {y + tθ : t ∈ R})

where Sθ(K∩{y+tθ : t ∈ R}) is an interval symmetric about θ⊥, contained in {y+tθ : t ∈ R},
and of length |K ∩ {y + tθ : t ∈ R}|1.
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Claim 3.8. |K| = |Sθ(K)|

Proof. Using Fubini,

|K| =
ˆ
θ⊥

ˆ ∞

−∞
|K ∩ {y + tθ : t ∈ R}|1dt =

ˆ
θ⊥

ˆ ∞

−∞
|Sθ(K) ∩ {y + tθ : t ∈ R}|1dt = |Sθ(K)|.

Now we define a notion of Hausdorff distance between convex bodies.

Definition 3.9 (Hausdorff distance). The Hausdorff distance between convex bodies K,L ⊆
Rn is

dH(K,L) = inf{t > 0: ∃α > 0 s.t. K ⊆ αL ⊆ tαK}

Properties of the Steiner symmetrization

• Sθ(K) is convex whenever K is convex.

• circK ≥ circSθ(K) where the circum-radius

circL = inf{s > 0: ∃y ∈ Rn, L ⊆ sBn
2 + y}

• inradK ≤ inradSθ(K) where the inradius

inradK = sup{t > 0: ∃y ∈ Rn, tBn
2 + y ⊆ K}

• λSθ(K) = Sθ(λK) for all λ ≥ 0.

• Sθ is continuous in the Hausdorff metric.
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• Sθ(K) + Sθ(L) ⊆ Sθ(K + L).

• |∂Sθ(K)|n−1 ≤ |∂K|n−1.

• diamK ≥ diamSθ(K), where the diameter of a set A is

diam(A) = sup
x,y∈A

|x− y|.

Basic trick: The distance from θ⊥ to the boundary of K on each of the sides of θ is a concave
function. Denote them, say f, g : Rn−1 → R. For Sθ(K), these functions are both f+g

2
.

Claim 3.10. There exists a sequence {θk}k ⊆ Sn−1 such that for all convex bodies K,

K,Sθ1(K), Sθ2(Sθ1(K)), ...→ RBn
2

where R = |K|1/n
|Bn2 |1/n

, and the convergence is in the Hausdorff distance.

Sketch proof. Since K is compact, there exists t > 0 such that K ⊆ tBn
2 . Consider the

family Ω of all successive Steiner symmetrals of K. Note that by our properties, all of these
symmetrals are also contained in tBn

2 . Let r = infL∈Ω circ(L) (where once again circ(L)
stads for the circum-radius), and consider a sequence of radii rk → r, with the corresponding
bodies Qk.

The Blaschke selection theorem provides that for any family of convex bodies contained
in tBn

2 , there exists a convergent subsequence. Since circ(K) ≥ circ(Sθ(K)), there exists a
sequence {Lk} ⊆ Ω such that Lk converges to L with circ(L) = r > 0.

We claim that L is a ball. Suppose not. Then L misses a cap of the ball rBn
2 . By

compactness we may cover the boundary of the ball rBn
2 with rotations of this cap, corre-

sponding to directions θ1, ..., θm. Then, symmetrizing L with respect to θ1, ..., θm one may
get a body with a strictly smaller in-radius, which contradicts our choice of L.

3.4 Proof of the Brunn-Minkowski inequality via Steiner sym-
metrizations, valid for convex bodies only

Using the properties of the Steiner symmetrization, we see

|K + L| = |Sθ1(K + L)| ≥ |Sθ1(K) + Sθ1(L)|

Next, for another direction θ2,

|Sθ1(K) + Sθ1(L)| ≥ |Sθ2 (Sθ1(K) + Sθ1(L)) | ≥ |Sθ2Sθ1(K) + Sθ2Sθ1(L)|.

By iterating symmetrizations so that the symmetrals ofK and L converge to ballsR1B
n
2 , R2B

n
2

respectively, we obtain
|K + L| ≥ (R1 +R2)

n|Bn
2 |

By the volume preservation property of the Steiner symmetrization, we see that |K| =
Rn

1 |Bn
2 |, |L| = Rn

2 |Bn
2 |, and this yields the Brunn-Minkowski inequality. □

We proceed with a couple essential applications of Brunn-Minkowski inequality.
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3.5 Mixed volumes, Minkowski’s first inequality

Definition 3.11. Let K and L be convex bodies in Rn. Define mixed volumes

Vj(K,L) =
(n− j)!
n!

|K + tL|(j)t=0, for j ∈ {0, 1, 2, · · · , n}.

We briefly outline the following facts about mixed volumes:

• When j = 0, we have V0(K,L) = |K|.

• Vj(K,B
n
2 ) are called intrinsic volumes. When K is a polytope, those are multiples of

the total j−dimensional area of its j−dimensional facets.

• We have V1(K,B
n
2 ) = 1

n
|∂K|, i.e. the first intrinsic volume is proportional to the

perimeter of K; more generally, V1(K,L) is called anisotropic perimeter.

• |K + tL| is a polynomial in t of degree n, called Steiner polynomial :

|K + tL| =
n∑
j=0

1

j!
|K + tL|(j)t=0t

j =
n∑
j=0

1

j!

n!

(n− j)!
Vj(K,L)tj =

n∑
j=0

(
n

j

)
Vj(K,L)tj.

• Vn(K,Bn
2 ) is a multiple of so-called mean width w(K) of a convex body K :

w(K) =

ˆ
Sn−1

hK(θ)dθ.

• There is a surprising symmetry property: Vj(K,L) = Vn−j(L,K).

• Note that the above implies that on the plane V1(K,L) = V1(L,K). Therefore in R2

there is only three mixed volumes for a pair K and L, and

|K + tL| = |K|+ 2tV1(K,L) + t2|L|.

Lemma 3.12 (Minkowski’s first inequality).

V1(K,L) ≥ |K|
n−1
n |L|

1
n

Proof. Home work! Similar to how we deduced the isoperimetric inequality from Brunn-
Minkowski.

Remark 3.13 (concerning Minkowski’s second inequality which appears in the home work).
The direct application of Brunn-Minkowski inequality implies that for any pair of convex
bodies K and L, the function |K + tL| 1n is concave in t.

Recall that if a function F is concave, then

1. F ′′(t)|t=0 ≤ 0;
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2. ∀x, y, letting F ((1 − t)x + ty) − (1 − t)F (x) − tF (y) = α(t), we have α(t) ≥ 0, and
α(0) = 0 and therefore α′(0) ≥ 0.

In order to obtain Minkowski’s first inequality, we basically used idea (2). Your home work
Question 2.15 is asking to use idea (1) to deduce some other inequality, which is called
Minkowski’s second.

Remark 3.14. More generally, so-called Alexandrov-Fenchel inequalities state that mixed
volumes form a log-concave sequence (a log-concave sequence is a function on N which is
log-concave). The normalization for the mixed volumes is chosen deliberately so that this
happens (without any extra coefficients).

3.6 Brunn’s concavity principle

Definition 3.15 (section function). Let θ ∈ Sn−1. We define the section function of a convex
body K ⊂ Rn in the direction θ, to be the following function on R :

Aθ,K(t) = |K ∩ (θ⊥ + tθ)|n−1.

We recall that support of a function is the closure of the set of points where this function
is not zero.

Theorem 3.16 (Brunn). For any convex body K, the function A
1

n−1

θ,K (t) is concave on its
support.

Proof. We aim to show for any λ ∈ [0, 1] and any s, t in the support of Aθ,K ,∣∣K ∩ (θ⊥ + (λs+ (1− λ)t)θ)
∣∣ 1
n−1 ≥ λ|K ∩ (θ⊥ + sθ)|

1
n−1 + (1− λ)|K ∩ (θ⊥ + tθ)|

1
n−1 .

Since K is convex, for all x, y ∈ K we have λx+ (1− λ)y ∈ K since K. Also

(θ⊥ + sθ) + (θ⊥ + tθ) = θ⊥ + (λs+ (1− λ)t)θ.
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Therefore, we get

λK ∩ (θ⊥ + sθ) + (1− λ)K ∩ (θ⊥ + tθ) ⊂ K ∩ (θ⊥ + (λs+ (1− λ)t)θ). (2)

We conclude

|K ∩
(
θ⊥ + (λs+ (1− λ)t)θ)

)
|

1
n−1 ≥

∣∣λK ∩ (θ⊥ + sθ) + (1− λ)K ∩ (θ⊥ + tθ)
∣∣ 1
n−1

≥ λ|K ∩ (θ⊥ + sθ)|
1

n−1 + (1− λ)|K ∩ (θ⊥ + tθ)|
1

n−1 ,

where the last inequality is obtained by applying the Brunn-Minkowski inequality in Rn−1.

Remark 3.17. We remark that for any subspace H of dimension k, the function F : H⊥ →
R given by F (y) = |K ∩ (H + y)| 1k is concave on its support. The proof is exactly the same.

3.7 Log-concave functions and measures, Borell’s theorem and the
Prekopa-Leindler inequality

Recall that a function f on Rn is called log-concave if f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ. In
other words, f(x) = e−V (x) where V is convex. Note that if a function is log-concave then
its support is necessarily a convex set. Note also that if f and g are log-concave then fg is
also log-concave. Some examples of log-concave functions:

• f(x) = 1K(x) where K is a convex set

• f(x) = e−
x2

2

• f(x) = e−∥x∥qM · 1K(x) for some convex sets M and K.

Recall that we say that a measure µ on Rn is log-concave if for all Borel-measurable sets
K,L and any λ ∈ [0, 1], we have

µ(λK + (1− λ)L) ≥ µ(K)λµ(L)1−λ.

Theorem 3.18 (Christer Borell). A measure µ on Rn is log-concave if and only if it has
a density f with respect to Lebesgue measure (possibly with respect to Lebesgue measure on
some affine subspace), and f is a log-concave function.

Remark 3.19. Borell’s theorem is more general than the Brunn-Minkowski inequality: in-
deed, the density of Lebesgue measure is 1, which is indeed a log-concave function, and thus
Borell’s theorem implies that Lebesgue measure is log-concave, which is equvivalent to the
Brunn-Minkowski inequality.

But more than that, Borell’s theorem implies, for instance, that for γ (the standard
Gaussian measure), γ(λK + (1− λ)L) ≥ γ(K)λγ(L)1−λ.
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Theorem 3.20 (Prekopa–Leindler inequality 1970, the functional version of Brunn-Minkowski).
Fix λ ∈ [0, 1]. Let f, g, h ∈ L1(Rn). Suppose for all x, y ∈ Rn,

h(λx+ (1− λ)y) ≤ λf(x) + (1− λ)g(y).

Then ˆ
e−h ≥

(ˆ
e−f
)λ(ˆ

e−g
)1−λ

.

Remark 3.21. Equivalently, let H = e−h, F = e−f and G = e−g. If

H(λx+ (1− λ)y) ≥ F (x)λG(x)1−λ,

we get
´
H ≥ (

´
F )λ(

´
G)1−λ.

Proof of Theorem 3.18.
• The forward direction – home work!
• The backward direction (if f is a log-concave function, then dµ(x) = f(x)dx is a

log-concave measure) follows from Prekopa-Leindler inequality. Indeed, let f(x) be some
log-concave function, let K and L be Borel-measurable sets, and let λ ∈ [0, 1]. We let

H(z) = f(z)1λK+(1−λ)L(z),

F (x) = f(x)1K(x),

G(y) = f(y)1L(y).

One may check that
H(λx+ (1− λ)y) ≥ F (x)λG(x)1−λ,

and by Prekopa-Leindler inequality we get
´
H ≥ (

´
F )λ(

´
G)1−λ, which amounts to

µ(λK + (1− λ)L) ≥ µ(K)λµ(L)1−λ.

Thus Prékopa–Leindler inequality implies the main (backward) direction of Borell’s theorem.
□

3.8 Proof of Prékopa-Leindler inequality

Lemma 3.22 (the layer-cake formula). Let f : Rn → R be a non-negative continuous
function. Then for any measure µ on Rn we have

ˆ
Rn
f(x)dµ(x) =

ˆ ∞

0

µ({x ∈ Rn : f(x) > t})dt.

Proof. One can use Fubbini’s theorem in dimension Rn+1 and write the measure of the
sub-graph of f , i.e. the set {(x, t) ∈ Rn+1 : t ≤ f(x)}, in two different ways.
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Recall the alternative statement of the Prékopa-Leindler inequality.

Theorem 3.23 (a restatement of Theorem 3.20.). Fix λ ∈ [0, 1]. Let F,G,H be non-negative
function in L1(Rn). If, for all x, y ∈ Rn,

H(λx+ (1− λ)y) ≥ F (x)λG(y)1−λ,

then ˆ
H ≥

(ˆ
F

)λ(ˆ
G

)1−λ

.

As remarked in the previous lecture, this is equivalent the the original form.

Proof. The proof is by induction on the dimension.

Step 1: n=1. First, we rewrite the left-hand side of the desired inequality using the
layer-cake formula Lemma 3.22:

ˆ
R
H(t) dt =

ˆ ∞

0

|{t ∈ R : H(t) > s}| ds.

Notice that
{H > s} ⊇ λ{F > s}+ (1− λ){G > s}. (3)

Using (3) together with the one-dimensional Brunn-Minkowski inequality, we get:

ˆ
R
H(t) dt =

ˆ ∞

0

|{t ∈ R : H(t) > s}| ds

≥
ˆ ∞

0

|λ{F > s}+ (1− λ){G > s}| ds

≥ λ

ˆ ∞

0

|{F > s}| ds+ (1− λ)

ˆ ∞

0

|{G > s}| ds.

From here, we can use the layer-cake formula Lemma 3.22 in reverse, and finish with the
AM-GM inequality:

ˆ
R
H(t) dt ≥ λ

ˆ ∞

0

|{F > s}| ds+ (1− λ)

ˆ ∞

0

|{G > s}| ds

= λ

ˆ
R
F (t) dt+ (1− λ)

ˆ
R
G(t) dt

≥
(ˆ

R
F (t) dt

)λ(ˆ
R
G(t) dt

)1−λ

.
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Step 2: induction. We proceed by induction on the dimension. Assume inductively that
n > 1 and that the claim has been verified for smaller dimensions. Define the one-dimensional
function

Hn(xn) :=

ˆ
Rn−1

H(x1, . . . , xn) dx1 · · · dxn−1,

and define Fn and Gn similarly. Fubini-Tonelli implies that Fn, Gn, Hn ∈ L1(R). Also, for
fixed xn, yn ∈ R, we can still see that

H(λ(x, xn) + (1− λ)(y, yn) ≥ F (x, xn)λG(y, yn)1−λ,

where x = (x1, . . . , xn−1) and y = (y1, . . . , yn−1). When viewed as functions only of x and y,
the induction hypothesis implies that

Hn(λxn + (1− λ)yn) ≥ Fn(xd)
λG(yd)

1−λ.

We now apply the one-dimensional version of the Prékopa-Leindler inequalit and obtain

ˆ
R
Hn(t) dt ≥

(ˆ
R
Fn(t) dt

)λ(ˆ
R
Gn(t) dt

)1−λ

,

and another application of Fubini’s theorem gives the desired result.

3.9 Log-concavity of marginals and convolutions of log-concave
measures

Definition 3.24 (marginal). Let µ be a Borel measure on Rn, and H a subspace of Rn or
dimension k. Define πµ(H) (the marginal measure of µ) to be the measure on H⊥ given by

πµ(H)(Ω) =

ˆ
Ω

ˆ
H

dµ(x+ y), for Ω ⊆ H⊥.

Proposition 3.25. If µ has a density f , and H is a subspace, then πµ(H) has density on
H⊥ given by the section function:

fµ,H(x) =

ˆ
x+H

f(y) dy.

Example 3.26. Let A ⊆ Rn be a Borel set, and consider µ to be the uniform distribution
over A. Then, for any subspace H of dimension k, the marginal measure πµ(H) has density

fµ,H(x) = |A ∩ (x+H)|k.

We can also give a probabilistic meaning to the marginal measures. Suppose that we
have a random vector X which is distributed according to µ. Then the projection of X onto
H⊥ (proj(X|H⊥) = Y where Y ∈ H⊥ and X − Y ∈ H) will be distributed according to the
marginal measure πµ(H).

As a consequence of Prékopa-Leindler inequality, we get the following fact:
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Theorem 3.27. If µ is a log-concave measure on Rn and H is a subspace, then the marginal
measure πµ(H) is also a log-concave measure on H⊥.

Proof. Let f be the density for the measure µ, and fH(x) =
´
x+H

f(z) dz be the density for
the marginal measure πµ(H). By making an affine change of variables we can also write that
fH(x) =

´
H
f(x+ z) dz. Our final goal is to show that fH(λx+ (1− λy) ≥ fH(x)λfH(y)1−λ

for all x, y ∈ H⊥ and λ ∈ [0, 1]. For now, fix x, y ∈ H⊥ and λ ∈ [0, 1], and we define three
functions A,B,C : H → R as follows:

A(z) = f(x+ z),

B(z) = f(y + z),

C(z) = f(λx+ (1− λ)y + z).

Now we can verify that these three functions satisfy the hypothesis of Prékopa-Leindler. For
u, v ∈ H

C(λu+ (1− λ)v) = f(λ(x+ u) + (1− λ)(y + v))

≥ f(x+ u)λf(y + v)1−λ

= A(u)λB(v)1−λ,

where in the middle we use the assumption that f is log-concave. Thus, we can apply
Prékopa-Leindler and conclude that

fH(λx+ (1− λ)y) =

ˆ
H

C(z) dz

≥
(ˆ

H

A(u) du

)λ(ˆ
H

B(v) dv

)1−λ

= fH(x)λfH(y)1−λ,

which shows that the marginal measure is also log-concave.

By looking at convolutions as an affine marginal in a higher-dimensional space, we get
the following corollary.

Corollary 3.28. If f and g are log-concave functions, then the convolution is also log-
concave.

Proof. Fill in the details: home work.

We conclude that the class of log-concave random vectors is closed under sums (convolu-
tions) and projections (marginals).
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3.10 Borell-Brascamp-Lieb inequality

Definition 3.29. We say a function F on Rn is p-concave if F p is concave.

Theorem 3.30 (Borell-Brasscamp-Lieb). Suppose p ∈ (−1/n,∞) and f, g, h ≥ 0 and fix
λ ∈ [0, 1]. If p ≥ 0 and h(λx+ (1− λy) ≥ λf(x) + (1− λ)g(y) then(ˆ

h1/p
) p

np+1

≥ λ

(ˆ
f 1/p

) p
np+1

+ (1− λ)

(ˆ
g1/p

) p
np+1

.

If p < 0 and h(λx+ (1− λy) ≤ λf(x) + (1− λ)g(y) then(ˆ
h1/p

) p
np+1

≤ λ

(ˆ
f 1/p

) p
np+1

+ (1− λ)

(ˆ
g1/p

) p
np+1

.

Using this theorem in place of the Prékopa-Leindler inequality we can get similar corol-
laries.

Corollary 3.31. If F is p-concave for p ≥ −1/n then its k-dimensional marginals are
p

kp+1
-concave.

Note that when p↗ 0 we recover the Prékopa-Leindler inequality, and when p→ −1/n
the result becomes a tautology.

3.11 Linearizations of geometric and functional inequalities

Idea: Suppose that F is a functional on some reasonable class of functions, such that F
is concave:

F((1− t)f + tg) ≥ (1− t)F(f) + tF(g).

Then, for fixed f and g, we can define the univariate function

α(t) = F((1− t)f + tg)− (1− t)F(f)− tF(g),

and notice the following properties.

1. α(t) ≥ 0 on [0, 1] and α(0) = 0, which implies α′(0) ≥ 0;

2. α′′(0) ≤ 0 and d2

dt2
F(f + tg) ≤ 0,

3. If F(f) ≤ F(f0) then d
dϵ
F(f0 + ϵf)|ϵ=0 = 0, and d2

dϵ2
F(f0 + ϵf)|ϵ=0 ≤ 0.

Our first goal will be to understand in what sense the Prékopa-Leindler inequality can be
understood as a statement about concave functionals. The hypothesis of Prékopa-Leindler
is that

h((1− t)x+ ty) ≤ (1− t)f(x) + tg(y).

What is the best possible h in this inequality?
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Definition 3.32 (Infimal convolution). Given functions f, g : Rn → R and t ∈ [0, 1] we
define the infimal convolution

f□tg(z) = inf
(1−t)x+ty=z

{(1− t)f(x) + tg(y)} .

We will also write

f□g(z) = inf
x+y=z

{f(x) + g(y)} .

Note that f□tg = h satisfies the condition, so Prékopa-Leindler implies that

ˆ
ef□tg ≥

(ˆ
e−f
)1−t(ˆ

e−g
)t
.

We also can note that f□0g = f and f□1g = g, so in some sense the infimal convolution
interpolates between the two functions f and g. What we want, is to find a functional F
such that ˆ

e−F((1−t)f+tg) ≥
(ˆ

e−F(f)

)1−t(ˆ
e−F(g)

)t
Example 3.33. When K,L are convex bodies, consider the infmal convolution of their
convex indicator functions:

1
∞
K□1∞

L (z) = inf
x+y=z

{1∞
K (x) + 1

∞
L (y)} = 1

∞
K+L(z).

Recall that hK+L = hK + hL, so our goal will be to find a functional F such that
F(f□g) = F(f) + F(g), and a good hint for what we are looking for is that we want
F : 1∞

K 7→ hK .

3.12 Legendre Transform

Recall the definition

Definition 3.34. For f : Rn → R = R ∪ {∞} we define

f ∗(x) = sup
y∈Rn
{⟨x, y⟩ − f(y)}.

Example 3.35. 1. For a convex body K

(1∞
K )∗(x) = sup

y∈Rn
{⟨x, y⟩ − 1

∞
K (y)}

= sup
y∈K
{⟨x, y⟩}

= hK(x).
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2. Suppose f(x) = |x| : Rn → R. Then

f ∗(x) = sup
y∈Rn
{⟨x, y⟩ − |y|}

= sup
t≥0
{t|x| − t}

=

{
0 if |x| ≤ 1
∞ if |x| > 1

= 1
∞
Bn2

(x).

3. When if f ⋆ = f? This happens when f(x) = 1
2
|x|2. Indeed

f ∗(x) = sup
y∈Rn
{⟨x, y⟩ − |y|2/2}

= sup
t≥0
{t|x|2 − t2|x|2/2}.

The function inside the supremum is a quadratic in t and is maximized when t = 1.
Thus

f ∗(x) = |x|2/2.

4. Consider f(x) = C a constant function. Then

f ∗(x) = sup
y∈Rn
{⟨x, y⟩ − C} =∞.

Note that this does not depend on the choice of constant C.

5. Consider f(y) =

{
−
√

1− |y|2 if |y| ≤ 1
∞ if |y| > 1.

f ∗(x) = sup
y∈Rn
{⟨x, y⟩ − f(y)}

= sup
|y|≤1

{
⟨x, y⟩+

√
1− |y|2

}
= sup

t∈[0,|x|−1]

{
t|x|2 +

√
1− t2|x|2

}
.

Once, again, we can try to optimize by hand:

d

dt

(
t|x|2 +

√
1− t2|x|2

)
= |x|2 − t|x|2√

1− t2|x|2
.

This is zero when
t√

1− t2|x|2
= 1,
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which rearranges to t = 1√
1+|x|2

(which is in the correct range). Now we can plug this

back in to see that

f ∗(x) =
|x|2√

1 + |x|2
+

√
1− |x|2

1 + |x|2

=
|x|2√

1 + |x|2
+

√
1 + |x|2 − |x|2

1 + |x|2

=
|x|2 + 1√
1 + |x|2

=
√
|x|2 + 1,

which is the top branch of a hyperbola with asymptotes y = ±x.

Lemma 3.36 (Properties of the Legendre transform). There are a few important
properties of the Legendre transform:

1. For any ϕ : Rn → R, ϕ∗ is convex (since it is the supremum of linear functions.)

2. If ϕ is convex then (ϕ∗)∗ = ϕ.

3. For any a ∈ R, (ϕ+ a)∗(x) = ϕ∗(x)− a.

4. f(x) ≤ g(x) implies that f ∗(x) ≤ g∗(x).

5. (af)∗(x) = af ∗(x
a
).

Proof. Home work!

We outline another key property:

Proposition 3.37 (Legendre transform linearizes infimal convolution). For f, g convex

(f□g)∗ = f ∗ + g∗.

Proof. This is a direct calculation:

(f□g)∗(x) = sup
y∈Rn
{⟨x, y⟩ − f□g(y)}

= sup
y∈Rn

{
⟨x, y⟩ − inf

a,b,a+b=y
{f(a) + g(b)}

}
= sup

a,b∈Rn
{⟨x, a+ b⟩ − f(a)− g(b)}

= f ∗(x) + g∗(x).
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Remark 3.38. Consider what happens to the epigraph when taking the infimal convolution.

The following are further important properties of the Legendre transform.

Proposition 3.39 (Legendre transform of smooth functions). Let V be a strictly convex C2

function Rn → R.

1. V (x) + V ∗(∇V (x)) = ⟨x,∇V (x)⟩,

2. ∇V (∇V ∗(x)) = x, in other words ∇V ◦ ∇V ∗ = Id.

3. ∇2V ∗(∇V (x)) = (∇2V )−1(x).

Proof. 1. For all x, y ∈ Rn we know that V (x) + V (y) ≥ ⟨x, y⟩, just from the definition
of Legendre transform. Now

V ∗(y) = sup
z∈Rn
{⟨y, z⟩ − V (z)},

where at teh optimal point, ∇z[⟨y, z⟩ − V (z)] = 0. This implies that the optimal
y = ∇V (z), and equality holds.

2. Take the gradient of both sides in 1.

∇V (x) +∇2V (x) · ∇V ∗(∇V (x)) = ∇V (x) +∇2V (x) · x.

Rearranging and cancelling terms using the fact that V strictly convex implies ∇2V is
invertable, and we conclude

∇V ∗(∇V (x)) = x.

3. This is equivalent to 2. since the Hessian is the Jacobian of the gradient map.

Remark 3.40. Note that the relation (2) from Proposition 3.39 implies that V ∗∗ = V (i.e.
property (2) from Lemma 3.36) under the assumption that V is C2 and only takes finite
values.

3.13 Generalized Log-Sobolev Inequality

Recall that Prékopa-Leindler inequality can be written as

ˆ
e−f□tg ≥

(ˆ
e−f
)t(ˆ

e−g
)1−t

.

By replacing functions with their Legendre transform we get the following inequality (for
which, in fact, convexity is not needed):

ˆ
e−(tf+(1−t)g)∗ ≥

(ˆ
e−f

∗
)t(ˆ

e−g
∗
)1−t

.
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This convenient formulation was noted by Cordero-Erausquin and Klartag [51]. In other
words, log

´
e−f

∗
is a concave functional on the space of reasonable functions (for which the

corresponding integrals exist).

Remark 3.41. Note also the dual fact: the functional log
´
e−f is convex by Hölder’s in-

equality.

Now, let

α(t) = log

ˆ
e−((1−t)f+tg)∗ − (1− t) log

ˆ
e−f

∗ − t log

ˆ
e−g

∗
.

We know that α(t) ≥ 0, and α(0) = 0, so we can conclude that α′(0) ≥ 0. In order to
compute what this means, we shall need:

Lemma 3.42. Let Vt(x) be a family of functions on Rn for t ∈ [0, 1] such that Vt ∈ C2(Rn,R)
and Vt(x) is convex for each t. Then

d

dt
V ∗
t (x) = −V̇t(∇V ∗

t (x));

d2

dt2
V ∗
t (x) = −V̈t(∇V ∗

t (x)) + ⟨(∇2Vt(x))−1∇[V̇t|∇V ∗
t (x)

],∇[V̇t|∇V ∗
t (x)

]⟩.

Proof. We will only show the first identity

d

dt
V ∗
t (x) = −V̇t(∇V ∗

t (x)),

as the second identity will appear in one homework problem (Question 4.12).

Recall the following duality formula for Legendre transform:

Vt(x) + V ∗
t (∇Vt) = ⟨∇Vt, x⟩.

Differentiating with respect to t on both sides, we get

V̇t(x) +
d

dt
V ∗
t (∇Vt) + ⟨∇V ∗

t (∇Vt),∇V̇t⟩ = ⟨∇V̇t, x⟩.

Now using ∇V ∗
t ◦ ∇Vt = x, the above identity is rewritten as

V̇t(x) +
d

dt
V ∗
t (∇Vt) + ⟨x,∇V̇t⟩ = ⟨∇V̇t, x⟩,

which yields
d

dt
V ∗
t (∇Vt) = −V̇t(x).

It remains to set y = ∇Vt and use ∇V ∗
t ◦ ∇Vt = x again to complete the proof.
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We deduce:

α′(0) =
1´
e−f∗

·
ˆ
−e−f∗ · d

dt
(((1− t)f + tg)∗|t=0 + log

´
e−f

∗

´
e−g∗

=
1´
e−f∗

·
ˆ
−e−f∗ · (f − g)(∇f ∗) + log

´
e−f

∗

´
e−g∗

.

When f and g are convex, we let F = f ∗ and G = g∗, and using the fact that α′(0) ≥ 0 we
get the inequality ˆ

−e−F · (F ∗ −G∗)(∇F ) +

ˆ
e−F · log

´
e−F´
e−G
≥ 0.

This can be seen as a version of Minkoswki’s first inequality

Theorem 3.43 (Minkowski’s first inequality for functions). Suppose F,G are convex and´
e−F =

´
e−G. Then ˆ

G∗(∇F )e−F ≥
ˆ
F ∗(∇F )e−F ,

and the left-hand side is minimized when G = F .

Remark 3.44. Compare this to the inequality V1(K,L) ≥ |K|n−1
n |L| 1n in the case that |K| =

|L|.
Continuing with our previous inequality before the theorem. We can use the lemma to

make some substitutions:ˆ
F ∗(∇F )e−F =

ˆ
(⟨∇F, x⟩ − F (x))e−F .

Note that
´
⟨∇F (x), x⟩e−F = −

´
⟨∇e−F , x⟩, so we use integration by partsˆ

⟨∇F (x), x⟩e−F = −
ˆ
⟨∇e−F , x⟩ =

ˆ
e−F ·∆x2

2
= n

ˆ
e−F .

Plugging all this back in, we get the following inequality

Theorem 3.45 (Generalized log-Sobolev inequality). If F,G are convex functions, thenˆ
G∗(∇F )e−F ≥ n

ˆ
e−F −

ˆ
Fe−F +

ˆ
e−F log

´
e−F´
e−G

Corollary 3.46. If F,G are convex functions and
´
e−F =

´
e−G, thenˆ

G∗(∇F )e−F ≥ n

ˆ
e−F −

ˆ
Fe−F .

Remark 3.47. For the first time, the derivation of the Log-Sobolev inequality using lin-
earization of Prékopa-Leindler inequality was done by Bobkov and Ledoux.

Remark 3.48. Recall that for any function F that is nice enough (convex, smooth and does
not take infinity values), ∇F ∗ ◦ ∇F = x. Note that this in fact already implies F ∗∗ = F for
such functions.
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3.14 Reformulations and notable partial cases of the Generalized
Log-Sobolev Inequality

We continue with a few remarks on Theorem 3.45:

Remark 3.49. The equality holds if F = G.

Remark 3.50. Theorem 3.43 (equivalent to Theorem 3.45) implies Minkowski’s first in-
equality Lemma 3.12. To see this, let F = 1

∞
K (x) for some set K and G = 1

∞
L (x) for some

set L. Then
´
e−F =

´
e−G is equivalent to |K| = |L|. We get, using that G∗ = hL :

ˆ
Rn
G∗(∇F )e−F =

ˆ
K

G∗(∇F ) =

ˆ
K

hL(∇1∞
K ) =

ˆ
∂K

hL(nx),

where nx is the outer unit normal vector to ∂K. We have seen in a homework problem that
the last quantity is actually proportional to the mixed volume nV1(K,L) = |K + tL|′t=0. By
Theorem 3.43, we get

|K + tL|′t=0 ≥ |K + tK|′t=0,

which is precisely V1(K,L) ≥ |K| = |K|n−1
n · |L| 1n , in view of the volume restriction.

Now let us state a reformulation of Theorem 3.45. Consider ϕ = e−F for some convex F .
Then F = − log ϕ and ∇F = −∇ϕ/ϕ. Assume G is convex and

´
e−G = 1, then Theorem

3.45 can be rewritten as
ˆ
G∗
(
−∇ϕ

ϕ

)
ϕ ≥ n

ˆ
ϕ+

ˆ
ϕ log ϕ−

ˆ
ϕ log

ˆ
ϕ.

Definition 3.51 (Entropy). If dµ is a measure on Rn, then the entropy with respect to
measure µ of a function ϕ is defined as

Entµ(ϕ) :=

ˆ
ϕ log ϕdµ−

(ˆ
ϕdµ

)
log

(ˆ
ϕdµ

)
.

When µ is Lebesgue we write Ent(ϕ) for simplicity.

Remark 3.52. By Jensen’s inequality, we get, using that t log t is convex: Entµ(ϕ) ≥ 0 for
any probability measure µ.

Theorem 3.53 (Reformulation of the Generalized Log-Sobolev Inequality). For any log-
concave function ϕ and convex function G with

´
e−G = 1,

ˆ
G∗
(
−∇ϕ

ϕ

)
ϕ ≥ n

ˆ
ϕ+ Ent(ϕ).

We derive, by plugging in G∗(x) = |x| − log |Bn
2 |:
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Corollary 3.54 (L1-Sobolev inequality, Bobkov-Ledoux, 2000). For log-concave function ϕ,

Ent(ϕ) + Cn

ˆ
ϕ ≤

ˆ
|∇ϕ|,

where Cn = n+ log |Bn
2 |.

Next, we get, by plugging in G∗(x) = |x|2
2
− n log

√
2π:

Corollary 3.55 (Classical Lebesgue Log-Sobolev inequality, first form).

(1st form) Ent(ϕ) + n log(
√

2πe)

ˆ
ϕ ≤ 1

2

ˆ
|∇ϕ|2

ϕ
.

Note that
´ |∇ϕ|2

ϕ
is called the (Lebesgue) Fisher information. By substituting ϕ = f 2,

one can also write

Corollary 3.56 (Classical Lebesgue Log-Sobolev inequality, second form).

(2nd form) Ent(f 2) + n log(
√

2πe)

ˆ
f 2 ≤ 2

ˆ
|∇f |2.

Remark 3.57. In the Corollaries 3.55 and 3.56 one does not need to assume that ϕ is
log-concave – see home work.

We also note by plugging G∗ = |x|p + C(n, p) :

Corollary 3.58 (Lp-Sobolev inequality).

Ent(fp) + Cn,p

ˆ
fp ≤ pp−1

ˆ
|∇f |p,

where Cn,p = n− log(|Sn−1| ·
´∞
0
tn−1e−t

p/qdt), 1/p+ 1/q = 1.

Finally, we formulate

Theorem 3.59 (Gaussian Log-Sobolev inequality). Let dγ be the standard Gaussian measure
in Rn, and let g ∈ W 1,2(dγ), then

Entγ(g
2) ≤ 2

ˆ
|∇g|2dγ.

Remark 3.60. Log-concavity assumption on g is not needed; see home work.

Remark 3.61. Theorem 3.59 is equivalent to the Corollary 3.56 by choosing g = (2π)
n
4 e

|x|2
4 f .

See home work.

Remark 3.62. g = 1 gives the equality case in Theorem 3.59.
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Remark 3.63. Theorem 3.59 (or Corollary 3.55, since they are equivalent) implies the
Lebesgue Sobolev inequality:

n|Bn
2 |

1
n

(ˆ
Rn
|f |

n−1
n dx

) n
n−1

≤
ˆ
Rn
|∇f |dx,

which holds for all smooth f such that the integral converges.

Remark 3.64. The inequality also holds on the sphere Sn−1, which actually implies Theorem
3.59: ˆ

Sn−1

f 2 log f 2 −
ˆ
Sn−1

f 2 log

ˆ
Sn−1

f 2 ≤ 2

ˆ
Sn−1

|∇Sn−1f |2.

Lastly, we mention the following fact (whose prove is left as a home work problem):

Theorem 3.65 (Generalized Log-Sobolev inequality for log-concave measures). Let dµ =
e−V dx be a log-concave measure and F,G be convex functions such that

´
e−Gdµ = 1. Then

Entµ(e−F ) + n

ˆ
e−Fdµ−

ˆ
⟨∇V, x⟩e−Fdµ ≤

ˆ
G∗(∇F )e−Fdµ.

Proof. Home work!

3.15 The p-Beckner Inequality

We mention, without proof:

Theorem 3.66 (p-Beckner inequality). For f ∈ W 1,2(Rn, γ) and p ∈ [1, 2),

ˆ
f 2dγ −

(ˆ
|f |pdγ

) 2
p

≤ (2− p)
ˆ
|∇f |2dγ.

This result implies the so-called Gaussian Poincare’s inequality when p = 1:

ˆ
f 2dγ −

(ˆ
fdγ

)2

≤
ˆ
|∇f |2dγ.

We will formally prove this fact soon.
Also, Beckner’s inequality implies the Gaussian Log-Sobolev: one can obtain

Entγ(f) ≤ 2

ˆ
|∇f |2dγ

by letting p→ 2 in Theorem 3.66 and taking the derivative; see home work.

Remark 3.67. The p-Beckner inequality is stronger when p is bigger. In other words, the
Gaussian Log-Sobolev Inequality is the strongest inequality in the family of all p-Beckner
inequalities.
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Remark 3.68. The inequality is also known to hold on the sphere Sn−1.

Question (Siva): Is there a Lebesgue Beckner inequality?
Question 2 (Siva): What will happen if we plug ϕ = f 2e−V into Theorem 8.4?
Below we fix a log-concave probability measure dµ = e−Gdx on Rn: that is, we assume

that G is a smooth convex function and
´
e−G = 1.

Definition 3.69 (Variance). The variance of a function ϕ w.r.t. µ is defined as

Varµ(ϕ) :=

ˆ
ϕ2dµ−

(ˆ
ϕdµ

)2

.

Note that variance of a constant function is zero. Also, variance is invariant under adding
constants to ϕ. In a sense, variance measures “how far is ϕ from a constant function”.

3.16 A few words about the Laplace operator with respect to log-
concave measures

Definition 3.70 (Laplace operator associated to µ). For a “reasonable” function u (to be
discussed in more detail in November),

Lµu := ∆u− ⟨∇G,∇u⟩.

Example 3.71. 1. If µ is Lebesgue then Lµu = ∆u.

2. If µ is Gaussian then Lµu = ∆u − ⟨x,∇u⟩, which is called the Ornstein–Uhlenbeck
operator.

Lemma 3.72 (Integration by parts). If u, v ∈ C2(Rn) such that the integrals converge, then

ˆ
uLµvdµ = −

ˆ
⟨∇u,∇v⟩dµ.

Proof. Using the classical integration by parts
´
f∆g = −

´
⟨∇f,∇g⟩, we get

ˆ
uLµvdµ =

ˆ
(ue−G)∆v −

ˆ
u⟨∇G,∇v⟩e−G

= −
ˆ
⟨∇(ue−G),∇v⟩ −

ˆ
u⟨∇G,∇v⟩e−G

= −
ˆ
⟨∇u,∇v⟩e−G +

ˆ
u⟨∇G,∇v⟩e−G −

ˆ
u⟨∇G,∇v⟩e−G

= −
ˆ
⟨∇u,∇v⟩dµ.
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3.17 A short and non-standard proof sketch of the integration by
parts

In fact, we can prove the integration by parts formula for Lebesgue measure (as well as for
any Log-concave measure) in the following simple and unusual way. Here is the sketch.

Lemma 3.73 (Integration by parts). Let dµ = e−v dx, with Lµu = ∆u − ⟨∇v,∇u⟩, with
f, g : Rn → R such that g is smooth and bounded. Then

ˆ
f · Lµg dµ = −

ˆ
⟨∇f,∇g⟩ dx

A special case for v = 0 is

ˆ
f ·∆g dx = −

ˆ
⟨∇f,∇g⟩ dx

Proof. Consider the change of variable x = y + t∇g(y), which has Jacobean det(Id +t∇2g).
Then: ˆ

f(x) dµ(x) =

ˆ
f(y + t∇g(y))e−v(y+t∇g(y)) det(Id +t∇2g) dy

Noting that the LHS does not depend on t, differentiating gives

d

dt

ˆ
f(y + t∇g(y))e−v(y+t∇g(y)) det(Id +t∇2g) dx

∣∣∣∣
t=0

= 0

Differentiating under the integral,

0 =

ˆ (
⟨∇f,∇g⟩e−v − f⟨∇v,∇g⟩e−v + f ·∆ge−v

)
dy

where we used the fact that d
dt

det Id + tA = tr(A). Then it follows that

ˆ
f · Lµg dµ = −

ˆ
⟨∇f,∇g⟩ dµ

3.18 A word about eigen-functions

An interesting topic related to this operator is its eigen-functions. Define the first eigenvalue
λ1 to be the smallest λ > 0 such that there exists a u ̸= 0 such that Lµu = −λu. It can be
shown that 1/λ1 is actually the Poincaré constant, i.e.,

λ1 = inf
u̸=0

´
|∇u|2dµ´

u2dµ−
(´

udµ
)2 = inf

u̸=0

´
|∇u|2dµ´
u2dµ

,
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where the last equality follows from Varµ(f) = infa
´

(f − a)2dµ. Note that in general it is
nontrivial to have λ1 > 0, but this is true for log-concave measures. We will discuss this in
more detail in November. The main takeaway for now is that we always have the Poincaré
type inequality for log-concave measures, i.e., for any function u,

Varµ(u) ≤ 1

λ1

ˆ
|∇u|2dµ.

3.19 The derivation of the Brascamp–Lieb Inequality from the
Generalized Log-Sobolev inequality

The idea: Recall that we obtained the Generalized Log-Sobolev inequality from Prékopa-
Leindler inequality by taking the first derivative near the point of the minimum. In this
lecture, we will continue with this approach: Derive new inequalities by taking further
derivatives of Prékopa-Leindler (or Generalized Log-Sobolev) around the point of maximum.

Recall the Generalized Log-Sobolev inequality: For convex functions F,G with
´
e−G = 1,

ˆ
G∗(∇F )e−F ≥ n

ˆ
e−F −

ˆ
Fe−F −

ˆ
e−F log

ˆ
e−F ,

where the equality is attained when F = G. To take the derivative around this point, let
F = G+ tϕ and denote

β(t) :=

ˆ
G∗(∇G+ t∇ϕ)e−G−tϕ− n

ˆ
e−G−tϕ +

ˆ
(G+ tϕ)e−G−tϕ +

ˆ
e−G−tϕ log

ˆ
e−G−tϕ.

We have that, β ≥ 0 and β(0) = 0. We will see that also β′(0) = 0 (as is customary at a point
of minimum), and this will imply that β′′(0) ≥ 0, which will amount to a nice inequality
called the Brascamp-Lieb inequality.
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1. Write the Taylor expansion of G∗ up to the second term:

G∗(∇G+ t∇ϕ) = G∗(∇G) + t⟨∇G∗(∇G),∇ϕ⟩+
t2

2
⟨∇2G∗(∇G)∇ϕ,∇ϕ⟩+ o(t2).

We will drop all o(t2) terms from now on.

2. Use e−δ = 1− δ + δ2

2
to obtain

e−G−tϕ = e−G · e−tϕ = e−G
(

1− tϕ+
t2

2
ϕ2

)
.

Combining this with log(1 + δ) = δ − δ2

2
and note that

´
e−G = 1, we get

log

(ˆ
e−G−tϕ

)
= log

(ˆ
e−G ·

(
1− tϕ+

t2

2
ϕ2

))
= log

(
1− t

ˆ
ϕe−G +

t2

2

ˆ
ϕ2e−G

)
= −t

ˆ
ϕe−G +

t2

2

ˆ
ϕ2e−G − t2

2

(ˆ
ϕe−G

)2

. (∗)

With the variance notation, (∗) becomes

log

(ˆ
e−G−tϕ

)
= −t

ˆ
ϕdµ+

t2

2
Varµ(ϕ).

Going back to our differentiation, the first term of β(t) is

ˆ
G∗(∇G+ t∇ϕ)e−G−tϕ

=

ˆ (
G∗(∇G) + t⟨∇G∗(∇G),∇ϕ⟩+

t2

2
⟨∇2G∗(∇G)∇ϕ,∇ϕ⟩

)(
1− tϕ+

t2

2
ϕ2

)
dµ

=

ˆ
G∗(∇G)dµ+ t

ˆ
(⟨∇G∗(∇G),∇ϕ⟩ − ϕG∗(∇G)) dµ

+
t2

2

ˆ (
⟨∇2G∗(∇G)∇ϕ,∇ϕ⟩+ ϕ2G∗(∇G)− 2ϕ⟨∇G∗(∇G),∇ϕ⟩

)
dµ

=

ˆ
G∗(∇G)dµ+ t

ˆ
(⟨∇ϕ, x⟩ − ϕG∗(∇G)) dµ

+
t2

2

ˆ (
⟨(∇2G)−1∇ϕ,∇ϕ⟩+ ϕ2G∗(∇G)− 2ϕ⟨∇ϕ, x⟩

)
dµ,
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while the other terms are

− n
ˆ
e−G−tϕ +

ˆ
(G+ tϕ)e−G−tϕ +

ˆ
e−G−tϕ log

ˆ
e−G−tϕ

= −n
ˆ (

1− tϕ+
t2

2
ϕ2

)
dµ+

ˆ
(G+ tϕ)

(
1− tϕ+

t2

2
ϕ2

)
dµ

+

ˆ
(1− tϕ)dµ

(
−t

ˆ
ϕdµ+

t2

2
Varµ(ϕ)

)
= −n+

ˆ
Gdµ+ t

(
n

ˆ
ϕdµ−

ˆ
ϕGdµ

)
+
t2

2

(ˆ
(G− n)ϕ2dµ− Varµ(ϕ)

)
.

Here we used that
´
e−G = 1.

To proceed, we need the following observations:

1. Using the duality formula G+G∗(∇G) = ⟨∇G, x⟩ and
´
⟨∇G, x⟩dµ = n

´
e−G = n, we

can easily obtain ˆ
G∗(∇G)dµ = n−

ˆ
Gdµ,

so the constants cancel out, and as expected, confirm that β(0) = 0.

2. By Lemma 3.72,
ˆ
⟨∇ϕ, x⟩dµ = −

ˆ
ϕ · Lµ

x2

2
dµ

= −
ˆ
ϕ(n− ⟨∇G, x⟩)dµ

= −n
ˆ
ϕdµ+

ˆ
ϕ⟨∇G, x⟩dµ.

Combining this with the duality formula, one can getˆ
(⟨∇ϕ, x⟩ − ϕG∗(∇G)) dµ+ n

ˆ
ϕdµ−

ˆ
ϕGdµ

= −n
ˆ
ϕdµ+

ˆ
ϕ⟨∇G, x⟩dµ−

ˆ
ϕ(⟨∇G, x⟩ −G)dµ+ n

ˆ
ϕdµ−

ˆ
ϕGdµ

= 0,

so the first order terms also cancel out, and we have, as expected that β′(0) = 0.

3. (Conclusion) From the second order terms, we obtain
ˆ (
⟨(∇2G)−1∇ϕ,∇ϕ⟩+ ϕ2G∗(∇G)− 2ϕ⟨∇ϕ, x⟩

)
dµ+

ˆ
(G− n)ϕ2dµ− Varµ(ϕ) ≥ 0.

(4)

We are left with showing:
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Claim 3.74. ˆ
(ϕ2G∗(∇G)− 2ϕ⟨∇ϕ, x⟩)dµ+

ˆ
(G− n)ϕ2dµ = 0.

Proof. Indeed, by the duality formula and Lemma 3.72, one hasˆ
(ϕ2G∗(∇G)− 2ϕ⟨∇ϕ, x⟩)dµ

=

ˆ
(ϕ2⟨∇G, x⟩ − ϕ2G)dµ−

ˆ
⟨∇ϕ2, x⟩dµ

=

ˆ
(ϕ2⟨∇G, x⟩ − ϕ2G)dµ+

ˆ
ϕ2Lµ

x2

2
dµ

=

ˆ
(ϕ2⟨∇G, x⟩ − ϕ2G)dµ+

ˆ
ϕ2(n− ⟨∇G, x⟩)dµ

=

ˆ
(n−G)ϕ2dµ.

Finally, by combining (4) and Claim 3.74 we arrive to

Theorem 3.75 (the Brascamp–Lieb inequality, 1976). Let G be a strictly convex function
with

´
e−G = 1 and let dµ = e−Gdx. Then for any locally Lipschitz function ϕ, we have

Varµ(ϕ) ≤
ˆ
⟨(∇2G)−1∇ϕ,∇ϕ⟩dµ,

where Varµ(ϕ) =
´
ϕ2dµ−

(´
ϕdµ

)2
.

Remark 3.76 (Brascamp-Lieb inequality is the local form of the Prekopa-Leindler inequal-
ity!). One can alternatively show directly that the Brascamp–Lieb inequality is equivalent to
the following consequence of Prekopa-Leindler inequality:

d2

dt2
log

ˆ
e−(f+tg)∗ ≤ 0.

by substituting G = f ∗ and ϕ = g(∇f ∗). In fact, Brascamp-Lieb inequality also implies
Prekopa-Leindler “by integration”. See home work!

Remark 3.77. The Brascamp–Lieb inequality attains equality when ϕ = ⟨∇G, θ⟩ for any θ ∈
Rn. Something cool happens here: For any measure µ, one can obtain Lµ⟨x, θ⟩ = −⟨∇G, θ⟩.

Remark 3.78. In fact, it may be tempting to continue our explorations of the linearization
idea, and set ϕ = ⟨∇G, θ⟩ + ϵf into the Brascamp-Lieb inequality, take derivatives in ϵ
and see if a new inequality comes out for the function f. Unfortunately, it turns out the
Brascamp-Lieb inequality is “the end of the line”; see home work.
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For dµ = dγ being the Gaussian measure, one has ∇2G = Id which yields

Corollary 3.79 (the Gaussian Poincaré inequality).

Varγ(ϕ) ≤
ˆ
|∇ϕ|2dγ.

Recall that we discussed it as a partial case of Beckner’s inequality, but now we formally
proved it.

Remark 3.80. By our earlier discussion about eigenfunctions, this inequality means that
the first eigenvalue of Lγ is 1. One can check that the corresponding eigenfunctions are the
linear functions, i.e., Lγ⟨x, θ⟩ = −⟨x, θ⟩ for all θ ∈ Rn.

Remark 3.81. In fact, one may deduce the Gaussian Poincare Inequality from the classical
Gaussian Log-Sobolev inequality (rather than from the generalized one), in the same way as
above. That computation however is markedly simpler; see home work.

Remark 3.82 (An important observation about Brascamp–Lieb). For G = V + W and
dν = e−(V+W )dx, we have

ˆ
ϕ2dν −

(ˆ
ϕdν

)2

≤
ˆ
⟨(∇2(V +W ))−1∇ϕ,∇ϕ⟩dν.

Suppose that V,W are convex functions. Then clearly ∇2(V +W ) ≥ ∇2V , which yields

Varν(ϕ) ≤
ˆ
⟨(∇2V )−1∇ϕ,∇ϕ⟩dν.

Let K be a convex set and consider in the previous remark W = 1
∞
K (x) + Cn with some

properly chosen constant Cn. We obtain the following automatic generalization:

Corollary 3.83. Let dµ = e−V dx be a log-concave measure and K a convex body. Then for
any function ϕ that is nice enough,

1

µ(K)

ˆ
K

ϕ2dµ−
(

1

µ(K)

ˆ
K

ϕdµ

)2

≤ 1

µ(K)

ˆ
K

⟨(∇2V )−1∇ϕ,∇ϕ⟩dµ.

In other words, Brascamp-Lieb inequality can be automatically restricted to any convex
set.

As another corollary, we obtain:

Corollary 3.84 (An extension of the Gaussian Poincare inequality). If dµ = e−V dx is a
probability measure and ∇2V ≥ k · Id, then

Varµ(ϕ) ≤ 1

k
Eµ|∇ϕ|2.

In this case, the Poincaré constant (or the inverse of the first eigenvalue of Lµ) can be
bounded by k.
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3.20 Going back to Poincaré inequalities: Payne-Weinberger and
Poincaré on the circle

Let dµ be a log-concave density, λ1 the first eigenvalue of Lµ. The Poincaré inequality is

Varµ(f) ≤ 1

λ1

ˆ
∥∇f∥2 dµ

Theorem 3.85 (Payne-Weinberger). Let K be a convex body, with diamK = R. Then for
all locally-Lipschitz f ,

1

|K|

ˆ
K

f 2 −
(

1

|K|

ˆ
K

f

)2

≤ R2

π2|K|

ˆ
K

∥∇f∥2

Theorem 3.86. Let ϕ ∈ C1(−π, π). Then

1

2π

ˆ π

−π
ϕ2 dθ −

(
1

2π

ˆ
ϕ dθ

)2

≤ 1

2π

ˆ π

−π
ϕ̇2 dθ

Proof. Recall the Fourier series:

ϕ(θ) =
∞∑

n=−∞

ϕ̂(n)e2πinθ

where

ϕ̂(0) =
1

2π

ˆ π

−π
ϕ dθ

We have (̂ϕ̇)(n) = nϕ̂(n). By Parseval’s theorem,

ˆ π

−π
ϕ̇2 =

∞∑
n=−∞

n2|ϕ̂(n)|2 =
∑
n̸=0

n2|ϕ̂(n)|2 ≥
∑
n ̸=0

|ϕ̂(n)|2

Then observe that

1

2π

ˆ π

−π
ϕ2 dθ −

(
1

2π

ˆ π

−π
ϕ dθ

)2

=
∞∑

n=−∞

|ϕ̂(n)|2 − |ϕ̂(0)|2 =
∑
n̸=0

|ϕ̂(n)|2

which gives the inequality.

Remark 3.87. For ϕ(θ) = a cos θ + b sin θ we have equality.

Remark 3.88. If ϕ is even on [−π, π], then for all odd k, ϕ̂(k) = 0. From this we obtain∑
n̸=0

|ϕ̂(n)|2 =
∑
|n|≥2

|ϕ̂(n)|2 ≤ 1

4

∑
|n|≥2

n2|ϕ̂(n)|2

so we may sharpen the above inequality to Varϕ ≤ 1
4
Eϕ̇2.
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3.21 Colesanti’s inequality via Brascamp-Lieb (Cordero-Erasquin’s
approach)

We have certain parallels between inequalities for functions and inequalities for volumes (and
can often deduce the volume version from the functional one):

Functional Volumetric

log
´
e(f+tg)

∗
is concave log |K + tL| is concave

Generalized log-Sobolev Minkowski’s first inequality
Brascamp-Lieb inequality Minkowski’s second inequality

Explicitly, Minkowski’s second inequality is

|K + tL|′′|t=0 · |K| ≤
n− 1

n
( |K + tL|′|t=0)

The factor of n−1
n

arises when we differentiate (twice) t1/n, which differs from (but resembles)
the log t involved in deriving Brascamp-Lieb.

Now, suppose we have smooth convex bodies K and L, and we take v = 1
∞
K , ϕ = hL in

Brascamp-Lieb. This will give
ˆ
ϕ2 · e−v −

(ˆ
ϕ · e−v

)2

≤
ˆ
⟨(∇2ϕ)−1∇ϕ,∇ϕ⟩e−v

We have ∇1∞
K = nx and ∇2

1
∞
K = II, the second fundamental form... It is difficult to see this

through, however. The right approach, due to Cordero-Erasquin, is to consider v = h2K/2.
With some work, one deduces:

Theorem 3.89 (Colesanti). Let ϕ : ∂K → R, where K is a smooth convex body and ϕ ∈
C1(∂K). Then

´
∂K
ϕ = 0 implies that

ˆ
∂K

tr(II)ϕ2(x) dx ≤
ˆ
∂K

⟨II−1∇ϕ,∇ϕ⟩

Proof. Homework! Take v = h2K/2 in the Brascamp-Lieb inequality, then integrate in polar
coordinates.

3.22 Dimensional extensions of Generalized Log-Sobolev and Brascamp-
Lieb inequalities

Recall the following corollary of the Borell-Brascamp-Lieb inequality:

Corollary 3.90. For p ∈ [−1/n, 0] and f, g convex, the function(ˆ
Rn

(f ∗ + tg∗)1/p
) p

np+1

is concave in t.
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Corollary 3.91 (Bolley, Gentil, Guillin [29]). For q ∈ (−∞,−n], and a probability measure
dµ = e−v dx satisfying

∇2v − ∇v ⊗∇v
q

⪰ 0

for all locally-Lipschitz g, we have

ˆ
(g · ev/q)2 dµ−

(ˆ
g · ev/qdµ

)2

≤ −q
−q + 1

ˆ
⟨
(
∇2v − ∇v ⊗∇v

q

)−1

∇g,∇g⟩ dµ

Remark 3.92. When q → −∞, we recover Brascamp-Lieb. When q = −n, we obtain

ˆ (
g · e−v/n

)2
dµ−

(ˆ
g · e−v/n dµ

)2

≤ n

n+ 1

ˆ
⟨
(
∇2v +

∇v ⊗∇v
n

)−1

∇g,∇g⟩ dµ

Theorem 3.93 (Bolley, Cordero-Erasquinn, Fujita, Gentil, Guillin [30] extension of BBL).
Let h, g, w be Borel-measurable functions satisfying ∀x, y ∈ Rn, t ∈ [0, 1],

h((1− t)x+ ty) ≤ (1− t)g(x) + tw(y)

and
´
w−n =

´
g−n = 1. Then

ˆ
h1−n ≥ (1− t)

ˆ
g1−n + t

ˆ
w1−n

Corollary 3.94 (Convex Sobolev inequality extension of generalized log-Sobolev from [30]).

Let n ≥ 2, w : Rn → (0,∞) such that lim infx→∞
w(x)
∥x∥γ > 0 for some γ > n

n−1
, and nonnegative

g : Rn → R satisfying
´
g−n =

´
w−n = 1. Then

ˆ
w∗(∇g)g−n ≥ 1

n− 1

ˆ
w1−n

Remark 3.95. Plug

w(x) =

(
1 +
|x|q

q

)
Cq

and g = f
p

p−n to recover the Sobolev inequality,

∥f∥p∗ ≤
∥hp∥p∗(´
∥∇hp∥p

)1/p (ˆ ∥∇f∥p)1/p

where hp(x) =
(

1 + |x|
p
p−1

) p−n
p

and p∗ = np
n−p .
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3.23 Home work

Question 3.96 (1 point). Below Su stands for Steiner symmetrization with respect to u⊥;
K stands for a convex body in Rn with non-empty interior. Show that
a) Su(aK) = aSuK for all a > 0;
b) If K ⊂ L then Su(K) ⊂ Su(L); conclude that Su(K) is continuous with respect to Hausdorf
metric;
c) Su(K) + Su(L) ⊂ Su(K + L).

Question 3.97 (1 point). Recall that for a compact set A ⊂ Rn, the diameter

diam(A) = maxx,y∈A|x− y|.

Prove that
diam(Su(K)) ≤ diam(K).

Conclude the isodiametric inequality: if the volume of a set is fixed, its diameter is minimized
by a Euclidean ball.

Question 3.98 (1 point). Prove that the Steiner symmetrization decreases the perimeter of
a convex set. Note that this gives another proof of the isoperimetric inequality for convex
sets.

Question 3.99 (1 point). Recall that for a convex set K ⊂ Rn, the in-radius of K is

r(K) = sup{t > 0 : ∃y ∈ Rn : y + tBn
2 ⊂ K},

and the circum-radius of K is

R(K) = inf{t > 0 : ∃y ∈ Rn : K ⊂ y + tBn
2 }.

a) Prove that r(Su(K)) ≥ r(K).
b) Prove that R(Su(K)) ≤ R(K).
Conclude that the Euclidean ball maximizes the in-radius and minimizes the circum-radius
when the volume is fixed.

Question 3.100 (2 points). Prove the Urysohn inequality. Define mean width of a convex
body K as

w(K) =
2

|Sn−1|

ˆ
Sn−1

hK(θ)dθ.

Show that if |K| = |Bn
2 | then w(K) ≥ 2.

Hint: use the Brunn-Minkowski inequality and Steiner symmetrizations.

Question 3.101 (1 point). Fix Borel measurable sets K,L ⊂ Rn. Confirm what we discussed
in class: the validity for every λ ∈ [0, 1] of the inequality

|λK + (1− λ)L| ≥ |K|λ|L|1−λ

implies the validity of

|λK + (1− λ)L|
1
n ≥ λ|K|

1
n + (1− λ)|L|

1
n .
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Question 3.102 (1 point). Show that for a, b > 0, one has (λap + (1−λ)bp)
1
p →p→0 a

λb1−λ.

Question 3.103 (2 points). a) Let p ≥ − 1
n
, and suppose functions f, g and h on Rn satisfy

h(λx+ (1− λ)y) ≥ ((1− λ)fp(x) + λgp(y))
1
p .

Show that ˆ
h ≥

(
(1− λ)

(ˆ
f

) p
np+1

+ λ

(ˆ
g

) p
np+1

)np+1
p

.

Hint: try, for example, a similar proof to Lyusternik’s proof of the Brunn-Minkowski inequal-
ity. b) Conclude that if a measure’s density is supported on a convex set with non-empty
interior and is p-concave, then the measure is p

np+1
−concave.

c) Deduce that if the density of a measure µ on Rn is p−concave, then the density of a
marginal measure πH(µ) is p

kp+1
-concave, if H is an (n− k)-dimensional subspace (note that

this is a generalization of Brunn s principle).

Question 3.104 (2 points). We say that a function f in Rn is unconditional if it is invariant
under coordinate reflections. That is, f(ϵ1x1, ..., ϵnxn) = f(x) for any choice of ϵi ∈ {−1, 1}.
A set K is called unconditional if 1K is an unconditional function.

Suppose K is an unconditional convex body and V is an unconditional convex function
in Rn. Denote dµ(x) = e−V (x)dx. Show that log µ(etK) is a concave function in t ∈ R.
Hint: pass the integration from Rn to the set {x ∈ Rn : ∀i = 1, ..., n, xi ≥ 0}, and make a
change of variables in the Prekopa-Leindler inequality given by (x1, ..., xn) = (et1 , ..., etn).

Question 3.105 (1 point). a) Prove Minkowski’s first inequality: V1(K,L) ≥ |K|n−1
n |L| 1n

(similar to the isoperimetric inequality which we deduced in class.)
b) Prove Minkowski’s quadratic inequality: for convex bodies K and L in Rn,

V2(K,L)|K| ≤ V1(K,L)2.

Hint: use the Brunn-Minkowski inequality to obtain some information about d2

dt2
|K + tL| 1n .

Question 3.106 (1 point). (this question is added upon Alex’s request) Give an example of

a (rough, non-convex) set K such that limϵ→0
|K+ϵBn2 |−|K|

ϵ
does not exist, and

lim inf
ϵ→0

|K + ϵBn
2 | − |K|
ϵ

< lim sup
ϵ→0

|K + ϵBn
2 | − |K|
ϵ

.

Question 3.107 (1 point). Show that any convex function V : Rn → R̄ is
a) continuous on the support of e−V (i.e. on the set where V does not take infinite values)
b) Of class C2 almost everywhere on the support of e−V .
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Question 3.108 (1 point). a) Suppose V ∈ C2(Rn). Show that for all z1, z2 ∈ Rn,

V

(
z1 + z2

2

)
+ β(z1, z2) =

V (z1) + V (z2)

2
, (5)

where, letting z(t) = (1−t)z1+(1+t)z2
2

, we have

β(z1, z2) =
1

8
·
ˆ 1

−1

(1− |t|)⟨∇2V (z(t))(z1 − z2), z1 − z2⟩dt ≥ 0. (6)

b) Conclude that convexity of a C2-smooth function is equivalent to the non-negative
definiteness of its Hessian.

Question 3.109 (2 points). a) Show that for any pair of convex bodies K and L the function
|K + tL| is a polynomial in t of degree n.
b) Conclude that |K + tL| =

∑n
k=0

(
n
k

)
Vk(K,L)tk. This is called the Steiner polynomial.

Question 3.110 (2 points). For a convex set K define the Gauss map νK : ∂K → Sn−1 by
νK(x) = {nx} (the set of all outer normal vectors to ∂K at x; it is a singleton almost every-
where). Define also a measure SK on the sphere Sn−1 by letting, for every Borel measurable
Ω ⊂ Sn−1 :

SK(Ω) = |ν−1
K (Ω)|n−1.

Here | · |n−1 stands for the (n−1)−Hausdorff measure, i.e. for M ⊂ ∂K we let |M |n−1 =
´
M

in the sense we usually do it in class. The measure SK is called the surface area measure of
K.
a) Show that for a pair of convex bodies K and L,

V1(K,L) =
1

n

ˆ
Sn−1

hL(θ)dSK(θ).

In particular,

|K| = 1

n

ˆ
Sn−1

hK(θ)dSK(θ).

b) Use Minkowski’s first inequality to prove that the surface area measure determines a convex
body uniquely up to shifts (i.e. if dSK = dSL then K = L+ v for some vector v.)

Question 3.111 (2 points). Recall that the projection of a convex body K onto a hyperplane
θ⊥, for some θ ∈ Sn−1, is the set defined as

K|θ⊥ = {x ∈ θ⊥ : ∃t ∈ R : x+ tθ ∈ K}.

a) Prove the Cauchy formula for a symmetric convex body K:

|K|θ⊥|n−1 =
1

2

ˆ
Sn−1

|⟨θ, u⟩|dSK(u).
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Hint: option 1 – use elementary geometry and approximation by polytopes. option 2 – use
Questions 2.27 part c) and 3.110 part a).
b) Suppose K and L are symmetric convex bodies such that for every θ ∈ Sn−1 one has
|K|θ⊥|n−1 = |L|θ⊥|n−1. Conclude that K = L+ v for some vector v ∈ Rn.
(you don’t want to me to add a hint here on which Question(s) to use, right?)

Question 3.112 (1 point). Prove that when h ∈ C2(R2) is a support function of a strictly
convex compact region K in R2, the surface area measure has a density expressible in the
form

fK(u) = h(u) + ḧ(u),

for all u ∈ S1. Note that h+ ḧ is translation invariant.

Question 3.113 (10 points). Prove (perhaps using elementary Harmonic Analysis?) that for
every pair of π-periodic infinitely smooth functions ψ and h on [−π, π], such that h+ ḧ > 0
and h > 0, one has(ˆ π

−π
(h2 − ḣ2)du

)(ˆ π

−π
(ψ2 − ψ̇2 + ψ2h+ ḧ

h
)du

)
≤ 2

(ˆ π

−π
(hψ − ḣψ̇)du

)2

. (7)

(I can provide explanation/motivation upon request. Note that the assumption is π−periodic
rather than 2π−periodic.)

Question 3.114 (2 points). Prove the Rogers-Shepherd inequality. For a convex body in Rn,
define the difference body

K −K = {x− y : x, y ∈ K}.
Show that

|K −K| ≤
(

2n

n

)
|K|.

Hint: use the Brunn-Minkowski inequality to show that |K ∩ (x+K)| 1n is a concave function
supported on K − K, and therefore it can be estimated from below by 1 − ρK−K(x). Using
this estimate (among other considerations) show that

|K|2 =

ˆ
K−K

|K ∩ (x+K)|dx ≥
(

2n

n

)−1

|K| · |K −K|.

Question 3.115 (2 points). Prove the Grunbaum inequality: let K be a convex body whose
barycenter is at the origin (that is

´
K
xdx = 0.) Show that for any θ ∈ Sn−1, one has

|{x ∈ K : ⟨x, θ⟩ ≥ 0}| ≥
(

n

n+ 1

)n
|K| ≥ |K|

e
.

Question 3.116 (3 points). Prove Busemann’s theorem: given x ∈ Rn \ {0}, the function
|x|

|x⊥∩K| is convex in Rn. Conclude that it is a norm. The unit ball of this norm is called the
intersection body of K.
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Question 3.117. Derive the Santalo formula for the area of a convex region in R2:

|K| = 1

2

ˆ π

−π
h2 − ḣ2dt,

where h is the support function of K.
Hint: use Questions 3.112 and 3.110

Question 3.118 (2 points). Using elementary Harmonic Analysis, prove that for every pair
of C1 periodic functions on [−π, π], one has

ˆ π

−π
h2 − ḣ2 ·

ˆ π

−π
ψ2 − ψ̇2 ≤

(ˆ
hψ − ḣψ̇

)2

.

Explain why this provides an alternative solution to Question 3.105 b) on the plane (hint:
use Questions 3.117 and 3.110 for this explanation).

Question 3.119 (1 point). Prove the general version of Brunn’s principle: for a convex

body K in Rn and a k−dimensional subspace H, the function |K ∩ (y +H)| 1k is concave on
its support (inside H⊥.) Here k ∈ {1, ..., n− 2} (the case k = n− 1 we did in class.)

Question 3.120. Show that the convolution of log-concave functions is log-concave.
Hint: Use the fact that marginals of log-concave functions are log-concave, in dimension R2n.

Question 3.121 (1 point). Provide an alternative proof (to what was done in class) of the
Gaussian Poincare inequality

ˆ
Rn
f 2dγ −

(ˆ
Rn
fdγ

)2

≤
ˆ
Rn
|∇f |2dγ

using the decomposition of f into the series of Hermite polynomials (the orthonormal system
with respect to the Gaussian measure – you can read about them e.g. in Wikipedia.)

Question 3.122 (1 point). As per our discussion in class, prove the following statement
using the Borell-Brascamp-Lieb inequality (Question 3.103).

Fix q ∈ (−∞,−n]. Let dµ = e−V dx be a probability measure and g be a C1 function.
Suppose V ∈ C2(Rn) and ∇2V − ∇V⊗∇V

q
≥ 0 (i.e. V is q−concave.) Then, assuming all the

integrals below exist,

ˆ (
ge

V
q

)2
dµ−

(ˆ
ge

V
q dµ

)2

≤ −q
−q + 1

ˆ
⟨e−

2V
−q

(
∇2V +

∇V ⊗∇V
−q

)−1

∇g,∇g⟩dµ.

Question 3.123 (1 point). Deduce the Gaussian Poincare inequality from the Gaussian Log-
Sobolev inequality via the linearization method (this is sort of a partial case of the argument
we discuss in class).
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Question 3.124 (1 point). Prove that the (classical) Gaussian Log-Sobolev inequality and
the (classical) Lebesgue Log-Sobolev inequality (as stated in class) are indeed equivalent.

Question 3.125 (1 point). By differentiating the infimal convolution directly, prove the
Gaussian Log-Sobolev inequality without the convexity assumption on f :

Entγ(f
2) ≤ 2

ˆ
|∇f |2,

for any f ∈ C1(Rn) for which the corresponding integrals converge.

Question 3.126 (1 point). Deduce the Sobolev inequality from the Log-Sobolev inequality
for the Lebesgue measure.

Question 3.127 (1 point). Show that the Gaussian Beckner inequality implies the classical
Gaussian Log-Sobolev when p→ 2.

Question 3.128 (1 point). Deduce Nash’s inequality from the (classical) Lebesgue Log-
Sobolev inequality: for any non-negative f ∈ L2(Rn) ∩ C1(Rn)(ˆ

f 2dx

)1+ 2
n

≤ 2

πen

(ˆ
|∇f |2dx

)(ˆ
fdx

) 4
n

.

Question 3.129 (1 point). Deduce the isoperimetric inequality from the Sobolev inequality
for Lebesgue measure.

Question 3.130 (1 point). Prove the following variant of the Generalized Log-Sobolev in-
equality: given a log-concave measure µ on Rn with density e−V , and any pair of smooth
convex functions f and g with

´
e−fdµ =

´
e−gdµ, one has

ˆ
g∗(∇f)e−fdµ ≥ n

ˆ
e−fdµ−

ˆ
⟨∇V, x⟩e−fdµ−

ˆ
fe−fdµ.

Question 3.131 (3 points). Is it possible to obtain Gaussian Beckner inequalities for p ∈
[1, 2) via linearizations of (some) geometric inequalities directly?

Question 3.132 (2 points). Prove the following extension of the Borell-Brascamp-Lieb in-
equality due to Bolley, Cordero-Erasquin, Fujita, Gentil, Guillin: for convex f and g on Rn

with n ≥ 2 : ˆ
(((1− t)f + tg)∗)1−n ≥ (1− t)

ˆ
(f ∗)1−n + t

ˆ
(g∗)1−n.

Question 3.133 (Generalized Sobolev, 2 points). Prove the following extension of the
Sobolev inequality due to Bolley, Cordero-Erasquin, Fujita, Gentil, Guillin: for convex F
and G on Rn with n ≥ 2 : such that

´
F−n =

´
G−n = 1, and assuming that G(x)

|x|γ →x→∞ 0,
for some γ > n

n−1
, and that all the integrals exist, we have

ˆ
G∗(∇F )F−n ≥ 1

n− 1

ˆ
G1−n.
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Question 3.134 (Coredero-Erasquin’s proof of Colesanti inequality, 4 points). Prove the
following inequality: when K is a C2 convex body, II is its second fundamental form and
f ∈ C1(∂K) is an arbitrary function such that

´
∂K
f = 0, then

ˆ
∂K

tr(II)f2 − ⟨II−1∇∂Kf,∇∂Kf⟩ ≤ 0.

Here ∇∂Kf stands for the intrinsic boundary gradient of f. Compare to Question 3.105 part
b).

Hint: Use Brascamp-Lieb inequality with V (x) =
h2K(x)

2
and the “body polar coordinates”

formula ˆ
K

F (x)dx =

ˆ ∞

0

ˆ
∂K

F (ty)tn−1⟨y, ny⟩dtdy,

where ny is the outer unit normal to ∂K at y, and dy stands for the boundary integration.

Question 3.135 (1 point). Show that when φ : [−π, π] is C1, even and periodic, then

ˆ π

−π
φ2 − 1

2π

(ˆ π

−π
φ

)2

≤ 1

4

ˆ π

−π
φ̇2.

Question 3.136 (1 point). Show that when φ : [−π, π] is C1, periodic, and φ(0) = 0, then
ˆ π

−π
φ2 ≤ 4

ˆ π

−π
φ̇2.

Question 3.137 (1 point). Show that Brascamp-Lieb inequality is “the end of the line” for
the linearization method: let dµ(x) = e−V (x)dx and plug the function f(x) = ⟨∇V (x), θ⟩+ ϵφ
into Brascamp-Leib:

ˆ
f 2dµ−

(ˆ
fdµ

)2

≤
ˆ
⟨(∇2V )−1∇f,∇f⟩dµ,

and observe that while ⟨∇V (x), θ⟩ indeed attains equality in the above inequality, and the
terms corresponding to ϵ cancel out as well, still, the only inequality that we obtain as a
result is again the Brascamp-Lieb inequality.

Question 3.138 (1 point). Let µ be a log-concave probability measure on Rn with the density
e−V for some convex function V and the associated Laplacian Lu = ∆u − ⟨∇u,∇V ⟩. Let
λ1 > 0 be the first non-trivial eigenvalue of L, that is the smallest number such that there
exists a non-zero function f1 such that

Lf1 = −λ1f1.

Show that

λ1 = inf
f∈W 1,2(dµ)

´
|∇f |2dµ´
f 2dµ

= inf

´
|∇f |2dµ´

f 2dµ− (
´
fdµ)2

.
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Hint: use general convexity/compactness considerations to show that the infimum is attained
for some function f1. Then consider f = f1+ϵg and argue that the derivative in ϵ of that ratio
must be zero. Conclude that f has to be an eigenfunction (use general PDE considerations
to argue that it exists).

Question 3.139 (1 point). Show that for a positive definite matrix A,

det(Id + tA) = 1 + t · tr(A) +
t2

2
∥A∥2HS + o(t2),

where ∥A∥2HS is the square of the Hilbert-Schmidt norm (that is, the sum of the squares of
all entries).

Question 3.140 (3 points). Show that one can improve the Gaussian Log-Sobolev inequality

to the following: suppose dµ = e−V−x2

2
−n log

√
2πdx = e−V dγ is a probability measure. Then

−
ˆ
V dµ ≤

´
x2dµ− n

2
+
n

2
log

(
2 +

´
|∇V |2dµ−

´
x2dµ

n

)
.

Question 3.141 (1 point). Prove the following improvement of the Brascamp-Lieb in-
equality in the unconditional case (recall that a function f(x) is called unconditional if
f(ϵ1x1, ..., ϵnxn) = f(x), for every x ∈ Rn and every choice of signs ϵi ∈ {−1, 1}; that
is, f is invariant under coordinate reflections).

Suppose f, w are unconditional and w is convex. Then for the probability measure dµ =
Ce−wdx one has

ˆ
f 2dµ−

(ˆ
fdµ

)2

≤
ˆ
⟨(∇2w + T )−1∇f,∇f⟩dµ,

where T = diag[ 1
x1

∂w
∂x1
, ..., 1

xn
∂w
∂xn

].

Hint: use the multiplicative version of Prekopa-Leindler inequality for unconditional func-
tions, as in Question 3.104.

Question 3.142 (2 points, important question). a) Prove the second part of Lemma 7.9
(from the notes) concerning the second derivative of the Legendre of an interpolation: that
for a family of convex functions vt such that vt(x) ∈ C2(x, t), one has

d2

dt2
v∗t (x) = −v̈t(∇v∗t ) + ⟨(∇2vt(x))−1∇v̇t(∇v∗t ),∇v̇t(∇v∗t )⟩.

b) Use it to deduce the Brascamp-Lieb inequality from Prekopa-Leindler directly, without
going via the Generalized Log-Sobolev. Namely, note that Prekopa-Leindler ineqaulity implies
that

d2

dt2

ˆ
e−(f+tg)∗ ≤ 0,
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and do the computation which confirms that this is equivalent to the Brascamp-Lieb inequality

ˆ
φ2dµ−

(ˆ
φdµ

)2

≤
ˆ
⟨(∇2V )−1∇φ,∇φ⟩dµ,

with dµ = e−V dx, where V = f ∗, and φ(x) = g(∇f ∗(x)), and we assume that
´
dµ = 1.

4 The Blaschke-Santaló inequality and friends

4.1 The formulation of the Blaschke-Santaló inequality

Let K be a symmetric convex body, recall

K◦ = {x : ∀y ∈ K, ⟨x, y⟩ ≤ 1}

is its polar, and let T a linear operator. Recall that (TK)◦ = (T−1)⊤K◦. The volume
product |K| · |K◦| is affine invariant:

|TK| · |(TK)◦| = detT |K| detT−1|K◦| = 1 · |K| · |K◦| = |K| · |K◦|

In particular, for any ellipsoid E,

|E| · |E◦| = |Bn
2 |2 ∼

(
2πe2

n

)n
,

and for any parallelpiped P ,

|P | · |P ◦| = |Bn
∞| · |Bn

1 | =
4n

n!
∼ (4e)n

nn
.

We formulate the celebrated

Theorem 4.1 (Blaschke-Santalo inequality [161]). For any symmetric convex body K,

|K| · |K◦| ≤ |Bn
2 |2

And what about the estimate from below?

Conjecture 4.2 (Mahler, 1937 (symmetric version)). For a symmetric convex body K in
Rn, |K| · |K◦| ≥ 4n

n!
= |Bn

∞| · |Bn
1 |.

Mahler proved it in dimension 2, but also see home work. Iryeh, Shibata proved it
in dimension 3, and their proof was later simplified by Fradelizi, Hubard, Meyer, Roldan-
Pensado, Zvavitch.
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Remark 4.3 (answering Siva’s question). Obtaining an isoperimetric inequality in the other
direction in a similar fashion is less simple, since it is not invariant under affine transfor-
mations. (That is, there are needle-shaped convex bodies with arbitrarily small isoperimetric
ratio.) However, we may make it affine invariant by taking the infimum over affine transfor-
mations. There is the following theorem by Kieth Ball: Let K be a symmetric convex body
with |K| = |Bn

∞| = 2n, then

inf
T : detT=1

|∂(TK)|n−1 ≤ |∂Bn
∞|n−1.

In general, cube often appears as (sometimes conjectured) optimizer in various reverse isoperimetric-
type inequalities, thus Mahler conjecture is not the only one of this sort.

4.2 Hanner polytopes

The following interesting construction of a class of convex bodies appears in [82].

Definition 4.4 (Hanner polytopes). Hanner polytopes are defined inductively. In dimension
1, the symmetric interval [−1, 1] is the Hanner polyope.

Next, let H,K be Hanner polytopes in Rk,Rn−k respectively. Consider them in orthog-
onal subspaces in Rn. Then H ×K = {(x, y) : x ∈ H, y ∈ K} is a Hanner polytope in Rn,
and conv(K,H) – the convex hull of K ∪H – is another Hanner polytope in Rn.

The family of Hanner polytopes in Rn includes Bn
1 and Bn

∞.

In dimension 2, the only Hanner polytope is the square. In dimension 3, the cube B3
∞ and

the diamond B3
1 are the only Hanner polytopes (up to rotations and dilations). In dimension

4, the Hanner polytopes are B4
∞, B4

1 and B2
1 ×B2

1 .

It is a homework problem to show that for any Hanner polytope H ⊆ Rn with nonempty
interior,

|H| · |H◦| = 4n

n!
= |Bn

∞| · |Bn
1 |.

Therefore, there is many conjectured minimizers in Mahler’s conjecture. Kim [89] showed
that all the Hanner polytopes are locally minimal for the volume product.
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4.3 About Bourgain-Milman’s theorem

Bourgain and Milman [38] showed the following “isomorphic version” of the Mahler conjec-
ture:

Theorem 4.5 (Bourgain-Milman 1987). For any symmetric convex body K ⊆ Rn,

|K| · |K◦| ≥ cn

nn
= c̃n|Bn

∞| · |Bn
1 |

Corollary 4.6.
(n|K| · |K◦|)1/n ∈ [c1, c2]

.

Here c2 = 2πe2 + o(1) comes from the Blaschke-Santalo inequality, and c1 is the constant
from Bourgain-Milman’s theorem. If Mahler’s conjecture is true, then c1 = 4e + o(1). The
current best constant is due to Kuperberg [119] who showed c1 = πe+o(1). See also Nazarov
[148], Berndtsson [20], Giannopolous, Paouris, Vritsiou [70].

The Bourgain-Milman theorem has many applications to problems where the dimensional
dependence is studied up to an absolute constant.

4.4 Volume product of non-symmetric convex bodies and related
questions and results

Note that if 0 ̸∈ int(K), then |K◦| = ∞. Indeed, in this case K ⊂ H for some half-space
H which does not contain the origin, and therefore, Ho ⊂ Ko. But one may check that Ho

contains an infinite ray, and therefore is unbounded.
Hence there is no hope to have Blaschke-Santaló inequality for convex bodies without

the symmetry assumption, unless we do some trick...
Consider the quantity

inf
z∈Rn
|K − z| · |(K − z)◦| = |K| · inf

z∈Rn
|(K − z)◦|.

This quantity is now bounded, and in fact, the infimum is attained (by compactness) at
a unique point (see home work).

Definition 4.7 (Santaló point). The point z for which the infimum is attained is called the
Santaló point of K, san(K). If san(K) = 0, the convex body is said to be in the Santaló
position. It is a homework problem to show that the Santaló point exists and is unique.

Theorem 4.8 (the Non-symmetric Blaschke-Santaló inequality). For any convex body K,

|K| · inf
z∈Rn
|(K − z)◦| = |K| · |(K − san(K))◦| ≤ |Bn

2 |2.

Many special centers (besides the Santaló point) can be defined for a non-symmetric
convex body. Below we define one of the most commonly used ones:
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Definition 4.9 (Center of Mass). The center of mass (or barycenter) of a convex body K
is barK =

´
K
x dx.

More generally, for a measure µ on Rn its barycenter is defined to be the vector
´
Rn xdµ.

In general, the Santalo point and center of mass do not coincide, and in fact, they may be
very far from each other.

One might ask if Blaschke-Santaló inequality holds when the center of K is chosen to be
some other point rather than the Santalo point. Naturally, one can claim Blaschke-Santaló
inequality when Ko is in the Santaló position, rather than K. It turns out (home work!) that
K is in the Santaló position if and only if Ko has the barycenter at the origin! Therefore,
the Blaschke-Santalo inequality is still valid if the center is chosen to be the center of mass
(of either K or Ko):

Claim 4.10. For any convex body K,

|K| · |(K − barK)◦| ≤ |Bn
2 |2

A notable original proof of the (non-symmetric) Blaschke-Santaló inequality was found
by Lehec [129], [130], using explicitly that the body is positioned to have the barycenter at
the origin.

The following remarkable recent theorem from [73] interpolates between the two equiv-
alent formulations of the non-symmetric the Blaschke-Santaló inequality, and allows for an
estimate for any convex body which contains the origin in its interior!

Theorem 4.11 (Gozlan, Fradelizi, Sadovsky, Zugmeyer). For any convex body K with origin
in the interior,

|K| · |K◦| ≤ |Bn
2 |2(1− ⟨barK, sanK◦⟩)n+1.

Remark 4.12 (An analytic characterization of the Santaló point). If K is a convex body
with support function hK, then ρK◦ = 1/hK. For a convex body L

|L| = 1

n

ˆ
Sn−1

ρnL(θ) dθ,

as can be shown using polar coordinates (see home work!) Therefore,

|K◦| = 1

n

ˆ
Sn−1

h−nK (θ) dθ

Additionally, hK+z(θ) = hK(θ) + ⟨θ, z⟩. So,

|(K + z)◦| = 1

n

ˆ
Sn−1

(hK + ⟨θ, z⟩)−n dθ

Taking derivatives in z, ˆ
Sn−1

θi

hn+1
K (θ)

dθ = 0

for each i = 1, . . . , n.
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Finally, we mention the famous

Conjecture 4.13 (Non-symmetric Mahler conjecture). For any convex body K,

|K| · |K◦| ≥ |Sn−1|2

where Sn−1 = conv(a1, . . . , an+1) is the regular simplex.

4.5 A connection with the slicing problem

Klartag [93] found a connection between Conjecture 4.13 and the sharp version of the noto-
rious Bourgain’s slicing problem [36], [37], [109]:

Conjecture 4.14 (Bourgain, sharp version of the slicing problem). Let K be a convex body,
and let Cov(K) be the covariance matrix of the random vector distributed uniformly on K.
Then the quantity

det(Cov(K))

|K|2

is maximized when K is a regular simplex.

Theorem 4.15 (Klartag, [93]). Conjecture 4.14 implies Conjecture 4.13.

It is worth also noting, that the affirmative answer to Conjecture 4.14 would yield the
affirmative answer to the following long-standing and simple-sounding open problem:

Conjecture 4.16 (Bourgain, the slicing problem). Let K be a convex body in Rn, |K| = 1.
Then there exists θ ∈ Sn−1 and t ∈ R such that |K ∩ (θ⊥ + tθ)|n−1 ≥ c, where c > 0 is an
absolute constant independent of the dimension.
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It should be noted that the (asymptotic) equivalence between Conjectures 4.14 and 4.16
is fairly straightforward, in contrast to the highly non-trivial Theorem 4.15.

Definition 4.17. A measure µ is called isotropic if
´
xdµ = 0 and Cov(µ) = Id, where

Cov(µ) = (EXiXj)ij

for a random variable X ∼ µ.

Remark 4.18. For any (full-dimensional) measures µ there exists T such that µ ◦ T is
isotropic.

One may also show (see e.g. Eldan, Klartag [59]) that Conjecture 4.16 follows from the
so-called KLS conjecture:

Conjecture 4.19 (Kannan, Lovasz, Simonovits [88]). Let µ be an isotropic log-concave
measure. Then for any locally-Lipschitz function f : Rn → R, the Poincare inequality holds
with a constant that does not depend on dimension:

ˆ
f 2dµ−

(ˆ
fdµ

)2

≤ C

ˆ
|∇f |2dµ,

where C > 0 is an absolute constant.

Equivalently, if K is a convex body, and we want to find a cut which splits K into two
parts each with volume half of |K|, then the cut of least perimeter is the one determined by
a hyperplane (up to a constant.) See the home work for the equivalence.

4.6 Proof of the symmetric Blaschke-Santalo inequality, and an
interesting open problem

Claim 4.20. For any symmetric convex body K ⊆ Rn,

|K| · |K◦| ≤ |Bn
2 |2
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The proof uses Steiner symmetrization. We shall show:

Lemma 4.21. |K◦| ≤ |Su(K)◦| for all u ∈ Sn−1.

Proof. WLOG, suppose u = en. We write

Sen(K) = {(x, s− t
2

) : (x, s), (x, t) ∈ K}

Therefore,

Sen(K)◦ = {(y, z) : ⟨x, y⟩+ z
s− t

2
≤ 1 ∀(x, s), (x, t) ∈ K}

Define the slice L(r) = {x ∈ Rn−1 : (x, r) ∈ K} for L ⊆ Rn. Consider

K◦(r) +K◦(−r)
2

= {y + z

2
: ⟨x, y⟩+ sr ≤ 1, ⟨w, z⟩ − tr ≤ 1, ∀(x, s), (w, t) ∈ K}.

By reducing the number of restrictions, we obtain

K◦(r) +K◦(−r)
2

⊆ {y + z

2
: ⟨x, y⟩+ sr ≤ 1, ⟨x, z⟩ − tr ≤ 1, ∀(x, s), (x, t) ∈ K}

⊆ {y + z

2
: ⟨x, y + z

2
⟩+

s− t
2

r ≤ 1 ∀(x, s), (x, t) ∈ K}

= {v : ⟨x, v⟩+
s− t

2
r ≤ 1 ∀(x, s), (x, t) ∈ K}

= Sen(K)◦(r).

Next, |K(r)| is an even function of r because K is symmetric,. By the Brunn-Minkowski
inequality, ∣∣∣∣K◦(r) +K◦(−r)

2

∣∣∣∣ ≥√|K◦(r) · |K◦(−r)| = |K◦(r)|,
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which implies |Sen(K)◦(r)| ≥ |K◦(r)|. Therefore, using Fubini’s theorem, we get

|K◦| =
ˆ ∞

−∞
|K◦(r)| dr ≤

ˆ ∞

−∞
|Sen(K)◦(r)| dr = |Sen(K)◦|.

In order to derive the Blaschke-Santalo inequality from Lemma 4.21, we select a sequence
of directions such that the successive symmetrizations of K approach a ball, and note that
the polar volume increases along this sequence, while the volume remains preseved. Namely,

choose a sequence u1, u2, . . . such that Suk,...,u1K → RBn
2 , where R = |K|1/n

|Bn2 |1/n
. Then

|K| · |K◦| ≤ |RBn
2 ||(RBn

2 )◦| = |Bn
2 |2.□

We mention another open question:

Conjecture 4.22 (Cordero-Erasquin). Let µ be an even log-concave measure and K a sym-
metric convex body. Then

µ(K)µ(Ko) ≤ µ(Bn
2 )2.

In particular, for any symmetric convex body L,

|K ∩ L| · |Ko ∩ L| ≤ |Bn
2 ∩ L|2.

Klartag proved this holds for some rotation invariant measures [96].

Question: Is it even true that µ(RBn
2 )µ((RBn

2 )◦) ≤ µ(Bn
2 )2?

Answer: yes! and this fact is equivalent to the recent deep result of Cordero-Erasquin
and Rotem [49] (which we will discuss in more detail in Remark 7.35).

4.7 A fun inequality on the circle

Recall that (see Remark 4.12): if K is a symmetric convex body in Rn with support function
hK , then ρK◦ = 1/hK , and we have

|K◦| = 1

n

ˆ
Sn−1

h−nK (θ) dθ.

We now want to deduce the volume of K (on the plane) in terms of the support function.
To start, suppose that K is a polygon with hi denoting the distance to side i with length ai
(see Figure 4.7). Then, |K| = 1

2

∑
i aihi
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What happens as K becomes smooth? We need to understand what the heights hi and
side lengths ai converge to. Indeed, the geometric interpretation of the support function tells
us that hi converges to hK (see Remark 2.12), and the side lengths converge to the surface
area measure, the inverse of which is called the curvature, denoted kK(θ). Also, we note that
kK = 1

hK+ḧK
(see HW). This implies

|K| = 1

2

ˆ
S1
hK(θ)

1

kK(θ)
dθ =

1

2

ˆ
S1
hK(θ) · (hK(θ) + ḧK(θ)) dθ. (8)

Note that h is a periodic function, and on integrating by parts we obtain

ˆ π

−π
hḧ = −

ˆ π

−π
ḣ2.

Combined with (8), we conclude

|K| = 1

2

ˆ
S1

(
h2K(θ)− ḣ2K(θ)

)
dθ. (9)

Equation (9) is called Santalo’s formula. Recall that the Blaschke-Santalo inequality in R2

implies |K| · |K◦| ≤ π2, for a symmetric convex body K. Thus,(
1

2

ˆ π

−π

(
h2K(θ)− ḣ2K(θ)

)
dθ

)
·
(

1

2

ˆ π

−π
h−2
K (θ) dθ

)
≤ π2,

which gives (
1

2π

ˆ π

−π

(
h2K(θ)− ḣ2K(θ)

)
dθ

)
·
(

1

2π

ˆ π

−π
h−2
K (θ) dθ

)
≤ 1.

In fact, we do not need to assume that h is a support function. We have the following
general result.
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Proposition 4.23. Suppose f : [−π, π]→ R such that f ∈ C1, π-periodic. Then,(
1

2π

ˆ π

−π

(
ḟ 2(θ)− f 2(θ)

)
dθ

)
+

(
1

2π

ˆ π

−π
f−2(θ) dθ

)−1

≥ 0.

Proof. Without loss of generality we may assume that f ≥ 0 and f ∈ C2(−π, π). If f is the
support function of a symmetric convex body in R2, then result holds by the Blaschke-Santalo
inequality, as we explained above. Note that f is a support function if the 1-homogeneous
extension of f into R2 is convex. This means that f + f̈ ≥ 0.

So, we consider any function f ≥ 0, and consider F : R2 → R such that F (x) =

|x| ·f
(
x
|x|

)
, and G(x) = F ⋆⋆(x), the double-Legendre transform of F (or, the convexification

of F ). Furthermore, define g(θ) = G(θ) where g is a support function such that g ≤ f and
g is the largest such function. Then, we have the following properties:

1. 0 ≤ g ≤ f ,

2. g + g̈ ≥ 0, and

3. if f + f̈ ≥ 0, then g = f .

Using these properties, we can show the following result.

ˆ
(ḟ 2 − f 2) +

(ˆ
f−2

)−1

≥
ˆ

(ġ2 − g2) +

(ˆ
g−2

)−1

.

First, by property 1, we have (ˆ
f−2

)−1

≥
(ˆ

g−2

)−1

. (10)

Next, consider ˆ
(ḟ 2 − f 2) = −

ˆ
f(f + f̈)

= −
ˆ
f+f̈<0

f · (f + f̈)︸ ︷︷ ︸
≥0

−
ˆ
f+f̈≥0

f · (f + f̈)

≥ −
ˆ
f+f̈≥0

f · (f + f̈)

= −
ˆ
f+f̈≥0

g · (g + g̈)

≥ −
ˆ
g · (g + g̈)

=

ˆ
(ġ2 − g2)
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where the first equality uses integration by parts, the third equality uses property 3, the
second inequality uses −

´
f+f̈<0

g · (g + g̈) < 0 (which follows from properties 1 and 2), and

the final equality again uses integration by parts. Combined with (10), we get the desired
inequality, which concludes the proof.

In fact, the following more general result holds (from the non-symmetric Blaschke-Santalo
inequality).

Theorem 4.24. For all functions f ∈ C1(−π, π) and periodic, there exists t, s ∈ R such
that ft,s(θ) = f(θ) + t cos θ + s sin θ such that(

1

2π

ˆ π

−π
ḟ 2
t,s − f 2

t,s

)
+

(
1

2π

ˆ π

−π
f−2
t,s

)−1

≥ 0.

Remark 4.25. This was obtained via an independent proof by Lutwak, Young, Zhang [45],
who in fact proved a more general result, and in particular found a new proof of the Blaschke-
Santaló inequality on the plane.

Now, consider the result in Proposition 4.23, and reparametrize it such that ϕ(θ) = f
(
θ
2

)
.

Since f was π-periodic, ϕ is 2π-periodic, and we obtain the following result.

Theorem 4.26. For all functions ϕ ∈ C1(−π, π) and circle-periodic, we have

4 ·
(

1

2π

ˆ π

−π
ϕ̇2

)
≥
(

1

2π

ˆ π

−π
ϕ2

)
−
(

1

2π

ˆ π

−π
ϕ−2

)−1

.

Remark 4.27. This result looks similar to the p-Beckner inequality (see Theorem 3.66). We
recall it here for completeness. For p ∈ [1, 2), we have(

1

2π

ˆ π

−π
ϕ2

)
−
(

1

2π

ˆ π

−π
ϕp
) 2

p

≤ (2− p)
(

1

2π

ˆ π

−π
ϕ̇2

)
.

We have shown that the Blaschke-Santalo inequality in R2 is equivalent to the p-Beckner
inequality on the circle for p = −2.

A HW question. Is there an interval of negative p where the p-Beckner inequality holds
on the circle?

Remark 4.28. If g = ϕ−2, then(
1

2π

ˆ π

−π

1

g

)
−
(

1

2π

ˆ π

−π
g

)−1

≤
(

1

2π

ˆ π

−π

ġ2

g3

)
,

and if f = ϕ2, we obtain(
1

2π

ˆ π

−π
f

)
−
(

1

2π

ˆ π

−π
f−1

)−1

≤

(
1

2π

ˆ π

−π

ḟ 2

f

)
.
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4.8 Functional version of the Blaschke-Santalo inequality

Below we present a functional version of the Blaschke-Santalo inequality. introduced by
Ball [10]. We shall see that it implies the usual (geometric) Blaschke-Santalo inequality;
our proof will also be based on the geometric version, following the work of Arstein-Avidan,
Klartag, Milman [5]. For simplicity, we focus on the symmetric version, but a non-symmetric
functional Blaschke-Santalo is available too [5]. We recommend also the proof by Lehec [129]
which did not rely on the geometric Blaschke-Santalo inequality.

Theorem 4.29 (Ball [10]; Arstein-Avidan, Klartag, Milman [5]; Lehec [129]). If ψ : Rn → R
is an even function such that

´
e−ψ <∞, thenˆ

e−ψ ·
ˆ
e−ψ

⋆ ≤
(
e−x

2/2
)2

= (2π)n.

Recall that given a function ψ, the function ψ∗ is the smallest of the functions φ which
satisfy for every x, y ∈ Rn the inequality ψ(x) + φ(y) ≥ ⟨x, y⟩. Therefore, we get:

Corollary 4.30. Suppose that f, g : Rn → R are such that f(x) · g(y) ≤ e−⟨x,y⟩, then´
f ·

´
g ≤ (2π)n.

Proof of theorem 4.29. For any constant c, we have (ψ+ c)⋆ = ψ⋆− c, and so we can assume
that ψ ≥ 0. Moreover, we assume that ψ(0) = 0 which implies that ψ⋆(0) = 0 and ψ⋆ ≥ 0.

Furthermore, we can assume without loss of generality that ψ is convex. Indeed, otherwise
we can replace the left hand side with ψ∗∗ and it only increases.

We have ˆ
Rn
e−ψ dx =

ˆ ∞

0

|{e−ψ > t}| dt

=

ˆ ∞

0

e−s|{ψ < s}| ds,

where the first equality follows by the Fubini theorem, the second equality applies the change
of variable t = e−s. Similarly, we obtainˆ

Rn
e−ψ

⋆

dx =

ˆ ∞

0

e−s|{ψ⋆ < s}| ds.

We make the following claim.

Claim 4.31. For any s, t ≥ 0,

{ψ⋆ < t} ⊂ (s+ t) · {ψ < s}◦.

Proof. Consider x ∈ {ψ < s} and y ∈ {ψ⋆ < t} and note that it suffices to show that
⟨x, y⟩ ≤ (s+ t). By the property of the Legendre transform, we know that

⟨x, y⟩ ≤ ψ(x) + ψ⋆(y) ≤ s+ t.
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Consider the following three functions on R+:

• f(s) = e−s · |{ψ < s}|

• g(t) = e−t · |{ψ⋆ < t}|

• h(x) = |Bn
2 | · 2n/2 · e−x · xn/2

We will apply the Prekopa-Leindler inequality on these functions. First, we claim that

h

(
s+ t

2

)
≥
√
f(s) · g(t).

Indeed, we can write

h2
(
s+ t

2

)
= |Bn

2 |2 · 2n · e−(s+t)) ·
(
s+ t

2

)n
= |Bn

2 |2 · e−s · e−t · (s+ t)n .

We have,

f(s) · g(t) = e−s · |{ψ < s}| · e−t · |{ψ⋆ < t}|
≤ e−s · |{ψ < s}| · e−t · (s+ t)n · |{ψ < s}◦|

≤ e−s · e−t · (s+ t)n · |Bn
2 |2 = h2

(
s+ t

2

)
,

where the first inequality uses Claim 4.31, and the second inequality uses the Blaschke-
Santalo inequality. Thus, the three functions satisfy the conditions of the Prekopa-Leindler
inequality, and we get

ˆ
e−ψ ·

ˆ
e−ψ

⋆

=

ˆ
e−s|ψ < s| ·

ˆ
e−t|ψ⋆ < t| ≤

(ˆ
e−x · xn/2

)2

· 2n · |Bn
2 |2 = (2π)n.

Remark 4.32. Setting ψ(x) =
||x||2K

2
and ψ⋆(x) =

||x||2
K◦
2

, and integrating in polar coordinates
recovers the usual Blaschke-Santalo inequality (see home work).

Remark 4.33. The equality case occurs if and only if ψ(x) = |x|2
2
, as was shown in [5].

We also mention the following theorem (see HW).

Theorem 4.34 (Fradelizi-Meyer [67]). Consider even functions f, g : Rn → R such that for
all x, y,∈ Rn, f(x) · g(y) ≤ ρ(⟨x, y⟩) whenever ⟨x, y⟩ ≥ 0. Then,(ˆ

f

)
·
(ˆ

g

)
≤
(ˆ

ρ
(
|x|2
))2

.

This holds for any ρ : R+ → R+.
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4.9 Linearizing Theorem 4.29.

Take ψ = |x|2
2

+ ϵf for some function f . Then, we have

ˆ
e
−
(

|x|2
2

+ϵf

)
·
ˆ
e
−
(

|x|2
2

+ϵf

)⋆
≤ (2π)n.

Recall that

v⋆t = vt − tv̇t(∇vt)−
t2

2
v̈t(∇vt) +

t2

2
⟨(∇2vt)

−1∇[v̇t|∇vt ],∇[v̇t|∇v∗t (x)]⟩.

Then (
|x|2

2
+ ϵf

)⋆
=
|x|2

2
− ϵf +

ϵ2

2
|∇f |2 + o(ϵ2),

since ∇v0 = x and ∇2v0 = Id. So, we have (up to the terms of order o(ϵ2)):ˆ
e−

|x|2
2

−ϵf ·
ˆ
e−

|x|2
2

+ϵf− ϵ2

2
|∇f |2 ≤ (2π)n.

Using e−δ = 1− δ + δ2

2
(up to lower order terms), we get

(2π)n ≥
(ˆ

e−
|x|2
2 ·
(

1− ϵf +
ϵ2

2
f 2

))
·
(ˆ

e−
|x|2
2 ·
(

1− ϵf +
ϵ2

2
|∇f |2 − ϵ2f 2

2

))
+ o(ϵ2).

Dividing both sides by (2π)n gives

1 ≥
(ˆ (

1− ϵf +
ϵ2

2
f 2

)
dγ

)
·
(ˆ (

1− ϵf +
ϵ2

2
|∇f |2 − ϵ2f 2

2

)
dγ

)
+ o(ϵ2).

where dγ is the Gaussian measure. We note that the constant terms cancel out, and so do
the terms which are multiplied by ϵ. Collecting the terms multiplied by ϵ2 gives the following
inequality:

Theorem 4.35. For all even functions f , we have
ˆ
Rn
f 2 dγ −

(ˆ
Rn
f dγ

)2

≤ 1

2

ˆ
Rn
|∇f |2 dγ.

Remark 4.36. Note the improved the constant as compared to the Gaussian Poincare’s
inequality which we obtained from Theorem 3.66.

Remark 4.37. We note that using the non-symmetric version of the Blaschke-Santalo in-
equality, it suffices to assume

´
∇f dγ = 0, as integrating by parts, we obtainˆ

∂f

∂xi
dγ =

ˆ
⟨∇f,∇xi⟩ dγ = −

ˆ
f · Lγxi dγ =

ˆ
f · xi dγ.

So,
´
∇f dγ = 0 is equivalent to showing that for all linear functions ⟨x, θ⟩, we have´

f ·⟨x, θ⟩ dγ = 0. This implies that the second eigenvalue of the Ornstein–Uhlenbeck operator
is 2.
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Remark 4.38. The same result could be obtained using methods of Fourier Analysis and
the decomposition into Hermite polynomials.

Recall that the Brascamp-Lieb inequality allowed us to restrict the Gaussian Poincare’s

inequality to any convex set K; that is,
´
K
f 2 dγ

γ(K)
−
(´

K
f dγ
γ(K)

)2
≤
´
K
|∇f |2 dγ

γ(K)
. Can we

also do this for Theorem 4.35?

4.10 A brief excursion into mass transport

Below we present a brief (one leg here one leg there!) excursion into mass transport. For a
more detailed (but still brief) introduction we recommend Klartag [105]. Another insightful
survey was done by Ball [11]. See also books by Villani [170], Figalli, Glaudo [64] and
Bogachev, Kolesnikov, Shaposhnikov [28].

Definition 4.39. Let µ, ν be Borel finite probability measures on Rn. We say that a map
T : supp(µ) → Rn transports µ into ν, denoted T⋆µ = ν if for all A ⊂ Rn (measurable), we
have

ν(A) = µ(T−1(A)),

or equivalently, for all ϕ ∈ L1(ν),
ˆ
Rn
ϕ dν =

ˆ
Rn
ϕ ◦ T dµ.

We consider some examples.

Example 4.40. Consider a discrete measure µ such that µ =
∑

i λiδxi. Suppose T is any
bijection from Rn → Rn, and ν =

∑
i λiδTxi = T⋆µ. In other words, fully atomic measures

can be transported into other fully atomic measures via bijections. See the picture below.
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Example 4.41. Let γ be the Gaussian measure on R, and let Φ be the corresponding cu-
mulative distribution function; that is, Φ(t) =

´ t
−∞

1√
2π
e−s

2/2 ds. Then, Φ⋆γ = Unif[0, 1]. To

see this, consider [x, y] ⊂ [0, 1]. We have

|[x, y]| = y − x =

ˆ Φ−1(y)

Φ−1(x)

Φ′(t) dt =

ˆ Φ−1(y)

Φ−1(x)

dγ,

which verifies the claim.

Remark 4.42. Suppose T⋆µ = ν, and Tx = (T1x, . . . , Tnx). If the map T has a Jacobian,

where Jac(T ) =
(
∂Tix
∂xj

)
i,j

then, by change of variables, we have
´
ϕ dν =

´
ϕ ◦ TJac(T ) dν.

Combined with
´
Rn ϕ dν =

´
Rn ϕ ◦ T dµ we get, Jac(T ) dν = dµ.

Definition 4.43 (Optimal Transport). A map T̂ : µ→ ν such that T̂⋆µ = ν is called optimal
with respect to quadratic cost if for all T such that T⋆µ = ν:

ˆ
Rn
|T̂ x− x|2 dµ ≤

ˆ
Rn
|Tx− x|2 dµ.

Theorem 4.44 (Brenier). Suppose µ, ν are absolutely continuous Borel measures and T⋆µ =
ν. Then T is optimal with respect to quadratic cost if, and only if, there exists a convex
function F : Rn → R ∪ {∞}, F <∞ a.e. on supp(µ) such that T = ∇F .

By a standard compactness argument, we get

Corollary 4.45. Suppose µ and ν are Borell finite absolutely continuous probability mea-
sures.

There exists a convex function F : Rn → R such that ∇F⋆µ → ν for all absolutely
continuous probability measures (this is unique upto constant addition).

Remark 4.46. We know that Jac(∇F ) = ∇2F (if F ∈ C2(Rn)). Then, for any probability
measure µ, dν = det(∇2F ) dµ, and ∇F⋆µ = ν.

We consider some examples.

Example 4.47. Suppose that we want to transport the Lesbesgue measure into the following
measure: dν = (δe1 + δ−e1) where δx(y) = ∞ if y = x, and is 0 otherwise. What is the
optimal way to transport all the points in space into the two points e1 and −e1? It is easy
to observe that, given any point x, we transport its measure to the “closer” point. We want
f(x) = g(Tx), so it suffices to set

Tx =

{
e1 if x1 > 0,

−e1 if x1 ≤ 0
.
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Observe that Tx = ∇F (x) where F (x) = |⟨x, e1⟩|. The pictures above and below are (c) Ball.

Note that this examples is not in the setting of the aforementioned theorem since the
measures considered are not finite.

Example 4.48. More generally, if we want to transport the Lesbesgue measure into a mea-
sure with density which is the sum of some points, say

∑
i δθi. Then, one can check that

T⋆λ =
∑

i δθi with Tx = ∇F (x) for F = max(⟨x, θi⟩). Here λ denotes the Lesbesgue mea-
sure.

We now consider a discrete version of the easy direction of Brenier’s theorem.

Lemma 4.49. Suppose we have points x1, . . . , xN , y1, . . . , yN ∈ Rn. Furthermore, suppose
there exists a convex function F : Rn → R such that, ∇F (xi) = yi for all i ∈ [N ]. Then, for
any permutation σ on N elements,

N∑
i=1

|xi − yσ(i)|2 ≥
N∑
i=1

|xi − yi|2.

Proof. Since F is convex, we have F (y)− F (x) ≥ ⟨∇F (x), y − x⟩.
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By summing up this inequality over pairs (xi, xσ(i))i∈[N ], we get

N∑
i=1

⟨∇F (xi), xσ(i) − xi⟩ ≤
N∑
i=1

(F (xσ(i))− F (xi)) = 0

where the final equality follows from the fact that σ is a permutation of x1, . . . , xN . So, we
get

N∑
i=1

⟨∇F (xi), xσ(i)⟩ ≤
N∑
i=1

⟨∇F (xi), xi⟩,

which implies
∑N

i=1 |F (xi) − xi|2 ≤
∑N

i=1 |F (xi) − xσ(i)|2, where we once again used the
commutativity of addition.

Lastly, we state the following important result by Cafarelli [41] (see also Kolesnikov [111]):

Theorem 4.50 (Cafarelli’s contraction theorem). Let γ be the Gaussian measure, and let
µ be a “strongly log-concave” measure; that is, dµ = e−v dx such that ∇2v ≥ Id. In other
words,

(
dµ
dx

)
/
(
dγ
dx

)
is log-concave. Then the Brenier map T : T⋆γ = µ is 1-Lipschitz; that is,

for all x, y ∈ Rn, |Tx− Ty| ≤ |x− y|.

Remark 4.51. Recall that when K is a convex set, the restriction of the Gaussian measure
onto K, given by dγK = IK ·dγ · 1

γ(K)
, is strongly log-concave. By Theorem 4.50, the Brenier

map between γ and γK is a contraction.

4.11 Restricting the symmetric Gaussian Poincaré inequality onto
a symmetric convex set

Using Theorem 4.35 (the corollary of the Blaschke-Santalo inequality) and Cafarelli’s con-
traction theorem, we prove the following result.
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Theorem 4.52. For any symmetric convex set K ⊂ Rn, and any even function f : K → R,
we have ˆ

K

f 2 dγ

γ(K)
−
(ˆ

K

f
dγ

γ(K)

)2

≤ 1

2

ˆ
K

|∇f |2 dγ

γ(K)
(11)

Proof. Let dγK = 1
γ(K)
· IK dγ be the restriction of the Gaussian measure on K. Consider

the Brenier map T : T⋆γ = γK , which by Theorem 4.50 is a contraction. Consider the L.H.S.
of (11), and using the definition of mass transport, we have

ˆ
K

f 2 dγ

γ(K)
−
(ˆ

K

f
dγ

γ(K)

)2

=

ˆ
Rn

(f ◦ T )2 dγ −
(ˆ

Rn
f ◦ Tdγ

)2

.

Additionally, by the Lipschitz property, we haveˆ
Rn
|∇ (f ◦ T ) |2dγ ≤

ˆ
Rn
|∇ (f) ◦ T |2dγ =

ˆ
K

|∇f |2 dγ

γ(K)
.

Applying Theorem 4.35, we get

1

2

ˆ
Rn
|∇ (f ◦ T ) |2dγ ≥

ˆ
Rn

(f ◦ T )2 dγ −
(ˆ

Rn
f ◦ Tdγ

)2

,

which on combining with the prior two (in)equalities completes the proof. Note that we
could apply Theorem 4.35 because f ◦ T is an even function, which follows since f is even
(by assumption), and T is even as its a Brenier map from γ → γK for symmetric K.

Remark 4.53. In fact, Klartag [96] used Cafarelli’s theorem to deduce the following exten-
sion of the Blaschke-Santalóınequality: for any even log-concave measure µ and any even
function ψ on Rn one has

ˆ
e−ψdµ ·

ˆ
e−ψ

∗
dµ

(ˆ
e−

x2

2 dµ

)2

.

Specializing to dµ = 1K(x)dx and using the computation similar to the one in subsection 4.9
one gets from this Theorems 4.52 and thus 4.56.

4.12 The B-conjecture

Conjecture 4.54 (B-conjecture). Let µ be an even log-concave measure on Rn and K a
symmetric convex set. Then µ(etK) is log-concave in t ∈ R, i.e.

µ(
√
abK) ≥

√
µ(aK)µ(bK) ∀a, b ≥ 0.

Remark 4.55. By Prekopa-Leindler, we know that, for any convex set K,

µ

(
a+ b

2
K

)
≥
√
µ(aK)µ(bK).

Note that, by the AM-GM inequality, this is weaker than the B-conjecture.
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4.13 The B-theorem for the Gaussian measure due to Cordero-
Erasquin, Fradelizi, Maurey

In the case of the standard Gaussian measure, the Conjecture 4.54 was verified:

Theorem 4.56 (B-theorem, Cordero-Erasquin, Fradelizi, Maurey [50]). Let γ be the stan-
dard Gaussian measure and K a symmetric convex set. Then γ(etK) is log-concave in t ∈ R.
Proof of theorem 4.56. It is enough to show

d2

dt2
log γ(etK)

∣∣
t=0
≤ 0.

Let us introduce the auxiliary function

F (s) :=
√

2π
n
γ(sK) =

ˆ
sK

e−
x2

2 dx =

ˆ
K

sne−
(sy)2

2 dy, s ≥ 0.

We have

F ′(s) = nsn−1

ˆ
K

e−
(sy)2

2 dγ − sn+1

ˆ
K

y2e−
(sy)2

2 dγ

and therefore

F ′(1) =
√

2π
n
(
nγ(K)−

ˆ
K

y2dγ
)
.

Further differentiating yields

F ′′(1) =
√

2π
n
(
n(n− 1)γ(K)− n

ˆ
K

y2dγ + (n+ 1)

ˆ
K

y2dγ +

ˆ
y4dγ

)
=
√

2π
n
γ(K)

(
n2 − n− (2n+ 1)

 
K

y2dγ +

 
K

y4dγ
)

We use this to calculate

d2

dt2
log γ(etK)

∣∣
t=0

=
d2

dt2
F (et)

∣∣
t=0

=
d

dt

etF ′(et)

F (et)

∣∣
t=0

=
(etF ′(et) + e2tF ′′(et))F (et)− e2tF ′(et)

F (et)2
∣∣
t=0

=
F ′(1)F (1) + F ′′(1)F (1)− F ′(1)2

F (1)2
.

Denoting EY 2 =
ffl
K
y2dγ and EY 4 =

ffl
K
Y 2dγ, we continue

= n− EY 2 + n(n− 1)− (2n+ 1)EY 2 + EY 4 − (n− EY 2)2

= −2EY 2 + E(n− Y 2)2 − (E(n− Y 2))2

= −2EY 2 + E(Y 2)2 − (EY 2)2

= −2EY 2 + Var(Y 2)

= −2

 
K

y2dγ +

 
K

y4dγ −
( 

K

y2dγ
)2
.

(12)
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Recall that we proved for all symmetric convex K and locally-Lipschitz and even function f
 
K

f 2dγ −
( 

K

fdγ
)2
≤ 1

2

 
K

|∇f |2dγ (13)

If we apply this with f(y) := y2 and ∇f = 2y, we get

 
K

y4dγ −
( 

K

y2dγ
)2 ≤ 2

 
K

y2dγ

which together with eq. (12) implies that d2

dt2
log γ(etK)

∣∣
t=0
≥ 0 which yields the claim.

Remark 4.57. In general, Cafarelli’s theorem is a universal tool in transporting Gaussian
inequalities to measures dµ = e−vdx with ∇2v ≥ Id (more generally ∇2v ≥ k · Id), including
γ∣∣K.

There are several applications of the B-theorem:

• Klartag, Vershynin [110]: to small-ball estimates (which we will discuss later in sub-
section ??).

• Bobkov [23]: Let T be any volume preserving linear transformation (i.e. | detT | = 1)
and K a symmetric convex body with |K| = 1. Then maxT

´
TK

dγ is attained for
T = Id if and only if

γ
∣∣
K

= e−
x2

2
2√

2π
n
γ(K)

1Kdx

is isotropic (recall that the measure is called isotropic when its barycenter is zero and
its covariance matrix is identity).

4.14 Some more history on the B-conjecture

The B-conjecture is known in the following cases:

• Gaussian (see theorem 4.56 by Cordero-Erasquin, Fradelizi, Maurey [50]);

• dµ = e−∥x∥1cndx (Eskenazis, Nayar, Tkocz [60]) – this result directly relies on the
Theorem 4.56;

• in dimension 2 (Livne Bar-On [132], Böröczky, Lutwak, Yang, Zhang [35] and Saraglou
[163])

• Rotation-invariant measures (Cordero-Erasquin, Rotem [54]) – we shall discuss this
result later in the semester;

• Unconditional case (Saraglou [164], Cordero-Erasquin, Fradelizi, Maurey [50]; see be-
low section 4.15).
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In fact, we state below a more general version of the B-conjecture, which is allegedly the
“Original conjecture” made by Banazchyk. One may see (home work) that the affirmative
answer to this implies Theorem 4.56.

Conjecture 4.58 (Banazchyk). Let K be a symmetric convex body and γ the standard
Gaussian measure. Then for any z ∈ Rn

γ(z + tK)

γ(tK)

is monotonic increasing for t > 0.

4.15 B-conjecture in the unconditional case

Definition 4.59. A set A ⊂ Rn is called unconditional if for all x = (x1, ..., xn) ∈ A the
point (ε1x1, ..., εnxn) ∈ A for any choice of signs εi ∈ {−1, 1}. In other words, A is invariant
under coordinate symmetries. A function is unconditional if

f(x) = f((ε1x1, ..., εnxn)), ∀x ∈ Rn, εi ∈ {−1, 1}.

Theorem 4.60 (Multiplicative Prekopa on Rn
+). Let f, g, h : Rn

+ → R, where

Rn
+ := {x : xi ≥ 0 ∀i}

such that √
f(x)g(y) ≤ h(

√
x1, y1, ...,

√
xnyn).

Then, ˆ
Rn+
f

ˆ
Rn+
g ≤

(ˆ
Rn+
h
)2
.
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Proof. The proof is done by a change of variables in Prekopa-Leindler inequality. Given f ,
consider F : Rn → R,

F (x1, ..., xn) := f(ex1 , ..., exn)e
∑n
i=1 xi

and define G and H analogously. The assumption is then equivalent to

H

(
x+ y

2

)
≥ F (x)1/2G(y)1/2, ∀x, y ∈ Rn.

Furthermore, we have ˆ
Rn+
f =

ˆ
Rn
F

and the analogous statement for G and F . Now, Prekopa-Leindler inequality Theorem 3.20
implies the conclusion.

Corollary 4.61 (Cordero-Erasquin, Fradelizi, Maurey). Let µ be a log-concave unconditional
measure and K a convex unconditional set. Then, µ(etK) is log-concave in t ∈ R.

Proof. For a set A in Rn denote by A+ = A ∩ Rn
+. Consider f = 1(aK)+e

−v, g = 1(bK)+e
−v

and h = 1(
√
abK)+e

−v, where dµ = e−vdx. Checking the conditions of theorem 4.60 yields√
µ(aK)µ(bK) ≤ µ(

√
abK). See home work for the details and the case λ ̸= 1/2.

4.16 About Log-Brunn-Minkowski conjecture

Definition 4.62 (Log-addition). Let K,L be symmetric convex sets. We define

K +0 L

2
:=

⋂
u∈Sn−1

{x ∈ Rn : ⟨x, u⟩ ≤
√
hk(x)hL(x)},

where hK and hL are the support functions of K and L, respectively.

83



Note that we can write the usual Minkowski sum as

K + L

2
:=

⋂
u∈Sn−1

{
x ∈ Rn : ⟨x, u⟩ ≤ hk(x) + hL(x)

2

}
.

Therefore, by AM-GM, we have

K +0 L

2
⊂ K + L

2
. (14)

Therefore, the following conjecture is a strengthening of the Brunn-Minkowski inequality
in the case of symmetric convex bodies:

Conjecture 4.63 (Böröczky, Lutwak, Young, Zhang 2013 [35]). Let K,L be symmetric and
convex sets. Then ∣∣∣∣K +0 L

2

∣∣∣∣ ≥√|K||L|.
It turns out, the validity of this inequality for Lebesgue measure is equivalent to the

validity of the same statement for any given even log-concave measure:

Theorem 4.64 (Saraglou [163]). Equation (14) is equivalent to the following: For all log-
concave even measures µ on Rn and all symmetric convex sets K,L, it holds

µ

(
K +0 L

2

)
≥
√
µ(K)µ(L). (15)

Proof. For “ =⇒ ”, use Prekopa-Leindler inequality (homework). For “ ⇐= ”: any log-
concave measure behaves like the Lebesgue measure near the origin.

We conclude that the Log-Brunn-Minkowski conjecture 4.63 implies the B-conjecture
conjecture 4.54. Indeed, for any log-concave even measure eq. (15) holds. We set K ← aK
and L← bK and have aK+0bK

2
≥
√
abK Therefore, the validity of Conjecture 4.63 implies

µ(
√
abK) ≥

√
µ(aK)µ(bK).

In R2, Böröczky, Lutwak, Young, Zhang 2013 [35] showed that Log-Brunn-Minkowski is true,
and therefore the B-conjecture conjecture 4.54 is known to be true on the plane.

Let us get back to the Blaschke-Santaló inequality (see theorems 4.1 and 4.29).

4.17 Reverse Log-Sobolev inequality

Recall the notation

Ent(f) =

ˆ
Rn
f log fdx.

In this subsection we shall discuss another nice corollary of the Blaschke-Santaló inequality:
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Theorem 4.65 (Artstein-Avidan, Klartag, Schutt, Werner [6]). Let v : Rn → R be a convex
even function with

´
e−vdx = 1 (i.e. dµ := e−vdx is a probability measure). Then

−
ˆ
vdµ = Ent(e−v) ≥

ˆ
log
√

det∇2vdµ− n log
√

2πe. (16)

Remark 4.66. Equality holds if and only if v(x) = x2

2
+ n log

√
2π. Equation (16) is also

equivalent to

Ent(e−v)− Ent

(
1√
2π
e−

x2

2

)
≥
ˆ

log
√

det∇2vdµ.

Indeed, we have ˆ
x2

2
+ n log

√
2πdγ =

n

2
+ n log

√
2π,

where we used det(Id) = 1 and

ˆ
x2dγ =

n∑
i=1

ˆ
Rn
x2i dγ =

n∑
i=1

ˆ ∞

−∞
t2dγ(t) = n.

Remark 4.67. Recall the generalized Log-Sobolev inequality (cf. theorem 3.45):

Ent(e−v) ≤
ˆ
G∗(∇v)dµ− n,

whenever
´
e−v =

´
e−G = 1. In the Gaussian case,

G∗ =
x2

2
− n log

√
2π,

we get

Ent(e−v) ≤
ˆ
|∇v|2

2
dµ− n log(

√
2πe) =

1

2

ˆ
∆(v − x2

2
)− n log(

√
2πe).

For the last inequality, recall Lu = ∆u − ⟨∇v,∇u⟩. Then for all functions u, we have´
Ludµ = 0. In particular,

´
Lvdµ = 0, soˆ

∆vdµ =

ˆ
|∇v|2dµ.

We have

1

2

ˆ
log det(∇2v)dµ ≤ Ent(e−v) + n log

√
2πe ≤ 1

2

ˆ
∆(v − x2

2
)dµ.

If dµ = dγ, the inequalities become 0 ≤ 0 ≤ 0. Note that both inequalities are sharp in the
Gaussian case. In total, it is all about measuring the distance to the Gaussian. The second
inequality can be made even stronger (homework):

Ent(e−v) ≤ n

2
log

´
∆vdµ

n
− n log

√
2πe.
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Proof of theorem 4.65. Without loss of generality, let v ∈ C2(Rn), v ̸= ∞ and V strictly
convex. By Blaschke-Santaló, since

´
e−v = 1, we have

ˆ
ev

∗
=

ˆ
e−v

ˆ
ev

∗ ≤ (2π)n

A change of variables with x = ∇v(y) yields
ˆ
e−v

∗(∇v(y)) det∇2v(y)dy ≤ (2π)n.

Since v∗(∇v) = ⟨∇v, y⟩ − v(y), we get
ˆ
e−⟨∇v,y⟩+v(y) det∇2v(y)dy ≤ (2π)n,

Recall Jensen’s inequality (Theorem 2.3), which states that for any convex function F
and probability measure µ, we have

F

(ˆ
fdµ

)
≤
ˆ
F (f)dµ.

We take the convex F = et, and further write

(2π)n ≥
ˆ
e−⟨∇v,y⟩+v(y) det∇2v(y)dy =

ˆ
e−⟨∇v,y⟩+2v(y) det∇2v(y)dµ

≥ exp

(ˆ
−⟨∇v, y⟩+ 2v(y) + log det∇2v(y)dµ

)
.

This implies

n log(2π) ≥
ˆ
−⟨∇v, y⟩+ 2v(y) + log det∇2v(y)dµ.

We claim that
´
−⟨∇v, y⟩dµ = n. Indeed,

´
Ludµ = 0 for all u. Taking u := x2

2
we calculate

L
x2

2
= ∆

x2

2
− ⟨∇x

2

2
,∇v⟩ = n− ⟨x,∇v⟩.

With the claim, we get

n log(2πe) ≥
ˆ

2v + log det∇2vdµ,

which finishes the proof.

Remark 4.68 (On the Reverse Log-Sobolev Inequality). In the proof of Theorem 4.65 we
assumed that v ∈ C2(Rn). However the inequality holds for a more general class of v by
approximation and a direct proof was outlined in a paper of Caglar, Fradelizi, Gozlan, Lehec,
Schutt, Werner [43], leading to the equality case characterization.
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Remark 4.69 (Entropy Power Inequality). Let X be a random vector whose density with
respect to lebesgue measure is f . Define the entropy function h : Rn → R as

h(X) := −
ˆ
f log(f) dx = −Ent(f).

Let X, Y be random vectors and let X ′, Y ′ be independent Gaussian random vectors that
satisfy h(X) = h(X ′), h(Y ) = h(Y ′). Then the entropy function satisfies

h(X + Y ) ≥ h(X ′ + Y ′).

Since the equality cases of the Log-Sobolev inequality and Reverse Log-Sobolev inequality are
achieved by gaussians, one can ask if the Log-Sobolev inequality combined with the Reverse
Log-Sobolev are sufficient to imply the Entropy Power Inequality. If so, it would give an
interesting connection to information theory.

Remark 4.70. Suppose F,G are 2-homogeneous convex functions on Rn (i.e. F (tx) =
t2F (x)). An ODE exercise (home work) tells you that

F (tx) = t2F (x) ⇐⇒ 2F (x) = ⟨∇F (x), x⟩.

From Proposition 7.6 we know that the Legendre transform satisfies F (x) + F ∗(∇F ) =
⟨∇F, x⟩. Therefore by the previous equivalence we get

F ∗(∇F ) = F.

This leads to the following claim (see home work):

ˆ
e−

F+G
2 det

(
∇2(F ) +∇2(G)

2

)
≥

√ˆ
e−F det(∇2F )

ˆ
e−G det(∇2G).

This inequality follows from applying the Prekopa Leindler inequality and verifying the Prekopa
Leindler condition, which involves the same trick we used to prove that

´
e−F

∗
is log-concave.

4.18 Fathi’s symmetrized Transport-Entropy Inequality

Let µ, ν be probability measures so that µ is absolutely continuous with respect to ν, and
write dµ = fdν where f is the density of µ with respect to ν. We write

Entdν(µ) =

ˆ
f log f dν.

Remark 4.71. Take dµ = e−vdγ = e−v−x
2/2−n log(

√
2π)dx. Suppose

´
dµ = 1. Then we have

Entγ(µ) =

ˆ
−ve−v dγ,

Entdx(µ) =

ˆ
−(v + x2/2 + n log(

√
2π))e−v dγ,

= Entγ(µ)− 1

2

ˆ
x2

2
dµ− n log(

√
2π).
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Remark 4.72. For any measure µ we have Entµ(µ) =
´

1 log(1) dµ = 0. In this way one
can think of Entν(µ) as measuring the distance between ν and µ (known as the entropy
distance).

Definition 4.73. Suppose ν and µ are absolutely continuous Borel finite measures. Recall
that T∗µ = ν (T transports µ into ν) if

∀Lip φ,

ˆ
φ(x) dµ(x) =

ˆ
φ(Tx) dν(x).

We define the Wasserstein 2-distance between ν and µ as

W2(µ, ν) = inf
T :T∗µ=ν

√ˆ
|x− Tx|2 dµ.

By Brenier’s theorem 4.44, if µ and ν are Borel finite absolutely continuous measures, the
infimum is attained when T = ∇F for some convex function F .

Remark 4.74. In general one can define a “coupling” between measures µ and ν, both on
Rn, to be a measure π on Rn × Rn such that the marginals of π are µ and ν:

dπ(x, y) = F (x, y)dxdy.

where dµ = f dx, d ν = g dy and
´
F (x, y) dx = g(y),

´
F (x, y) dy = f(x).

In particular one can formulate the definition of Wasserstein distance as

W2(µ, ν) = inf
π- coupling of µ,ν

√ˆ
R2n

|x− y|2 dπ(x, y).

When µ and ν are absolutely continuous then W2 is attained on the coupling “supported” on
the surface {Tx = y}, with T being the Brenier map.
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Finally, we formulate the main result of this subsection, which we will derive as a corollary
of the Blaschke-Santaló inequality.

Theorem 4.75 (Fathi [63]). Consider a pair of even probability measures µ, ν. Then

W2(µ, ν)2 ≤ 2 Entγ(µ) + 2 Entγ(ν).

Remark 4.76. In fact, instead of assuming that both measures are even, it suffices to assume
that one of the measures is mean zero.

Fathi’s Theorem yields as a Corollary the following important fact (which was historically
proven much earlier and via different means):

Corollary 4.77 (Talagrand [166]).

W2(µ, γ)2 ≤ 2 Entγ(µ).

Remark 4.78. Since W2 is a metric, we have by the triangle inequality that the result of
Talagrand implies the result of Fathi with an additional multiplicative factor of 2. This
improved factor will play crucial role for applications to the concentration of measure, for
instance.

As an immediate application of the Talagrand inequality and the Log-Sobolev inequality,
we get:

Corollary 4.79 (Talgrand + Gaussian Log-Sobolev). For dµ = e−(v+x2/2+n log(
√
2π))dx =

e−vdγ one has

W2(µ, γ)2 ≤
ˆ
|∇v − x|2.

In order to prove Fathi’s result, we shall need a few Lemmas. First, we point out

Lemma 4.80. Fathi’s theorem is equivalent to the fact that

ˆ
π-coupling of µ,ν

ˆ
−⟨x, y⟩ dπ(x, y) ≤ Entdx(µ) + Entdx(ν) + n log(2π).

Proof. This follows right away from the definition of Wasserstein distance and Remark 4.71.

Without loss of generality we will assume that ν, µ are Borel finite absolutely continu-
ous measures with bounded densities. We outline the following variational formula for the
entropy (see also e.g. Artstein-Avidan, Giannopolous, Milman [4]):

Lemma 4.81.

Entdx(µ) = sup
f

(ˆ
f dµ− log

ˆ
ef dx

)
.
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Proof. Write dµ(x) =
´
g(x) dx with |g| ≤ C (follows from g being a bounded density).

Next consider the class of functions F for which ef ≤ C for all f ∈ F . Then

sup
f∈F

(ˆ
f dµ− log

ˆ
ef dx

)
.

is bounded from above and so by compactness the supremum is obtained by some f ∈ F .
Suppose now fo is a maximizer. Then fo is a local maximizer in the following sense: Define
fε = f0 + εφ and define

F (ε) =

ˆ
(fo + εφ)g dx− log

ˆ
efo+εφ dx.

Then F satisfies
F ′(0) = 0, F ′′(0) ≤ 0.

We now determine f0. By differentiating with respect to ε we get

F ′(ε) =

ˆ
φg dx−

´
efoφeεφ´
geεφ

.

Setting ε = 0 we get

F ′(0) =

ˆ
φg dx−

ˆ
φefo for reasonable φ.

Now take φz to be a sufficiently nice function who support is essentially the point z.
By the definition of F ′(0) we conclude that a local maximizer must satisfy g = efo at z.
By varying z over Rn we conclude that g = efo almost everwhere. Thus fo = log g almost
everywhere. This means f0 = log g is a local maximizer. To show that it’s a global maximizer
one needs to argue that F ′′(0) ≤ 0. But by the choice of fo we can show that

F ′′(0) = −
ˆ
gφ2 +

(ˆ
gφ

)2

= −Varµ(ϕ) ≤ 0.

This solves the case where f is bounded. Observe now that without loss of generality we
can assume that f is bounded since we can always approximate f by a bounded function
and then appeal to the bounded case. The result follows.

Lemma 4.82.ˆ
π

ˆ
−⟨x, y⟩ dπ(x, y) = sup

f,g:f(x)+g(y)≤−⟨x,y⟩

(ˆ
f dµ+

ˆ
g dν

)
.

Proof. This is an application of the Kantorovich duality theorem. Suppose µ, ν are absolutely
continuous finite. Then from the definition of a coupling one can writeˆ

f(x) dµ(x) +

ˆ
g(y) dν(y) =

ˆ ˆ
(f(x) + g(y)) dπ(x, y).
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This immediately gives LHS ≤ RHS of the desired inequality since the supremum is over
all f, g satisfying f(x)+g(y) ≤ −⟨x, y⟩. To get LHS ≥ RHS we first define φ = −f, ψ = −g.
Then the RHS becomes

− inf
φ(x)+ψ(y)≥⟨x,y⟩

ˆ ˆ
φ(x) + ψ(y)dπ(x, y).

By the definition of the legendre transform this is at least

− inf
φ

ˆ ˆ
φ(x) + φ∗(y)dπ(x, y).

Taking the difference of the above and the LHS we see

RHS − LHS ≥ inf
φ

inf
π

ˆ ˆ
−φ(x)− φ∗(y) + ⟨x, y⟩ dπ(x, y).

It remains to recall by Brenier’s theorem that there exists a function ϕ for which y =
∇ϕ(x) on the entire support of T . Using the identity φ(x)+φ∗(∇φ) = ⟨x,∇φ⟩, we conclude
that the above is non-negative, and the lemma follows.

Proof of Theorem 4.75. Recall that the functional version of Blaschke-Santalo says that if φ
is an even function then

ˆ
e−φ

ˆ
e−φ

∗ ≤ (2π)n,

and equivalently, for all non-negative even functions f, g satisfying f(x) + g(y) ≥ ⟨x, y⟩
for all x, y ∈ Rn one has

ˆ
e−f

ˆ
e−g ≤ (2π)n.

To prove Theorem 4.75 we will use Lemma 4.80, Lemma 4.81, Lemma 4.82 and the
equivalent version of Blaschke-Santalo Inequality. To that end recall that, by Lemma 4.80,
Theorem 4.75 is equivalent to

ˆ
π-coupling of µ,ν

ˆ
−⟨x, y⟩ dπ(x, y) ≤ Entdx(µ) + Entdx(ν) + n log(2π).

To prove this inequality we apply Lemma 4.81 to the left hand side to get

Entdx(µ) + Entdx(ν) + n log(2π)

= sup
f,g

(ˆ
f dµ− log

ˆ
ef dx+

ˆ
g dν − log

ˆ
eg dx+ n log 2π

)
≥ sup

f,g:f(x)+g(y)≤−⟨x,y⟩∀x,y

(ˆ
f dµ− log

ˆ
ef dx+

ˆ
g dν − log

ˆ
eg dx+ n log 2π

)
.
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Then we apply Blaschke-Santalo inequality to get

sup
f,g:f(x)+g(y)≤−⟨x,y⟩∀x,y

(ˆ
f dµ− log

ˆ
ef dx+

ˆ
g dν − log

ˆ
eg dx+ n log 2π

)
≥ sup

f,g:f(x)+g(y)≤−⟨x,y⟩∀x,y

(ˆ
f dµ+

ˆ
g dν

)
.

Thus

sup
f,g:f(x)+g(y)≤−⟨x,y⟩∀x,y

(ˆ
f dµ+

ˆ
g dν

)
≤ Entdx(µ) + Entdx(ν) + n log(2π)

Finally by Lemma 4.82 this is equivalent to

ˆ
π-coupling of µ,ν

ˆ
−⟨x, y⟩ dπ(x, y) ≤ Entdx(µ) + Entdx(ν) + n log(2π).

Remark 4.83. We note that Fathi’s inequality not only follows from, but is equivalent to
the Blaschke Santalo Inequality (Home work)

4.19 Home work

Question 4.84 (1 point). Let P be a polytope given by

P = {x ∈ Rn : ⟨x, ui⟩ ≤ ai, ∀i = 1, ..., N},

for some unit vectors u1, ..., uN and positive numbers a1, ..., aN , and suppose that P is bounded.
Show that

P o = ¯conv

{
u1
a1
, ...,

uN
aN

}
.

Conclude that (Bn
1 )o = Bn

∞.

Question 4.85 (1 point). In this question, K and L stand for convex bodies in Rn with
non-empty interior, containing the origin.

a) Prove that Koo = K.
b) Prove that for a linear operator T : Rn → Rn with detT ̸= 0,

(T tK)o = T−1Ko.

Conclude that a polar of an ellipsoid is an ellipsoid.
c) Prove that

(Bn
p )o = Bn

q ,
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where 1
p

+ 1
q

= 1, for all p, q > 1.

d) Prove that
(K ∩ L)o = conv(Ko ∪ Lo).

e) Prove that for every subspace H of Rn

(K|H)o ∩H = Ko ∩H.

f) Prove that if K ⊂ L, one has Lo ⊂ Ko.
g) Prove that if K is symmetric then Ko is symmetric.
h) Show that for any (possibly non-convex) set A, we have Ao = (conv(A))o. Conclude

that the polar is always a convex set.

Question 4.86 (1 point). Let K be a symmetric convex body. Show that if K = Ko then
K = Bn

2 .

Question 4.87 (1 point). Show that for any symmetric convex body K, we have hK(θ)ρKo(θ) =
1 for all θ ∈ Rn.

Question 4.88 (3 points). Verify Mahler’s conjecture in R2 for symmetric polygons: show
that for any symmetric polygon P in R2,

|P | · |P o| ≥ 8.

Question 4.89 (1 point). Given a Borel measurable set A in Rn, a function α : A→ R and
a vector v ∈ Rn \ 0, consider the shadow system

Kt = conv{x+ α(x)v : x ∈ A},

and define the convex body

K̃ = conv{x+ tα(x)en+1} ⊂ Rn+1.

Show that for u ∈ e⊥n+1,
hKt(u) = hK̃(u+ t⟨u, v⟩en+1).

Question 4.90 (2 points). Prove the Blaschke-Santalo inequality using shadow systems.
Hint 1. Express |Ko

t | combining the formulas from Questions 2.26, 4.87 and 4.89.
Hint 2. pass the integration on Sn−1 to the integration on Bn−1

2 = {x ∈ Rn : ⟨x, v⟩ = 0} with
the map x = θ − ⟨θ, v⟩v.
Hint 3: now extend the integration to Rn−1.
Hint 4. Conclude that |Ko

t | is −1-concave in t for any shadow system, using Question 3.103.
Hint 5. Notice that Steiner symmetrization can be realized as a shadow system, and, using
the fact that |Ko| = |K̄o| for any reflection K̄ of K, and the −1−concavity of |Ko

t | along any
shadow system, conclude that Steiner symmetrization increases |Ko|. Conclude the Blaschke-
Santalo inequality.
(this proof was discovered by Campi and Gronchi).
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Question 4.91 (1 point). a) For any φ : R→ R̄ one has φ∗ is a convex function.
b) If φ is convex then φ∗∗ = φ.
c) If f ≥ g then f ∗ ≤ g∗.
d) Find |x1|∗.
e) Find (

∥x∥qp
q

)∗.

f) For a convex body K, one has (− log 1K)∗ = hK .
g) For an a ∈ R, find (aφ)∗ in terms of φ∗.
h) Letting φa(x) = φ(ax) for some a ∈ R, find φ∗

a.
i) Show that (φ+ a)∗ = φ∗ − a, for any a ∈ R.
j) Show that

(f ∗ + g∗)∗(z) = inf
x,y∈Rn:x+y=z

(f(x) + g(y)) .

k) Fix α > 1. Show that is f is α−homogeneous (i.e. f(tx) = tαf(x) for all t ∈ R) then
f ∗(∇f) = (α− 1)f .
Hint: use one of the properties we proved in class, combined with the fact that for an
α−homogeneous function one has ⟨∇f, x⟩ = αf (verify this).

Question 4.92 (1 point). Find an alternative short proof of the functional Blaschke-Santalo
inequality for unconditional functions by passing the integration from Rn to the set

{x ∈ Rn : ∀i = 1, ..., n, xi ≥ 0},

and making a change of variables in the Prekopa-Leindler inequality given by (x1, ..., xn) =
(et1 , ..., etn). (see also a similar Question 3.104).

Question 4.93 (1 point). Show that the Santaló point of a convex body exists and is unique.

Question 4.94 (4 points). Find a statement and a proof for the Blaschke-Santalo inequality
and the functional Blaschke-Santalo inequality for non-symmetric convex sets and non-even
functions (as per our discussion in class).

Question 4.95 (3 points). a) Note that the Blaschke-Santalo inequality on the plane is
equivalent to showing that for any even periodic function h ∈ C2([−π, π]), such that h ≥ 0
and h+ ḧ ≥ 0,

F (h) =

ˆ π

−π
h−2dt ·

ˆ π

−π
h2 − ḣ2dt ≤ 4π2.

(or equivalently, one may drop the even assumption and restrict to [0, π]).
Hint: use Questions 4.87 and 2.26 to conclude that

|Ko| = 1

2

ˆ π

−π
h−2dt.

Also use Question 3.117.
b) Observe that the equality is attained when h is the support function of an ellipse.
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c) Find some way to show that this inequality is true.

Option 1: maybe use basic Harmonic Analysis (I don’t know if it is possible and would
love to see it if it works)?

Option 2: maybe use variational approach? That is, suppose that a given function h
maximizes the functional F (h), argue* that it suffices to assume that h ∈ C1([−π, π]) and h >
0 and h+ ḣ > 0, then argue that for any ϵ > 0 and any even smooth ψ > 0, d

dϵ
F (h+ ϵψ) = 0,

and conclude some ODE that h must satisfy (in view of the arbitrarity of ψ). Then conclude
that the support function of an ellipsoid is the only type of function that satisfies this ODE.

* This “argue” may not be easy and you are encouraged to pursue other steps in this hint
even if this step is not clear at first.

Option 3: try whatever you like! :)

Question 4.96 (1 point). Let K be a smooth convex body with II > 0. For x ∈ ∂K let
x∗ ∈ ∂K∗ be given by x∗ = ∇∥x∥K . Show that the Gauss curvature at x of ∂K is inverse to
the Gauss curvature at x∗ of Ko.
Hint: use the properties of Legendre transform of hK(x).

Question 4.97 (5 points). a) Find an example of a non-symmetric convex body for which
the Santaló point and the center of mass do not coincide.
b) How far could they be?
c) For a convex body K in Rn, let d(K) be the distance between the center of mass and the

Santaló point. How large could d(K)
diam(K)

be?

Question 4.98 (1 point). Let H be a Hanner polytope (as defined inductively in class).
Show that indeed

|H||Ho| = 4n

n!
.

Question 4.99 (2 points, Saint-Raimond’s theorem via Meyer’s proof). Prove the (symmet-
ric) Mahler conjecture in the case when the body K is unconditional (that is, it is symmetric
with respect to every coordinate hyperplane).
Hint 1: Note that the result is true in dimension 1 and proceed by induction.
Hint 2: Consider K+ = {x ∈ K : xi ≥ 0 ∀i = 1, ..., n}. Given a point x ∈ K+ consider n
cones

Ki = conv{x,K+ ∩ e⊥i }.

Note that

|K| ≥ 2n
n∑
i=1

|Ki|,

recall Question 1.20 and write the above out to deduce that the vector with coordinates

(...,
2|K∩e⊥i |
n|K| , ...) belongs to Ko (use the unconditionality in the process).

Hint 3: Do the same argument for Ko, and then use properties of polarity along with the
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fact that K ∩ e⊥i = K|e⊥i (which is another place where the fact that K is unconditional is
used!!!), to conclude that

|K||Ko| ≥ 4

n2

n∑
i=1

|K ∩ e⊥i | · |(K ∩ e⊥i )o|,

and use induction.

Question 4.100 (5 points). Iryeh and Shibata’s proof of Mahler’s conjecture in R3 followed
the same idea as in Question 4.99, and hinged on the fact that it is possible to bring a
symmetric convex body in R3 into a position where it is possible to split it into 8 parts
with coordinate hyperplanes so that each part has the same volume, and each of the three
coordinate hyperplane sections of K is split into four equal parts, and also each projection of
K onto coordinate hyperplane coincides with a section.
a) verify that this fact ensures the validity of Mahler conjecture (in the same way as above);
b) prove this challenging fact.

Question 4.101 (3 points). Verify the non-symmetric Mahler conjecture in dimension 2.

Question 4.102 (3 points). Using the ideas from Question 4.99, prove the result of Barthe,
Fradelizi: if a convex body K in Rn has all the symmetries of the regular simplex then it
verifies the non-symmetric Mahler conjecture, that is, |K||Ko| ≥ |Sn|2 where Sn is the self-
dual regular simplex.

Question 4.103 (10 points). Is it possible to use the ideas from Question 4.102 to prove the
non-symmetric Mahler conjecture in R3, that is, to show that for any convex body K in R3

one has |K||Ko| ≥ |S3|2 where S3 is the self-dual regular simplex? Maybe one could prove the
appropriate non-symmetric version of the fact proved by Iryeh and Shibata about bringing K
into a certain position?

Question 4.104 (2 points). Prove the following result of Fradelizi and Meyer: Mahler’s
conjecture is equivalent to the following functional version. For any convex function φ on
Rn one has ˆ

e−φ ·
ˆ
e−φ

∗ ≥ 4n.

Question 4.105 (2 points). Prove the following result of Fradelizi and Meyer which extends
the functional Blaschke-Santalo: let ρ : [0,∞)→ [0,∞) be a measurable function and suppose
f and g are even log-concave functions such that f(x)g(y) ≤ ρ2(⟨x, y⟩) whenever ⟨x, y⟩ ≥ 0.
Then ˆ

f ·
ˆ
g ≤

(ˆ
ρ(|x|2)

)2

.

Question 4.106 (5 points). We saw in class that the p−Beckner inequality on the circle for
periodic functions

1

2π

ˆ π

−π
f 2 −

(
1

2π

ˆ π

−π
fp
) 2

p

≤ (2− p) 1

2π

ˆ π

−π
ḟ 2
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holds not only for p ∈ [1, 2) but also for p = −2. By any chance, is it possible to argue
that there is a range of negative p for which this holds (rather than just one value p = −2)?
Maybe argue similarly to Question 3.127?

Question 4.107 (2 points). Show that Talagrand’s transport-entropy inequality implies the
Gaussian Poincare inequality.
Hint: linearize.

Question 4.108 (10 points). Try and make some progress on the question we discussed in
class: for any even log-concave measure µ and any symmetric convex body K one has

µ(K)µ(Ko) ≤ µ(Bn
2 )2.

Maybe you can find a proof in some partial case – for some class of measures, for uncondi-
tional measures/bodies, in dimension 2, etc?

Question 4.109 (1 point). Prove the symmetric Gaussian Poincare inequality

V arγ(f) ≤ 1

2
Eγ|∇f |2

for all even locally-Lipschitz functions f on Rn by using the decomposition into Hermite
polynomials (rather than by linearizing Blaschke-Santalo inequality like we did in class).

Question 4.110 (1 point). Show that the Blaschke-Santalo inequality and Fathi’s inequality
are in fact equivalent (in class we only deduced the latter from the former).

Question 4.111 (2 points). Prove the result of Saraglou.
a) See the lecture notes for the definition of the log-addition. Show that the Log-Brunn-
Minkowski inequality for Lebesgue measure∣∣∣∣K +0 L

2

∣∣∣∣ ≥√|K| · |L|
(for any symmetric convex bodies K and L in Rn) implies the Log-Brunn-Minkowski inequal-
ity for any even log-concave measure µ on Rn with full support:

µ

(
K +0 L

2

)
≥
√
µ(K)µ(L)

(for any symmetric convex bodies K and L in Rn). Conclude that the Log-Brunn-Minkowski
conjecture implies the B-conjecture.
Hint: use the Prekopa-Leindler inequality.

b) Show the converse implication.
Hint: consider the situation near the origin and use the scale-invariance of the inequality in
the Lebesgue case.
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Question 4.112 (2 points). Confirm that the validity of the B-conjecture for all rotation-
invariant log-concave measures is equivalent to the fact that for any even log-concave measure
µ,

µ(RBn
2 )µ

(
1

R
Bn

2

)
≤ µ(Bn

2 )2.

(recall that this corresponds to a very partial case and a sanity check in the Conjecture from
Question 4.108.)

Question 4.113 (2 points). Show Klartag’s theorem generalizing the functional Brunn-
Minkowski inequality: for any even log-concave measure µ,

ˆ
e−ϕdµ ·

ˆ
e−ϕ

∗
dµ ≤

(ˆ
e−

x2

2 dµ

)2

.

Hint: use Cafarelli’s contraction theorem.

Question 4.114 (10 points). Attempt to make any progress on the “original B-conjecture”:
let z ∈ Rn and let K be a symmetric convex set in Rn. Then the function

γ(tK + z)

γ(tK)

is non-decreasing in t ≥ 1. Here γ is the standard Gaussian measure.

Question 4.115 (2 points). Show that the B-theorem of Cordero-Erasquin, Fradelizi and
Maurey would follow from the confirmation of the conjecture from Question 4.114.

Hint: write the conclusion in terms of a non-negative derivative at t = 1; then note that
the arising inequality implies that certain function which depends on z ∈ Rn is increasing
along each ray, and therefore it is convex at the point z = 0. Consider the Laplacian in z.

Question 4.116 (2 points). Prove the result of Bobkov: the following are equivalent:

• For a symmetric convex body K of volume 1, the measure with the density

1√
2π

n
γ(K)

e−
x2

2 1K(x)dx

is isotropic.

• For a symmetric convex body K of volume 1 and for any volume-preserving linear
transformation T on Rn, γ(K) ≥ γ(TK).

Hint: use the B-theorem.

Question 4.117 (3 points). Prove the improved Log-Sobolev inequality: for any convex
function V on Rn such that

´
e−V = 1,

−
ˆ
V e−V ≤ n

2
log

´
∆V e−V

n
− n log

√
2πe.
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Question 4.118 (10 points). Is it possible to deduce from the Reverse Log-Sobolev inequality
and/or the (generalized) Log-Sobolev inequality the following corollary of the Entropy Power
Inequality?

Let X and Y be any two centered random vectors in Rn and X ′ and Y ′ are independent
centered Gaussians (whose covariance matrices are scalar), such that h(X) = h(X ′) and
h(Y ) = h(Y ′). Then

h(X + Y ) ≥ h(X ′ + Y ′),

where

h(X) = −
ˆ
f log f,

where f is the density according to which X is distributed.

Question 4.119 (2 points). Find Fathi’s original proof for his inequality, which relies on the
Reverse Log-Sobolev inequality (which we discussed) as well as the following fact (following
from works of Cordero-Erasquin, Klartag and Santambrogio).

Let µ be a centered probability measure whose support has non-empty interior. Then
there exists an essentially continuous convex function φ, unique up to translations, such that
ρ = e−φdx is a probability measure on Rn whose push-forward by the map ∇φ is µ. Moreover,
it satisfies

ρ = argmin

{
−1

2
W2(µ, ν)2 + Entγ(ν)

}
.

Clarification: do not aim to prove this fact, only aim for the implication of Fathi’s theorem
from this fact combined with the Reverse Log-Sobolev.

Question 4.120 (1 point). Suppose u, v on Rn are 2-homogeneous convex functions. Prove
that ˆ

e−
u+v
2 det

(
∇2u+∇2v

2

)
≥

√ˆ
e−udet(∇2u) ·

ˆ
e−vdet(∇2v).

Hint: use the fact that for a 2-homogeneous function, 2u = ⟨∇u, x⟩ and the change of
variables that we used when proving the Reverse Log-Sobolev inequality, together with the
Prekopa-Leindler inequality.

Question 4.121 (1 point). Prove the conclusion of Question 4.108 under the assumption
that both K and µ are unconditional.

5 Concentration of Measure Phenomenon: the soft ap-

proach

We shall now use all the acquired knowledge in order to study concentration of measure
phenomenon stemming from convexity. Often times we will be happy with approximate
estimates. The phenomena we shall encounter will often grow out of the Brunn-Minkowski
inequality (and its many consequences which we learned).
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5.1 Introduction to the basic concepts related to concentration of
measure

Let µ be a measure on a metric space (X, d). For every point x ∈ X, and subset A ⊆ X we
define the distance between x and A as

dist(A, x) := inf
y∈A

d(x, y).

We define the thickening of A by t as

At := {x ∈ X : d(x,A) < t}.

We will study lower bounds for the quantity

inf
A : µ(A)≥α

µ(At \ A).

A related question is the isoperimetry. Define, as before,

µ+(∂A) = lim inf
ϵ→0

µ(A+ ϵBn
2 )− µ(A)

ϵ
.

What are the lower bounds for the quantity

inf
A : µ(A)≥α

µ+(∂A)?

A complete answer to the first question gives an answer to the second question. In many
instances an answer to the second question can give the complete answer to the first question.

Example 5.1 (Concentration of Measure on the Sphere). Let σ denote the Haar measure
over the sphere Sn−1 (the uniform probability distribution on Sn−1). Take d to be the metric
on the sphere defined by d(x, y) := ∠(x, y) for all x, y ∈ Sn−1. Then

σ(At) ≥ 1−
√
π

8
e−t

2/2 ∀A ⊆ Sn−1, σ(A) ≥ 1/2.
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Example 5.2 (Concentration of Measure on in Gauss space). Let γ denote the n dimensional
Gaussian measure. Then taking d to be euclidean metric, we get

γ(A) ≥ 1− 1

2
e−t

2/2 ∀A ⊆ Rn, γ(A) ≥ 1/2.

Example 5.3 (Concentration of Measure on the Hamming Cube). Let Q = {−1, 1}n denote
the hamming cube. Define d to be the hamming distance on Q:

d(x, y) :=
1

n
·#{i : xi ̸= yi}.

We define µ to be the normalized counting measure on Q (i.e. µ(A) := 2−n|A|). Then

µ(A) ≥ 1− 1

2
e−2t2/n ∀A ⊆ Q, µ(A) ≥ 1/2.

We now state and prove a soft version of the concentration of measure theorem on the
sphere:

Theorem 5.4 (non-sharp concentration on Sn−1). Let A ⊆ Sn−1 satisfy σ(A) = 1/2. Let
t ∈ [0, π/2]. Then the following inequality is true:

σ(At) ≥ 1− c1e−c2t
2n.

where c1, c2 are absolute constants.

The proof of 5.4 will require the following lemma.

Lemma 5.5. Let µ be a Borel measure on Bn
2 defined by µ(A) = |A|/|Bn

2 |, where | · | denotes
volume. Let A,B be disjoint Borel measurable sets and define

ρ(A,B) := inf{|a− b| : a ∈ A, b ∈ B} =: ρ ≥ 0.

Fix an α > 0. Then whenever µ(A) ≥ α and µ(B) ≥ α, we have:

α ≤ e−ρ
2n/8.

In other words, if two sets on the sphere are far away, then at least one of them must
have a small measure.

Proof. We first note that the Brunn-Minkowski inequality implies that

1

2
|A ∩Bn

2 |1/n +
1

2
|B ∩Bn

2 |1/n ≤
∣∣∣∣A+B

2
∩Bn

2

∣∣∣∣1/n
=⇒ µ

(
A+B

2

)
≥ α

2
+
α

2
= α.
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Next for every a ∈ A, b ∈ B we use the parallelogram rule, the definition of ρ, and the
fact that A and B are sets are on the sphere to get

|a+ b|2 = 2|a|2 + 2|b|2 − |a− b|2 ≤ 2|a|2 + 2|b|2 − ρ2 ≤ 4− ρ2.

Since this holds for every a ∈ A, b ∈ B we conclude that

A+B

2
⊆
√

1− ρ2

4
Bn

2 .

Hence

µ

(
A+B

2

)
≤ µ

(√
1− ρ2/4Bn

2

)
=
(
1− ρ2/4

)n/2 ≤ exp
(
−nρ2/8

)
.

We now prove the theorem.

Proof of Theorem 5.4. Recall that A ⊆ Sn−1 satisfies σ(A) = 1/2 and t ∈ [0, π/2]. Let
λ ∈ (0, 1) be a parameter that we’ll specify later. Let B = Sn−1 \At. We define the following
relevant sets

Ã = ∪{sA : s ∈ [λ, 1]}, B̃ = ∪{sB : s ∈ [λ, 1]}.

Observe that ρ(Ã, B̃) = 2s sin(t/2) (exercise). Furthermore 2s sin(t/2) ≥ 2st/π for t ≤ π.
Applying Lemma 5.5 to sets Ã, B̃ we get

min(µ(Ã), µ(B̃)) ≤ exp(−ρ2(Ã, B̃)n/8) = exp(−n(2st/π)2/8) = exp(−ns2t2/(2π2)).

Since σ(A) = 1/2 by assumption one has µ(Ã) = (1 − λn)σ(A) ≥ (1 − λn)/2. On the
other hand µ(B̃) = (1−λn)σ(B) ≤ (1−λn)/2. Therefore the minimum is achieved by µ(B̃).
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In particular Lemma 5.5 implies that

µ(B) ≤ 1

1− λn
e−λ

2t2n/(2π2).

Since B is the complement of At in Sn−1 the above inequality is equivalent to

1− σ(At) ≤
1

1− λn
e−λ

2t2n/(2π2).

Taking λ = 1/2 we conclude that

σ(At) ≥ 1− c1e−c2t
2n.

where c1 = 2, c2 = 1/(8π2).

Proposition 5.6. Let A be a non-empty Borel measurable set in Rn. Thenˆ
Rn
ed(x,A)

2/4dγ ≤ 1

γ(A)
.

Proof. We will prove this inequality via Prekopa-Leindler. To that end we define the follow-
ing functions:

φ(x) =
1

(
√

2π)n
e−∥x∥2/2

f(x) = exp(d(x,A)2/4) · φ(x)

g(x) = 1A(x) · φ(x)

h(x) = φ(x).

We now verify that h
(
x+y
2

)
≥
√
f(x)g(y) on Rn so as to apply Prekopa-Leindler. To do

this we will case on y. If y is not in A then g(y) = 0, hence:

h

(
x+ y

2

)
≥ 0 =

√
f(x)g(y)

If y ∈ A we first note that ∥x − y∥ ≥ d(x,A). Next by the parallelogram rule and the
inequality we just mentioned we have

d(x,A)2

4
− ∥x∥

2

2
− ∥y∥

2

2
≤ −∥x+ y∥2

4

Thus we have

f(x)g(y) = (2π)−ned(x,A)
2/4−∥x∥2/2−∥y∥2/2

≤ (2π)−ne−∥x+y∥2/4 = (
√

2π)−2ne−∥(x+y)/2∥2

=⇒
√
f(x)g(y) ≤ (

√
2π)−ne−

∥(x+y)/2∥2
2

= φ

(
x+ y

2

)
= h

(
x+ y

2

)
.
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Therefore for every choice of y the Prekopa-Leindler condition holds. Applying Prekopa-
Leindler to f, g, h we conclude that

1 =

ˆ
h dx

≥

√ˆ
f dx

√ˆ
g dx

=

√ˆ
ed(x,A)2/4 dγ

√
γ(A)

=⇒
ˆ
ed(x,A)

2/4 dγ ≤ 1

γ(A)
.

Theorem 5.7 (Gaussian concentration with weaker constraints). Let A be a Borel measur-
able set satisfying γ(A) ≥ 1/2. Then

γ(At) ≥ 1− 2e−t
2/4.

Proof. First we decompose the integral into two parts

ˆ
Rn
ed(x,A)

2/4 dγ =

ˆ
d(x,A)<t

ed(x,A)
2/4 dγ +

ˆ
d(x,A)≥t

ed(x,A)
2/4 dγ.

Since ed(x,A)
2/4 is non-negative we may lowerbound the first integral by 0. Since d(x,A) ≥

t on the domain of the second integral we may lowerbound the integrand of the second integral
by t. These two facts imply that

ˆ
Rn
ed(x,A)

2/4 dγ ≥ et
2/4γ({x : d(x,A) ≥ t}).

By 5.6 the left hand side of this inequality is at most 1/γ(A). Therefore

1

γ(A)
≥ et

2/4γ({x : d(x,A) ≥ t})

Since Act = {x : d(x,A) ≥ t} and γ(A) ≥ 1/2 we may rearrange the inequality to conclude

et
2/4γ(Act) ≤ 2 =⇒ γ(Act) ≤ 2e−t

2/4 =⇒ γ(At) ≥ 1− 2e−t
2/4.
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5.2 Levy’s concentration function and types of estimates

Recall that we consider a Borel subset A of a metric probability measure space (X, d, µ).
For t > 0, we have been studying

At = {x ∈ Rn : dist(x,A) ≤ t}.

We have been interested in obtaining estimates of the type µ(At) ≥ 1− g(t) where g(t)→ 0.
We now define a function that encodes the concentration phenomenon for a given metric
probability space.

Definition 5.8 (Levy’s Concentration Function). Given a metric measure space (X, d, µ)
where µ is a probability measure, we define αµ : R+ → R by

αµ(t) := sup

{
1− µ(At) : µ(A) ≥ 1

2

}
= 1− inf

µ(A)≥ 1
2

µ(At)

The concentration function is the best (i.e., smallest) function that satisfies µ(At) ≥
1− αµ(t) for all A ⊂ X with µ(A) ≥ 1

2
.

Claim 5.9 (Home work). For any metric probability space, αµ(t)
t→∞−−−→ 0.

Indeed, one may notice that as t→∞, one has µ(At)→ 1 and At → X.

There are two types of concentration phenomena that people especially care about:

Definition 5.10. A measure µ on (X, d, µ) has normal or sub-Gaussian concentration if
αµ(t) ≤ Ce−ct

2
(where c, C depend on X.)

For the Gaussian measure, we saw γ(At) ≥ 1 − c1e−c2t
2

for all Borel measurable sets A
satisfying γ(A) ≥ 1

2
, thus Gaussian measure satisfies the sub-Gaussian concentration. Same

is true about the Haar measure on the sphere and the uniform distribution on the Hamming
cube.

Definition 5.11. A measure µ on (X, d, µ) has exponential concentration if αµ(t) ≤ Ce−ct

(where c, C depend on X.)

Below we shall see many examples of both phenomena.
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5.3 Concentration of measure for Lipschitz functions

Recall that a function f : X → R is called p-Lipschitz if for all x, y ∈ X,

|f(x)− f(y)| ≤ pd(x, y).

Recall that if f : Rn → R, f ∈ C1(Rn), then f is p-Lipschitz if and only if |∇f | ≤ p.

Definition 5.12. Let f : (X, d, µ) → R be a function where µ is a probability measure.
Then, the median of f , denoted med(f), is the real number such that

µ({x ∈ X : f ≥ med(f)}) ≥ 1

2

and

µ({x ∈ X : f ≤ med(f)}) ≥ 1

2

The next classical result implies that when a metric measure space enjoys some con-
centration phenomenon, then one can say that Lipschitz functions on this space are almost
constant, in the appropriate sense.

Theorem 5.13. Let (X, d, µ) be a metric probability space, and f : X → R be a 1-Lipschitz
function. Then,

µ({x ∈ X : |f(x)−med(f)| > t}) ≤ 2αµ(t).

Proof. Let A := {x ∈ X : f(x) ≥ med(f)} and B := {x ∈ X : f(x) ≤ med(f)}. Consider
y ∈ At. Then, there exists x ∈ A such that d(x, y) ≤ t. We have

f(y) = f(y)− f(x) + f(x) ≥ −d(x, y) + f(x) ≥ −d(x, y) + med(f) ≥ −t+ med(f).

Similarly, for any y ∈ Bt, we have

f(y) ≤ d(x, y) + med(f) ≤ t+ med(f)

As a result,
{x ∈ X : |f(x)−med(f)| > t} ⊂ (At ∩Bt)

c = Act ∪Bc
t .

We know that µ(At) ≥ 1− αµ(t) and µ(Bt) ≥ 1− αµ(t). Therefore,

µ({x ∈ X : |f(x)−med(f)| > t}) ≤ µ(Act) + µ(Bc
t ) ≤ 2αµ(t).

This completes the proof.

Corollary 5.14. If f is L-Lipschitz, then

µ({x ∈ X : |f(x)−med(f)| ≥ t}) ≤ 2αµ

(
t

L

)
.
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Proof. Consider g = f/L.

Next, the following proposition establishes the converse of Theorem 5.13.

Proposition 5.15. Let (X, d, µ) be a metric probability space. For given t, if there exists
η > 0 such that

µ({x ∈ X : |f(x)−med(f)| > t}) ≤ η.

for all 1-Lipschitz functions f , then αµ(t) ≤ η.

That is, Theorem 5.13 is sharp up to a factor of 2.

Proof. Consider f(x) = d(x,A) for some Borel set A with µ(A) ≥ 1
2
. Then, f : X → R is

1-Lipschitz. We have

|f(x)− f(y)| = |d(x,A)− d(y, A)| ≤ d(x, y)

by the triangle inequality. By assumption,

µ({x ∈ X : |d(x,A)−med(f)| ≥ t}) ≤ η

We also have med(f) = med(d(·, A)) = 0. Taking supremum over all A with µ(A) ≥ 1
2
, we

get

αµ(t) = sup

{
1− µ(At) : µ(A) ≥ 1

2

}
≤ η

Corollary 5.16.

1. If f : Sn−1 → R is 1-Lipschitz, then for all t > 0, σ({|f −med(f)| ≥ t}) ≤ 2e−ct
2n.

2. If f : Rn → R is 1-Lipschitz, then for all t > 0, γ({|f −med(f)| ≥ t}) ≤ 2e−ct
2
.

Now, we shall consider estimates on deviation from the mean. More often than not, it is
easier to compute the mean, as compared to the median.

Theorem 5.17. Let f : Sn−1 → R be Lipschitz continuous with Lip(f) = b > 0. Then, for
all t > 0,

σ({|f(x)− Ef | ≥ bt}) ≤ 4e−ct
2n

Here, Ef =
´
Sn−1 f dσ and c is an absolute constant independent of n.

Proof. Without loss of generality, assume b = 1. Consider f̃ - an independent copy of f on
Sn−1. Consider the product space Sn−1 × Sn−1. We have

σ ⊗ σ({(x, y) ∈ Sn−1 × Sn−1 : |f(x)− f̃(y)| ≥ t}) ≤

σ

(
|f(x)−med(f)| ≥ t

2

)
+ σ

(
|f̃(y)−med(f)| ≥ t

2

)
≤ 4e−c1t

2n/4.
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Also,

Eσ⊗σeΛ
2|f−f̃ |2 = 2

ˆ ∞

0

Λ2teΛ
2t2σ ⊗ σ({|f(x)− f̃(y)| ≥ t}) dt

by the layer-cake formula. Therefore, by the inequality shown above,

Eσ⊗σeΛ
2|f−f̃ |2 ≤ 8Λ2

ˆ ∞

0

teΛ
2t2−c̃t2n dt

Choosing Λ appropriately, we see that

EσEσec3n|f−f̃ |
2

= Eσ⊗σec3n|f−f̃ |
2 ≤ 4

By Jensen’s inequality (Theorem 2.3) applied to one of the expectations,

Eσec3n|f−Ef |2 ≤ 4. (17)

Finally, by Markov’s inequality, we have

σ({x ∈ X : |f − Ef | ≥ t}) = σ
({
x ∈ X : ec3n|f−Ef |2 ≥ ec3nt

2
})

≤ e−c3nt
2Eσec3n|f−Ef |2

≤ 4e−c3nt
2

,

where in the last step we used (17). This finished the proof.

5.4 Log-Concave Measure, Borell’s Lemma and the Reverse Hölder
inequality

Lemma 5.18 (Borell’s Lemma). Let µ be a log-concave probability measure on Rn. Then,
for any symmetric convex set A ⊂ Rn with µ(A) = α ∈ [1

2
, 1), we have

µ(tA) ≥ 1− α
(

1− α
α

) t+1
2

= 1− e−ct

for all t > 1.

Proof. First of all, observe that 2
t+1

(tA)c + t−1
t+1
A ⊂ Ac. Indeed, let x ∈ (tA)c, y ∈ A. Then,

2x
t+1

+ (t−1)y
t+1

/∈ A since A is convex and symmetric.
As µ is log-concave,

1− µ(A) = µ(Ac) ≥ (1− µ(tA))
2
t+1µ(A)

t−1
t+1

so
1− α ≥ (1− µ(tA))

2
t+1α

t−1
t+1

which implies

1− µ(tA) ≤ α

(
1− α
α

) t+1
2
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Theorem 5.19 (Reverse Hölder’s Inequality for Semi-Norms of Log-Concave Measures).
Let µ be a non-degenerate log-concave probability measure on Rn. Consider a semi-norm
(convex, 1-homogeneous, even function) f : Rn → R. Then, for all q > p ≥ 1, we have(ˆ

|f |p dµ
)1/p

≤
(ˆ
|f |q dµ

)1/q

≤ cq

p

(ˆ
|f |p dµ

)1/p

where c > 0 is an absolute constant.

Proof. Note that the left inequality is a straightforward consequence of Hölder’s inequality.
The actual content of the Theorem is the right inequality, which we will now prove.

Consider A = {x ∈ Rn : |f(x)| ≤ 3∥f∥p} where ∥f∥p = (|f |p dµ)1/p. A is symmetric and
convex as f is a semi-norm. Note that

µ(A) = 1− µ({x ∈ X : |f(x)| > 3∥f∥p})
= 1− µ({x ∈ X : |f(x)|p > 3p∥f∥pp})
≥ 1− 3−p∥f∥−pp Eµ|f |p

= 1− 3−p

If µ(A) = α, then 1−α
α
≤ e−p/2 as α ≥ 1− 3−p.

Consider tA = {x : |f(x)| ≤ 3t∥f∥p}. We have µ(tA) ≥ 1 − e−c1pt for all t > 1 using
Borell’s lemma together with 1-homogeneity of f .

Fix ∞ > q ≥ p > 1. It is easy to see thatˆ
|f |q dµ =

ˆ ∞

0

qsq−1µ({x : |f(x)| ≥ s}) ds

Splitting the integral in two parts,
ˆ
|f |q dµ =

ˆ 3∥f∥p

0

qsq−1µ({|f | ≥ s}) ds+

ˆ ∞

3∥f∥p
qsq−1µ({|f | ≥ s}) ds

≤
ˆ 3∥f∥p

0

qsq−1 ds+ (3∥f∥p)q
ˆ ∞

1

qtq−1e−c1pt dt

= (3∥f∥p)q + q(3∥f∥p)q
ˆ ∞

1

tq−1e−c1pt dt

= cq∥f∥qp(1 + qq)

and the result follows. In the last step, we useˆ ∞

0

tq−1e−c1pt dt = (c1p)
q

ˆ ∞

0

tq−1e−t dt

= (c1p)
qΓ(q)

= (c1p)
qqqcq2
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Let us outline an application of the above theorem.

Claim 5.20. Let X be a log-concave, isotropic1 random vector. Then for all t ≥ 1,

P(|X| ≥ ct
√
n) ≤ e−c1t.

Proof. Using Chernoff’s trick, we have for Λ > 0,

P(|X| ≥ ct
√
n) = P(eΛ|X| ≥ ectΛ

√
n) ≤ e−ctΛ

√
nEeΛ|X|

Furthermore,

EeΛ|X| = E
∞∑
k=0

(Λ|X|)k

k!
=

∞∑
k=0

ΛkE|X|k

k!
≤

∞∑
k=0

Λk(ckE|X|)k

k!

where the last step follows from the preceding theorem applied to p = 1 and q = k.
We also have E|X| ≤

√
E|X|2. As X is isotropic, we have E|X|2 =

∑
E|Xi|2 = n.

Therefore, E|X| ≤
√
n. It follows that

EeΛ|X| ≤ c0

for an absolute constant c0, if Λ in the calculations above is chosen to be c1/
√
n for an

appropriate constant c1. Finally, we get the bound

P(|X| ≥ ct
√
n) ≤ e−ctΛ

√
nEeΛ|X| ≤ c0e

−c̃t.

5.5 Paouris’s inequality (statement)

In fact, the statement of the Claim 5.20 misses the correct inequality by a factor of
√
n :

Theorem 5.21 (Paouris [152]). Let X be a log-concave, isotropic random vector. Then, for
any t ≥ 1,

P(|X| ≥ ct
√
n) ≤ e−t

√
n

This result was further re-proved (and in some sense strengthened) by Guedon, E. Milman
[79].

1Recall that we say that a random vector X is isotropic if EX = 0 and for any θ ∈ Sn−1, E⟨x, θ⟩2 = 1.
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5.6 Sub-exponential concentration of linear functions for Log-Concave
measures, and of other semi-norms

In fact, one may repeat the argument of Claim 5.20 to show:

Claim 5.22. Let µ be a log-concave probability measure and X be a random vector such that
X ∼ µ. Let f be any semi-norm. Then for any t > 0,

P (f(X) ≥ Eµf(X) + t) ≤ Ce
− ct

Eµf(X) .

In the particular case when f(x) = |⟨x, θ⟩| (which is, in some sense, the simplest possible
semi-norm) one gets a result which is tight:

Corollary 5.23. Let µ be a log-concave probability measure and X be a random vector such
that X ∼ µ. Then, for all θ ∈ Sn−1,

µ({x : |⟨x, θ⟩| ≥ tEµ|⟨X, θ⟩|}) ≤ 2e−ct

for every t > 0.

Proof. We have

µ({|⟨X, θ⟩| ≥ tEµ|⟨X, θ⟩|}) = µ

({
e
c|⟨X,θ⟩|
Eµ|⟨X,θ⟩| ≥ ect

})
≤ Eµ

(
e
c|⟨X,θ⟩|
Eµ|⟨X,θ⟩|

)
e−ct

≤ c1e
−ct

where

Eµe♠|⟨X,θ⟩| = Eµ
∞∑
k=0

♠k|⟨X, θ⟩|k

k!
=

∞∑
k=0

♠k(Eµ|⟨X, θ⟩|)kkk

k!
≤ c1,

provided that ♠ is chosen to be of order (cEµ|⟨X, θ⟩|)−1.

One may check the tightness of the above result by considering for instance the measure
dµ = e−∥x∥1dx.

In fact, similar results could be obtained on the sphere, not just with respect to log-
concave measures on Rn : indeed, considering µ to be a rotation-invariant log-concave mea-
sure (say, the Gaussian), writing the integrals in polar coordinates, and using the Reverse
Hölder inequality, one gets:

Corollary 5.24 (Home work). Let f : Sn−1 → R be a semi-norm. Then,(ˆ
Sn−1

|f(θ)|q dσ(θ)

)1/q

≤ cq

p

√
n+ p

n+ q

(ˆ
Sn−1

|f(θ)|p dσ(θ)

)1/p

.

Therefore, one has sub-exponential concentration for norms on the sphere:

P (f(θ) ≥ Ef + t) ≤ Ce−
ct
Ef .

Here E stands for the expectation with respect to the Haar measure on the sphere.

111



5.7 The Thin Shell Conjecture and the KLS conjecture

Conjecture 5.25 (Antilla, Ball, Perissinaki [2]; Bobkov, Koldobsky [24]). Let X be a log-
concave, isotropic random vector (that is, EX = 0 and EXiXj = δij). Then

var(|X|) ≤ C.

Remark 5.26. Let T be a volume-preserving linear transformation and µ be a log-concave
measure with bar(µ) = 0. Define µT := T#µ. Then, for every such µ, there exists T such
that µT is isotropic. Also, if XT ∼ µT , then infT var(|XT |) is attained for the isotropic
position (the infimum is taken over all volume-preserving linear transformations.)

Remark 5.27. The thin shell conjecture implies the slicing Conjecture 4.16 of Bourgain, as
was shown by Eldan and Klartag [59].

Recall the Kannan-Lovász-Simonovits Conjecture [88] (1995) which was stated above
as Conjecture 4.19: for log-concave isotropic probability measures µ on Rn and all locally
Lipschitz functions f : Rn → R, we have

ˆ
f 2 dµ−

(ˆ
f dµ

)2

≤ C

ˆ
|∇f |2 dµ,

where C > 0 is an absolute constant.

Remark 5.28. The Kannan-Lovász-Simonovits Conjecture implies the Thin Shell Conjec-
ture. To see this, take f(x) = |x|. Then,

var(|x|) =

ˆ
|x|2 dµ−

(ˆ
|x| dµ

)2

≤ c

ˆ
1 dµ = c.

The current best bound for the KLS conjecture, as well the Thin Shell conjecture and
Bourgain’s sclicing problem is the following:

Theorem 5.29 (Klartag 2022 [103]). For a log-concave isotropic probability measure µ on
Rn and all locally Lipschitz functions f : Rn → R, we have

ˆ
f 2 dµ−

(ˆ
f dµ

)2

≤ C
√

log n

ˆ
|∇f |2 dµ,

where C is an absolute constant.

5.8 Klartag’s bound on the thin shell in the unconditional case

Below we shall outline a relatively uncomplicated proof, due to Klartag [101], of the Thin
Shell conjecture in the partial case when the measure is unconditional, that is, symmetric
with respect to all coordinate reflections. The reader is also referred to Klartag [99].
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Theorem 5.30 (Klartag 2008 [101]). If X is an unconditional log-concave isotropic random
vector on Rn, then var(|X|) ≤ C where C is a constant independent of the dimension.

Lemma 5.31. Let µ be a probability measure on Rn
+ := {x ∈ Rn : xi ≥ 0}. Consider

dµ = e−ψ dx - a log-concave, unconditional measure. Then, for any f ∈ W 1,2(Rn
+, µ), we

have varµ(f) ≤ 4
´
Rn+

∑n
i=1 x

2
i |∂if |2 dµ.

Proof. Consider a map π(x1, . . . , xn) = (x21, . . . , x
2
n). We note that ψ ◦ π is convex, as ψ is

convex and unconditional (see home work). Consider φ(x) := ψ(π(x)) −
∑n

i=1 log(2xi) and
the measure ν with density e−φ. Then π transports µ into ν, that is, for all appropriate f
we have: ˆ

f(π−1(x))e−ψ(x) dx =

ˆ
f(y)e−φ(y) dy.

Note that

∇2φ = ∇2(ψ ◦ π)−∇2

(
n∑
i=1

log(2xi)

)
≥ −∇2

(
n∑
i=1

log(2xi)

)
=


1
x21

0 · · · 0

0 1
x22
· · · 0

...
...

. . .
...

0 0 · · · 1
x2n


This gives

(∇2φ)−1 ≤


x21 0 · · · 0
0 x22 · · · 0
...

...
. . .

...
0 0 · · · x2n


By the Brascamp-Lieb inequality (Theorem 3.75]),

vare−φ(g) ≤
ˆ
Rn+
⟨(∇2φ)−1∇g,∇g⟩e−φ ≤

ˆ
Rn+

n∑
i=1

x2i |∂ig|2e−φ (18)

We have
vare−φ(g) = vare−ψ(f), (19)

where g = f ◦ π. Also,

ˆ
Rn+

n∑
i=1

x2i |∂ig|2e−φ =

ˆ
Rn+

n∑
i=1

x2i |∂if |2 e−ψ. (20)

Combining (18), (19) and (20) finishes the proof.

Proof of Theorem 5.30. We write

var(|X|) = E(|X| − E|X|)2 ≤ E(|X| −
√
n)2 = E

(X2 − n)2

(X +
√
n)2
≤

113



1

n
E(|X|2 − n)2 =

1

n
var(|X|2) ≤ 4

n

n∑
i=1

EX2
i (2Xi)

2 =
16

n

n∑
i=1

EX4
i ≤ c,

where for the last inequality we use EX4
i ≤ c(EX2

i )2 ≤ c (by the Reverse Hölder inequality),
while the second to last inequality follows from Lemma 5.31 applied with f(x) = |x|2 with
∂if = 2xi.

5.9 Exponential concentration via Poincare Inequality

Recall: Suppose µ is a probability measure on a metric space M = (X, d). µ is said to satisfy
the Poincare inequality with constant β if for any locally-Lipschitz function f one has

ˆ
f 2 dµ−

(ˆ
f dµ

)2
≤ β ·

ˆ
|∇f |2 dµ.

We have the following examples:

• Gaussian measure, β = 1;

• Gaussian measure, even functions (for which β = 1
2
);

• KLS conjecture / Klartag’s result: if µ is isotropic and log-concave then we can choose
β = c

√
log n;

• Payne-Weinberger Theorem 3.85: If µ is uniform on a convex set K then β ≤ diam (K)
π

;

• Other examples: µ uniform on the sphere, on the Hamming cube, etc (see the home
work);

• Fix k > 0. If µ is “more log-concave than the Gaussian”, that is dµ = e−v dx with
∇2v ≥ k · Id then one has β ≤ k−1 (as a corollary of the Brascamp-Lieb inequality
Theorem 3.75).

We shall see that establishing a Poincare inequality directly allows to establish a sub-
exponential concentration result (see also the presentation in [4]). Recall that

αµ(t) = sup
µ(A)≥ 1

2

(1− µ(At))

is the concentration function that governs how quickly sets accumulate measure.

Theorem 5.32 (Gromov-Milman [75]). Suppose (X, d, µ) is a metric probability space. Sup-
pose µ satisfies on X the Poincare inequality with constant β. Then

αµ(t) ≤ e
− t

3
√
β .

We immediately notice some corollaries.
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Corollary 5.33. If ∇2v ≥ k · Id, dµ = e−v dx on Rn then αµ(t) ≤ e−
√
kt
3 .

Corollary 5.34. If µ is isotropic log-concave then αµ(t) ≤ e
− ct

(logn)1/4 .

Remark 5.35. Note also that Payne-Weinberger one has that if µ is uniform over K then

αµ(t) ≤ e
− ct√

diam K .

Before we outline the proof, recall that earlier we related the bounds on concentration
function to the large deviation bounds on Lipschitz functions from its median. It turns out,
one could also express a bound in terms of large deviation from the mean.

Proposition 5.36 (Home Work). If for all Lipschitz functions f one has

µ

(
f ≥

ˆ
f dµ+ t

)
≤ α(t),

then one has the implication that for all Borell sets A ⊂ X with µ(A) > 0, for all t > 0 one
has

1− µ(At) ≤ α(µ(A)t).

In particular, αµ(t) ≤ α(t/2) for each t > 0.

Proof of Theorem 5.32. Consider f : X → R to be some bounded 1-Lipschitz function with
mean zero (note WLOG we can take this for all such functions, up to subtracting a constant,

and both functions are invariant under shift operations). Consider λ > 0 and gλ = e
λf
2 . One

has, by a Poincare inequality assumption, thatˆ
g2λ −

(ˆ
gλ dµ

)2
≤ β

ˆ
|∇gλ|2 dµ

holds for some β. We can compute ∇gλ = λ
2
∇feλf2 , so that the above is then

ˆ
eλf dµ−

( ˆ
e
λf
2 dµ

)2
≤ βλ2

4

ˆ
eλf |∇f |2 dµ.

By Lipschitz criterion, one has |∇f | ≤ 1 and hence the RHS is βλ2

4

´
eλf dµ. Set S(λ) =´

eλf dµ, then S(λ) − S(λ
2
)2 ≤ βλ2

4
S(λ). Equivalently, one has S(λ) ≤ 1

1−βλ2

4

· S(λ/2).

Iterating this with λ = 1
2
√
β
, we have

S(λ) ≤
n−1∏
k=0

( 1

1− 1
4k+1

)2k
· S2n(λ/2n).

We claim that
(
S(λ/2n)

)2n
→ 1 as n→∞, then S(λ) = 1−λEµf+O(λ2) = 1+O(λ2). Using

the estimate (1+cλ2/22n)2
n ≈ e−c2

−n
, which goes to 1 as n→∞, and using algebra/calculus

one has S(1/2
√
β) ≤

∏∞
k=0

(
1

1−4k+2

)2k
≤ 3.
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To proceed, we use the so-called Chernoff’s trick. We have

µ(f ≥ t) = µ(f ≥ Eµf + t = µ
(
e

f
2
√
β ≥ e

t
2
√
β

)
≤ S(1/2

√
β)e

− t
2
√
β ≤ 3e

− 5
2
√
β .

Recall that it’s enough to have Poincare for ec·d(x,A) in order for µ(At) ≥ 1 − e−c̃t, and for
this setting, this distance function d(x,A) is a Lipschitz function.

Remark 5.37. Examples of spaces that do not satisfy the Poincaré inequality are unions of
almost-disconnected convex domains connected by a thin neck; Poincare inequality worsens
as neck gets thinner. See the picture below (c) Klartg.

5.10 Marton’s argument: almost-optimal concentration for the
Gaussian via Fathi

Recall that Talagrand inequality says that

W2(µ, γ)2 ≤ 2Entγµ;

recall Fathi’s Theorem 4.75 which states that

W2(µ, ν)2 ≤ 2Entγµ+ 2Entγν.

In particular, it is enough to assume that either µ or ν is bary-centered, by the Blaschke-
Santaló inequality. As a corollary, we get the following:

Corollary 5.38 (Fathi). Suppose A is a Borel set in Rn with barycenter zero. Then

1− γ(Ar) ≤
1

γ(A)
e−r

2/2.

Here Ar, as usual, is the r-thickening of the set A.
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Proof. Consider dµ to be the restriction of the Gaussian measure to A, given by dµ =
1

γ(A)
1A dγ. Then we set dν = 1

1−γ(Ar)1A
c
r
dγ. Note that

Entγ(µ) =

ˆ
dµ

dγ
log

dµ

dγ
− 0 = − log γ(A)

and
Entγ(ν) = − log(1− γ(Ar)).

The Wasserstein distance between µ and ν satisfies

W2(µ, ν)2 = inf
π couplings

ˆ
|x− y|2 dµ(x, y) = inf

π

ˆ
{x∈A,y∈Acr}

|x− y|2 dµ(x, y)

≥ r2 inf
π

ˆ
{...}

dπ(x, y)

= r2.

By Fathi’s result (Theorem 4.75), we know that r2 ≤ −2 log γ(A)− 2 log(1− γ(Ar)), which
implies that e−r

2/2 ≥ γ(A)(1− γ(Ar)), finishing the proof.

Remark 5.39. Note that this is not an optimal bound, but it is a useful technique that
in general leads to other useful estimates. The type of argument is referred to as Marton’s
argument [142].

5.11 Concentration and Laplace Functional

We follow the presentation in [4]. Assume (X, d, µ) is a metric probability space, and set
λ ≥ 0. Define a function Eµ(λ) to be

Eµ(λ) := sup
{ˆ

eλf dµ | f : X → R is 1-Lipschitz,Eµf = 0
}
.

This is called the Laplace functional. One has the following relation between the Laplace
functional and concentration:

Proposition 5.40. Suppose (X, d, µ) is a metric probability space. Then for each t > 0, one
has

αµ(t) ≤ inf
λ≥0

(
e−λt/2Eµ(λ)

)
.

Proof. Let f be a 1-Lipschitz function, and set g = f − Eµf . One has
´
eλg dµ ≤ Eµ(λ) by

definition of the Laplace functional Eµ(λ). Therefore,
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µ(g ≥ t) = µ(eλg ≥ eλt)

≤
ˆ
eλg dµ · e−λt

≤ Eµ(λ) · e−λt.

Thus

µ
(

(f ≥ Eµf + t
)
≤ Eµ(λ)e−λt ∀λ ≥ 0,

and hence αµ(t) ≤ Eµ(t)e−λt/2. The result then follows after taking infimum.

In some particular cases, bounding the Laplace functional might lead to sub-Gaussian
concentration.

Corollary 5.41. If Eµ(λ) ≤ eC0λ2 then one has αµ(t) ≤ e−c1t
2
.

Proof. Indeed, infλ e
−λt/2+C0λ2 = einf{c0λ

2−λt/2} = e−c1t
2
.

For example, if the diameter of a space X is uniformly bounded by some D then Eµ(λ) ≤
ecD

2λ2 . As a corollary, we get an almost-optimal concentration on the Hamming cube. See
home work for more details.

5.12 The Herbst Argument

This classical argument due to Herbst [78] allows to obtain sub-Gaussian concentration via
the Log-Sobolev inequality.

Theorem 5.42 (Herbst). Let (X, d, µ) be a probability metric space such that for any locally-
Lipschitz functions one has the Log-Sobolev inequality with constant β > 0, that is,

Entµ(f 2) ≤ 2β

ˆ
|∇f |2 dµ.

Then for all t > 0, one has αµ(t) ≤ e−t
2/8β.

As an example, if dµ = e−v dx and ∇2v ≥ k · Id then β ≤ k−1. This follows from the
Gaussian log-Sobolev and Cafarelli’s Theorem (see home work). Therefore, we get

Corollary 5.43. Suppose dµ = e−v dx and ∇2v ≥ k · Id. Then for all Borel A ⊂ Rn with
µ(A) ≥ 1

2
we have

µ(At) ≥ 1− e−kt2/8 (∀t ≥ 0).
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Remark 5.44. Recall that log-Sobolev with constant β immediately implies Poincare with
constant β, because if Entµ(f 2) ≤ 2β

´
|∇f |2 dµ and one sets f = 1 + ϵg then one gets

Poincare’s inequality in the ϵ2 term (home work). Therefore, Herbst’s Theorem 5.12 assumes
more than Gromov-Milman [75], but the conclusion is stronger.

To prove this theorem, we need some machinery.

Definition 5.45 (log-moment generating function). Given f : X → R consider the function

ψ(λ) = logEµeλ(f−Eµf).

This function is called the log-moment generating function of f.

We have the following Lemma:

Lemma 5.46. Suppose for f : X → R one has

Entµ(eλf ) ≤ λ2σ2

2
Eµeλf .

Then ψ(λ) ≤ σ2λ2

2
.

Proof. One has

ψ(λ) = logEµeλf − λEµf +O(λ2)

so that then

d

dλ

ψ(λ)

λ
=

1

λ
· Eµ(feλf )

Eµ(eλf
− 1

λ2
logEµeλf

=
1

λ2
· Entµ(eλf )

Eµ(eλf )
.

Then by Newton-Leibniz one has

ψ(λ)

λ)
− lim

λ→0

ψ(λ)

λ)
=

ˆ λ

0

1

s2
Entµ(esf)

Eµ(esf )
ds

≤
ˆ λ

0

1

s2
σ2s2

2
ds

= λσ2/2.

One can check that limλ→0
ψ(λ)
λ

= 0, then

ψ(λ) ≤ λ2σ2

2
.
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When f = e−x
2/2(2π)−n/2, then ψ(λ) ≈ cλ2. This motivates the following definition:

Definition 5.47. A function f is said to be sub-Gaussian if for this f , ψ(λ) ≤ λ2σ2

2
(here

σ > 0 is the sub-Gaussian constant).

There is a relation between concentration and ψ∗(t) := supλ(tλ− ψ(λ)). Namely:

Lemma 5.48. Suppose f ∈ L1(µ). Then

µ(|f − Eµf | ≥ t) ≤ 2e−ψ
∗(t).

Proof. Recall that ψ(λ) = logEµeλf−λEµf . Then

µ
(
f − Eµf ≥ t

)
= µ

(
eλ(f−Eµf) ≥ eλt

)
≤ Eeλ(f−Eµf)e−λt

≤ e−(λt−ψ(λ).

The LHS does not depend on λ, so we can take infimum in λ to conclude that

µ
(
|f − Eµf | ≥ t

)
≤ inf

λ
e−(λt−ψ(λ))

= e− supλ(λt−ψ(λ))

= e−ψ
∗(t).

The lower tail of the absolute value can be computed similarly.

As a corollary of Lemma 5.48, we get

Corollary 5.49. For all sub-Gaussian f one has

µ
(
|f − Eµf | ≥ t

)
≤ 2e−t

2/2σ2

.

Proof of Herbst Theorem . As usual, in order to bound the concentration function αµ(t), we
bound µ(f − Eµf ≥ t) for all Lipschitz functions. Consider any Lipschitz function g, with
Lipschitz constant bounded by 1, and WLOG take Eµg = 0. As before, consider f = eλg/2.
One then has

∇f =
λ

2
∇geλg/2.

Under the assumption that µ satisfies the Log-Sobolev inequality, we conclude that

Entµ(f 2) ≤ 2β

ˆ
|∇f |2 dµ

=
λβ

2

ˆ
|∇g|2eλg dµ

≤ λ2β

2

ˆ
eλg dµ.
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By Lemma 5.46, we have that if Entµ(eλg) ≤ λ2β
2
Eµeλg, then ψ(λ) ≤ βλ2

2
, and hence ψ∗(t) ≥

t2

2β
. By Corollary 5.49, we show that

µ
(
g − Eµg ≥ t

)
≤ e−t

2/2β =: α(t).

It remains to recall (by Proposition 5.36) that αµ(t) ≤ α(t/2), and to conclude that
αµ(t) ≤ e−t

2/8β as desired.

5.13 Small ball estimates for norms on the sphere by Klartag and
Vershynin

Recall that for a non-negative random variable ξ, a “small-ball” type estimate is an inequality
similar to

P (ξ ≤ ϵ) ≤ δ(ϵ),

where ideally we would like δ(ϵ)→ 0, the faster the better.

More generally, for a random vector X in Rn and z ∈ Rn, one could try and get an upper
estimate for P (|X − z| ≤ ϵ) independent of z. This would mean that the random vector X
rarely falls into the small ball of radius ϵ centered at any given z (hence the name).

We learned from Corollary 5.24 that for any semi-norm f on Rn, one has sub-exponential
concentration on the sphere Sn−1:

P (f(θ) ≥ Ef + t) ≤ Ce−
ct
Ef .

Here the expectation is with respect to Haar measure on the sphere. One could of course
get the reverse bound as well:

P (f(θ) ≤ Ef − t) ≤ Ce−
ct
Ef .

However, the above inequality does not pack in a lot of information, since the bound on the
right is just of some constant order, potentially larger than 1.
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This begs a natural question: is there a general small-ball type estimate for norms on the
sphere? That is, could one get a bound of the type

P (f(θ) ≤ ϵEf) ≤ δ(ϵ),

when f is a (semi-)norm and θ is uniformly distributed on the sphere? This question was
answer by Klartag and Vershynin [110] (see also later works by Paouris, Tikhomirov, Valettas
[154]). In this subsection, we shall outline this result.

We start with the following standard notation introduced by Milman:

Definition 5.50. Consider a norm ∥ · ∥ on Rn. Let M > 0 be its average over the sphere,
so that

M =

ˆ
Sn−1

∥θ∥ dσ(θ) =: ESn−1∥θ∥.

Definition 5.51. One sets d(∥ · ∥) to be a “special dimension” defined by

d(∥ · ∥) = min

{
M,− log σ

(
∥θ∥ ≤ 1

2
M
)}

.

For example, for the Euclidean norm ∥ · ∥ = | · | one may see that d = n. As a general
rule, one has d(∥ · ∥)→∞ as n→∞ for various reasonable norms (see [110]).

We are ready to state the main Theorem of this subsection:

Theorem 5.52 (Klartag-Vershynin [110]). For any norm ∥ · ∥ one has

σ
(
θ ∈ Sn−1 : ∥θ∥ ≤ ϵM

)
≤ (cϵ)c·d(∥·∥)

for all ϵ ∈ (0, 1). In particular, one can bound from below the negative moment of a norm:(ˆ
Sn−1

∥θ∥−ℓ dσ(θ)
)1/ℓ
≥ cM (∀ℓ ∈ [0, c · d(∥ · ∥)]).

Remark 5.53. Note that by Hölder’s inequality one has( ˆ
Sn−1

∥θ∥−ℓ dσ(θ)
)1/ℓ
≤M,

and therefore the inequality in the Theorem above is nearly optimal.

The following Lemma is needed for the proof of this Theorem:

Lemma 5.54. Suppose K is a centrally-symmetric convex body. We can then compare the
spherical measure of K with the Gaussian measure of K via the inequality

1

2
σ(Sn−1 ∩ 1

2
K) ≤ γ(

√
nK) ≤ σ(Sn−1 ∩ 2K) + e−cn,

where c is some absolute constant.
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Proof. There are two facts used in the proof. First, one has γ(2
√
nBn

2 ) ≥ 1
2
. Indeed, if X is

a random vector then P (|X| > 2
√
n) = P (|X|2 > 4n) ≤ Eγ|X|2

4n
. The LHS is 1 − γ(2

√
nBn

2 )
and the RHS is precisely 1

4
. The other fact needed is that γ(1

2

√
nBn

2 ) ≤ e−cn, which follows
from writing the LHS in polar coordinates and using the Laplace method.

Next, we can bound from below by

γ(
√
nK) ≥ γ(2

√
nBN

2 ∩
√
nK)

≥ γ(2
√
nBn

2 ) · σ̃(2
√
nSn−1 ∩

√
nK).

Here σ̃ is the Haar measure on 2
√
nSn−1. Recall that γ(2

√
nBn

2 ) ≥ 1
2

and hence after
renormalizing again,

γ(
√
nK) ≥ 1

2
σ(Sn−1 ∩ 1

2
K).

For the upper bound, we remark that

γ(
√
nK) ≤ σ(

1

2

√
nBn

2 ) + σ(
1

2

√
nSn−1 ∩

√
nK)

so that then

γ(
√
nK) ≤ e−cn + σ(Sn−1 ∩ 2K).

Remark 5.55. In fact, for the Lemma to hold it suffices to assume that K is star-shaped.

Proof of the Theorem. Take ∥ · ∥ with unit ball K. One has γ(etK) being log-concave by
Cordero-Erasquin, Fredeliki, Mauren, et al. Then

γ(aλb1−λK) ≥ γ(aK)λγ(bK)1−λ ∀a, b > 0.

Consider Med(∥ · ∥) to be the median of the norm, so that Med ≤ 2 ·M (this is apparently
a well-known fact). Set L := Med ·

√
n ·K to be a symmetric convex body, then we have

γ(2L) ≥ 1

2
σ(Sn−1 ∩Med ·K)

≥ 1

2
· 1

2
=

1

4

(by definition of median); we can also estimate γ(L/8) from above so that

γ(L/8) ≤ σ(Sn−1 ∩ 1

4
·Med ·K) + e−cn

= σ(x ∈ Sn−1 : ∥x∥ ≤ 1

4
Med) + e−cn

≤ σ(x ∈ Sn−1 : ∥x∥ ≤ 1

2
M) + e−cn
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by our previous point. By definition of d, we then have this begin no greater than e−d(∥·∥) +
e−cn, which in turn is bounded above by 2e−cd(∥·∥) since d ≤ n. Applying the B-theorem for
a = ϵ b = 2, λ = 2

log(1/ϵ)
we then get

γ(ϵL)3/ log(1/ϵ) · γ(2L)1−
3

log(1/ϵ) ≤ γ
(
ϵ3/ log(1/ϵ) · 21− 3

log(1/ϵ)L
)

≤ γ(L/8)

for sufficiently small ϵ. Then

γ
(
ϵL
)3/ log(1/ϵ)

≤ γ(L/8)

γ(2L)1−e/ log(1/ϵ)

≤ (c′ϵ)c·d(∥·∥)

for another constant c′. Finally, if we want to estimate the spherical measure of the set, we
observe that

σ(∥x∥ ≤ ϵM) ≤ γ(ϵL)

≤ (c′ϵ)cd(∥·∥).

Thus ˆ
Sn−1

∥∥∥ θ
M

∥∥∥−cd/10 dσ ≤ C,

which completes the proof of the Theorem.

5.14 Home work

Question 5.56 (3 points). Recall that a spherical cap is a non-empty set of the form

Sn−1 ∩ {⟨x, v⟩ ≥ t},

for some v ∈ Rn and t ∈ R.
Prove the isoperimetric inequality on the sphere Sn−1 : given A ⊂ Sn−1 with σ(A) = α ∈

(0, 1) (where σ is the Haar measure on the sphere), prove that the perimeter of A (which we
defined in class) is larger that that of a spherical cap of measure α.

Hint: use an analogue of Steiner symmetrizations, for example, or some other approach.

Question 5.57 (1 point). Using the Question 5.56, deduce the sharp concentration inequality
on the sphere (which we stated in class).

Hint: use an approach similar to how we deduce the Gaussian sharp concentration from
the Gaussian isoperimetry (we will do it in a few weeks).
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Question 5.58 (Rahul’s question, 2 points). Could you prove a concentration result on the
sphere of the type

σ(At) ≥ C1e
−c2n2t4

for some range of t and some constants? Use the same ideas as what we discussed in class.

Question 5.59 (2 points). a) Prove the Efron-Stein inequality: for any measurable function
f : Rn → R and any random vector X = (X1, ..., Xn), one has

V arf(X) ≤ E
n∑
i=1

V arif(X),

where V ar stands for the variance with respect to the distribution of X, E stands for the
expectation with respect to the distribution of X, and V ari is the variance with respect to Xi

(so V arif(X) is a random variable.)
b) Prove the tensorisation property of the Poincare inequality: let µ1,..., µm be a collection
of measures on Rk1 , ...,Rkm respectively, so that k1 + ... + km = n. Let the measure µ =
µ1 × ...× µm on Rn. Then the Poincaré constant of µ equals the maximum of the Poincaré
constants of µ1, ..., µm.

Question 5.60 (1 point). a) Recall that for a random vector X distributed according to
the measure µ and a function f , we denote Entf(X) =

´
f(x) log f(x)dµ(x) −

´
fdµ ·

log
(´

fdµ
)
. Prove that for any measurable function f : Rn → R and any random vector

X = (X1, ..., Xn), one has

Entf(X) ≤ E
n∑
i=1

Entif(X),

where Ent stands for the entropy with respect to the distribution of X, E stands for the
expectation with respect to the distribution of X, and Enti is the entropy with respect to Xi

(so Entif(X) is a random variable.)
Hint: use the variational characterization of entropy that we proved in class.

b) Recall that we say that a measure µ on Rn satisfies the Log-Sobolev inequality with constant
β if for any locally Lipschitz function f one has Entf 2(X) ≤ 2βE|∇f(X)|2, and β > 0 is
the smallest number that works here.

Prove the tensorisation property of the Log-Sobolev inequality: let µ1,..., µm be a collection
of measures on Rk1 , ...,Rkm respectively, so that k1 + ... + km = n. Let the measure µ =
µ1 × ... × µm on Rn. Then the Log-Sobolev constant of µ equals the maximum of the Log-
Sobolev constants of µ1, ..., µm.

Question 5.61 (5 points). (Intentionally vague question, allowing for some freedom). Find
any interesting extension or generalization of the Herbst argument in the situation of, say,
Generalized Log-Sobolev inequality, or in some other more general situation.

Question 5.62 (1 point). Confirm that if ψ is a convex function on (Rn)+ then the function
ψ(x21, ..., x

2
n) is convex as well. (this concludes the proof of the Thin Shell inequality in the

unconditional case, as we discussed in class).

125



Question 5.63 (1 point). Confirm that for any Borel probability measure µ on a metric
space X, one has αµ(t)→t→∞ 0.

Question 5.64 (1 point). Confirm that if the function f on Rn is p−Lipschitz (that is,
|f(x)− f(y)| ≤ p|x− y| for all x, y ∈ Rn) then one has |∇f | ≤ p.

Question 5.65 (3 points). a) For a log-concave probability measure µ with density f on Rn,
define bp : Sn−1 → R via

bp(θ) =

ˆ ∞

0

f(tθ)tpdt.

Prove that Bp(x) = |x|bp( x
|x|) is convex for p ≥ 1, and therefore is a Minkowski functional

on Rn of some convex body Kµ. This body is called Ball’s body as it was introduced by Keith
Ball.
b) Suppose µ is isotropic. For which p is Kµ isotropic (after being normalized to have volume
one)?
c) Prove that verifying the thin shell conjecture for all log-concave measures is equivalent to
verifying it only for uniform measures on convex bodies.
d) Prove that verifying the KLS conjecture for all log-concave measures is equivalent to
verifying it only for uniform measures on convex bodies.

Question 5.66 (3 points). Confirm that the KLS conjecture is equivalent to showing that
for any isotropic convex body K in Rn, cutting K into two parts of equal volume is achieved,
up to a multiple of an absolute constant, by an affine hyperplane cut. (For 1 point out of 3,
show that the KLS conjecture implies this fact.)
Hint: Explain that (in some sense) for a (nice) closed connected region M one has

|∂M | =
ˆ
∂M

|∇1M |.

Question 5.67 (1 point). Let f : Sn−1 → R be a seminorm. Then,(ˆ
Sn−1

|f(θ)|q dσ(θ)

)1/q

≤ cq

p

√
n+ p

n+ q

(ˆ
Sn−1

|f(θ)|p dσ(θ)

)1/p

.

Hint: use the reverse Hölder inequality that we proved and integration by parts.

Question 5.68 (1 point). Let µ be any even log-concave measure on Rn. Show that for any
symmetric measurable set A in Rn and any t > 0 one has

µ (x ∈ Rn : ∃y ∈ A : ⟨x, y⟩ > −t) ≥ 1− 1

µ(A)
e−t.

Hint: Use Klartag’s extension of the functional Blaschke-Santalo inequality.
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Question 5.69 (2 points). Let µ be a measure on a metric space X with Laplace functional
Eµ(λ). Suppose the diameter of X is bounded from above by D < ∞. Then for any λ ≥ 0
one has

Eµ(λ) ≤ e
D2λ2

2 .

Question 5.70 (1 point). Show that whenever for a measure µ one has for all λ ≥ 0 that

Eµ ≤ e
λ2

2c for some constant c > 0 then for every t > 0 one has αµ(t) ≤ e−
ct2

8 .
Hint: use the result we proved in class.
Remark. This shows that using Payne-Weinberger inequality as means of obtaining con-

centration bounds is sub-optimal.

Question 5.71 (1 point). Prove the (close to optimal) sub-Gaussian concentration bound
for the discrete cube {−1, 1}n equipped with the uniform measure and the Hamming distance
(as defined in class): show

αµ(t) ≤ e−
t2n
8 .

Hint: use questions 5.69 and 5.70.

Question 5.72 (2 points). Show that Paouris’s inequality (that we stated in class) follows
from the following result of Guedon and Milman: for an isotropic log-concave random vector
X on Rn and any p ∈ R such that 1 ≤ |p− 2| ≤ c1n

1
6 one has

1− C |p− 2|
n

1
3

≤ n− 1
2 (E|X|p)

1
p ≤ 1 + C

|p− 2|
n

1
3

,

and for any p ∈ R such that c1n
1
6 ≤ |p− 2| ≤ c2n

1
2 one has

1− C |p− 2| 12
n

1
4

≤ n− 1
2 (E|X|p)

1
p ≤ 1 + C

|p− 2| 12
n

1
4

.

Remark. Note that this estimates include negative values of p, unlike the reverse Hölder
inequality that we proved in class.

Question 5.73 (1 point). Find an example of a non-Lipschitz function f on the sphere Sn−1

which violates the concentration around the median inequality.

Question 5.74 (1 point). Confirm the following fact: suppose for all Lipschitz functions on
the space (X, d, µ) one has

µ(f ≥ Ef + t) ≤ α(t)

for some function α on R+. Then αµ(t) ≤ α( t
2
) (where as usual αµ denotes the concentration

function).

Question 5.75 (2 points). • Show that if the diameter of the metric space (X, d) is
bounded by R > 0 then for any probability measure µ on X one has Eµ(λ) ≤ ecD

2λ2 .
Here Eµ stands for the Laplace functional, as defined in class.
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• Deduce (using also a result we proved in class) the nearly sharp sub-Gaussian concen-
tration on the Hamming cube.

Question 5.76 (2 points). Prove that d(∥ · ∥∞)→∞ when the dimension tends to infinity.
Here d(∥ · ∥) is the Klartag-Vershynin dimension of a norm, as defined in class.

Question 5.77 (1 point). Estimate from below the Poincaré constant of the domain con-
sisting of two unit balls in Rn connected with a neck of width ϵ.

Question 5.78 (1 point). Prove that in dimension 1, for any log-concave measure µ on R,
the isoperimetric sets are rays.

6 Gaussian Measure and its special properties

6.1 A general discussion

Recall that the Gaussian Measure on Rn is given by

dγ(x) =
1√
2π

n e
−|x|2

2 dx.

We have already seen that it has many wonderful properties, including:

• It is a Log-concave isotropic probability measure; to check the isotropicity, note
ˆ
⟨x, θ⟩2 dγ =

ˆ
x2i dγ = 1.

• It is the only measure both product and rotation invariant

• Linear images of Gaussian random vectors are determined by their Covariance matrix

• Gaussian measure plays the main role in the Central Limit Theorem (and is preserved
by convolutions)
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• It is extremal for Log-Sobolev inequality

• It is extremal for Reverse Log-Sobolev inequality

• It corresponds to the equality case in the functional Blaschke-Santaló inequality

• It is extremal for the Entropy Power Inequality

• There is a nice “Gaussian Fourier system” called Hermite polynomials

• It satisfies the Poincaré inequality with constant 1

• It satisfies the B-theorem and an improved Poincaré inequality for symmetric functions
with constant 1

2
...

It is worthwhile mentioning also:

Theorem 6.1 (Gaussian Correlation Inequality, Royen [159]). If A,B are symmetric convex
sets in Rn, then

γ(A ∩B) ≥ γ(A) · γ(B).

In adition to Royen [159], see also the exposition by Latala, Matlak [122] in regards to
the above breakthrough result.

The following Proposition is a way to quantify that the Gaussian measure is “a role
model” for all isotropic probability measures (and especially for log-concave ones). Recall
Cp(µ), the Poincare constant associated with a measure µ, is the smallest number such that
for all f :

ˆ
f 2dµ−

(ˆ
fdµ

)2

≤ Cp(µ)

ˆ
|∇f |2 dµ.

Proposition 6.2. Suppose µ is an isotropic probability measure. Then

Cp(µ) ≥ 1 = Cp(γ).

Proof. Recall the fact that µ is isotropic implies that
´
xdµ = 0, i.e. ∀i

´
xidµ = 0. Also

∀θ ∈ Sn−1,
´
⟨x, θ⟩2 dµ = 0, and in particular

ˆ
x2i dµ = 1.

So,

1 =

ˆ
x2i dµ−

(ˆ
xidµ

)2

≤ Cp(µ)

ˆ
1dµ = Cp(µ)

In this section, we shall see several very strong isoperimetric-properties and phenomena
which are unique to the Gaussian measure.
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6.2 The isoperimetric profile

Recall the Isoperimetric problem for general (probability) measures µ. The objective of this
problem is to find

inf
µ(A)=a

µ+(∂A)

for a given a ∈ [0, 1], where the weighted perimeter is defined as

µ+(∂A) = lim inf
ε→0

µ(A+ εBn
2 \A)

ε
.

Definition 6.3. The isoperimetric profile of µ is defined as

Iµ(a) = inf
µ(A)=a

µ+(∂A).

Below are some properties of Iµ(a).

• For non-atomic measures, Iµ(a) ≥ 0, Iµ(a)→ 0 as a→ 0, and Iµ(a)→ 0 as a→ 1

• Iµ(a− 1
2
) is even. One can see this by taking complements, i.e. µ(A) = 1− µ(Ac) but

they have the same perimeters µ+(∂A) = µ+(∂Ac).

• Iµ is convex for log-concave measures (proved by E. Milman [144])

Remark 6.4. Consider for example the Lebesgue measure |A| = a, then |∂A| ≥ cn · a1/n,
and we have concavity. Recall that the proof of this followed from the Brunn-Minkowski
inequality.

So to obtain an isoperimetry bound for a general log-concave measure, one may try to
use the Prekopa-Leindler inequality.

µ+(∂K) = lim inf
ε→0

µ(K + εBn
2 )− µ(K)

ε

= lim inf
ε→0

µ
(

(1− t) K
1−t + t

εBn2
t

)
− µ(K)

ε

≥ sup
t

lim inf
ε→0

µ
(
K
1−t

)1−t
µ
(
εBn2
t

)t
− µ(K)

ε
.
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However, one cannot hope to get a sharp bound because the Prekopa-Leindler inequality is
never tight!

6.3 The Ehrard Inequality

The Ehrard inequality is a fancier and tighter Gaussian version of the Prekopa-Leindler
inequality.

Definition 6.5. The Gaussian cumulative distribution function (c.d.f.) is denoted as

Φ(s) =

ˆ s

−∞

1√
2π
e−t

2/2dt = γ1(−∞, s)

Note that

Φ′(s) =
1√
2π
e−s

2/2.

We will be considering the inverse Φ−1 : [0, 1]→ R.
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We are ready to state arguably the most important Gaussian Isoperiemtric-type inequal-
ity, proved by Ehrhard for convex sets [56], [57] then by Latala when one of the sets is convex
[120], and finally by Borell [33], [32] for arbitrary Borel-measurable sets:

Theorem 6.6 (Ehrard-Borell). For all Borel measurable sets A,B ⊂ Rn, ∀ λ ∈ (0, 1),

Φ−1(γ(λA+ (1− λ)B)) ≥ λΦ−1(γ(A)) + (1− λ)Φ−1(γ(B)).

Other proofs are given by Neeman and Paouris [150], van Handel [80] and Ivanisvili [87],
among others.

Let us compare this to Prekopa-Leindler. Gaussian measure is log-concave, which means
that

log γ(λA+ (1− λ)B) ≥ λ log(γ(A)) + (1− λ) log(γ(B))

Consider the function
m(t) = γ((1− t)A+ tB).

Ehrard’s inequality says that Φ−1 ◦m is concave, while Prekopa-Leindler says that logm is
concave.

Claim 6.7. Ehrhard’s inequality is stronger than the Prekopa-Leindler inequality for the
Gaussian measure: for any strictly increasing function m Φ−1 ◦ m is concave implies that
logm is concave

Proof. We consider the local form of the functions. Notice that Φ−1 ◦m is equivalent to the
fact that

(Φ−1 ◦m)′′ ≤ 0,

and log ◦m is concave is equivalent to the fact that

(log ◦m)′′ ≤ 0.

In general, we have
(f ◦m)′′ = f ′′ · (m′)2 + f ′m′′ ≤ 0,

which is true if and only if
m′′

(m′)2
≤ −f

′′

f ′

for f ′ > 0. So relating this back to Ehrard, we have

m′′

(m′)2
≤ −(Φ−1)′′

(Φ−1)′
,

and for Prekopa-Leindler, we have

m′′

(m′)2
≤ −(log)′′

(log)′
.
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To prove that Ehrard is stronger than Prekopa-Leindler, we prove the following key claim

∀t : −(Φ−1(t))′′

(Φ−1(t))′
≤ −(log(t))′′

(log(t))′
. (21)

We compute each component of this inequality

(log(t))′′

(log(t))′
= −1/t2

t/t
= −1

t

(Φ−1(t))′ =
1

Φ′(Φ−1(t))
=
√

2πeΦ
−1(t)2/2

(Φ−1(t))′′ = 2πΦ−1(t) · eΦ−1(t)2/2

=⇒ (Φ−1(t))′′

(Φ−1(t))′
=
√

2πΦ−1(t)eΦ
−1(t)2/2.

The fact that 21 implies the overall claim is equivalent to saying that

−
√

2πΦ−1(t)eΦ
−1(t)2/2 ≥ 1

t
. (22)

Why is 22 true? Indeed, if a = Φ−1(t), then 22 becomes

− 1

Φ(a)
≤
√

2πaea
2/2

If a ≥ 0, the inequality is trivially true. If a ≤ 0, we have to show that

ˆ a

−∞
e−t

2/2dt ≤ −1

a
e−a

2/2.

Change of variables b = −a gives us

ˆ ∞

b

e−t
2/2dt ≤ 1

b
e−b

2/2

when b ≥ 0. To see why the above inequality is true, notice that

ˆ ∞

b

e−t
2/2dt =

ˆ ∞

b

t · 1

t
e−t

2/2dt

≤ 1

b

ˆ ∞

b

te−t
2/2dt

=
1

b
e−b

2/2

So the claim is proved.
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Remark 6.8. What is the geometric meaning of Φ−1(a), for a ∈ [0, 1]. Consider the half
space

H = {x ∈ Rn : x1 ≤ α}.

Then γ(H) = a means that Φ−1(a) = α. Indeed,

Φ(α) = γ1(−∞, α) = γn(H) = a.

Compare this to f(t) = t1/n - the (multiple of) the radius of the ball of Lebesgue volume t
(see the below remark).

Remark 6.9. van Handel, Shenfeld [81] fully characterized the equality cases in Ehrhard’s
inequality.

In particular, the equality in the Ehrhard inequality is attained when A,B are parallel
half-spaces. Indeed,

A = {x ∈ Rn : x1 ≤ Φ−1(a)}, γ(A) = a

B = {x ∈ Rn : x1 ≤ Φ−1(b)}, γ(B) = b

Then
A+B

2
=

{
x ∈ Rn : x1 ≤

Φ−1(a) + Φ−1(b)

2

}
.

So

Φ−1

(
γ

(
A+B

2

))
=

Φ−1(γ(A)) + Φ−1(γ(B))

2
=

Φ−1(a) + Φ−1(b)

2

the point where A+B
2

intersects the x-axis.
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6.4 Gaussian isoperimetric inequality

Ehrhard’s inequality implies the following classical and important result:

Theorem 6.10 (The Gaussian Isoperimetric inequality, Sudokov-Tsirelson [165], Borell
[32]). If A is a Borel measurable in Rn with γ(A) = a ∈ [0, 1], then

γ+(∂A) ≥ γ+(∂Ha) =
1√
2π
e−Φ−1(a)2/2

where Ha is the halfspace of measure a

Ha = {x ∈ Rn : x1 ≤ Φ−1(a)}.

In other words,

Iγ(a) =
1√
2π
e−Φ−1(a)2/2.

Note that this implies that

Iγ(a) =
1

Φ−1(a)′
,

and that
Iγ(a) · I ′′γ (a) = −1.

Proof. (of the Gaussian isoperiemtry via Ehrhard) Let K be some Borel set in Rn. Then

γ+(∂K) = lim inf
ε→0

γ(K + εBn
2 )− γ(K)

ε

= sup
λ>0

lim inf
ε→0

γ
(

(1− λ) K
1−λ + λ

εBn2
λ

)
− γ(K)

ε

≥ lim inf
ε→0, λ→0

Φ
(

(1− λ)Φ−1
(
K

1−λ

)
+ λΦ−1

(
εBn2
λ

))
− γ(K)

ε
,
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where the last inequality follows from Ehrard’s inequality. Now let t = ε
λ
. t can be anything

since ε and λ can tend to 0 at different rates. It turns out the optimal case is taking t→∞.
Since γ(K) = a, the last line of the above becomes (by Taylor’s Theorem)

= lim
t→∞

Φ′(Φ−1(a)) · Φ−1(∂(tBn
2 ))

t
= lim

t→∞
Φ′(Φ−1(a))

=
1√
2π
e−Φ−1(a)2/2

= γ+(∂Ha).

The fact that limt→∞
Φ−1(∂(tBn2 ))

t
= 1 is left as homework.

One can then ask the question about an anisotropic version of this. In other words,
instead of taking Bn

2 , take some set L (this is left as homework).

6.5 Gaussian concentration inequality and Borell’s noise stability

Theorem 6.11 (Gaussian concentration inequality and Borell’s noise stability).

γ(At) ≥ 1− 1

2
e−t

2/2

if γ(A) ≥ 1/2. Moreover, if H is a half-space with γ(A) = γ(H) = a ∈ [0, 1], we have

γ(At) ≥ γ(Ht) = Φ(Φ−1(a) + t).

Proof. Let
h(t) = Φ−1(γ(At)).

Note that

h′(t) =
√

2πe
Φ−1(γ(At))

2

2 · d
dt
γ(At) ≥

γ+(∂At)

Iγ(γ(At))
≥ 1.

Above, the second to last inequality follows from the Gaussian isoperimetric inequality, and
the last inequality follows from the definition of the isoperimetric profile. We will now apply
Newton’s formula

h(t) = h(0) +

ˆ t

0

h′(s)ds ≥ h(0) +

ˆ t

0

ds = h(0) + t

=⇒ Φ′(γ(At)) ≥ Φ−1(γ(A)) + t,

which implies
γ(At) ≥ Φ(Φ−1(γ(A)) + t) = γ(Ht),
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where γ(A) = γ(H).
Next, suppose γ(A) ≥ 1/2. Then Φ−1(γ(A)) ≥ 0, and

γ(At) ≥ Φ(Φ−1(γ(A)) + t) ≥ Φ(t) =
1√
2π

ˆ ∞

−t
e−s

2/2ds,

or

1− γ(At) ≤
1√
2π

ˆ ∞

t

e−s
2/2ds.

It now suffices to show
1√
2π

ˆ ∞

t

e−s
2/2ds ≤ 1

2
e−t

2/2.

Consider for t > 0,

F (t) =
1√
2π

ˆ ∞

t

e−s
2/2ds− 1

2
e−t

2/2,

and thus

F ′(t) = − 1√
2π
e−t

2/2 − t

2
e−t

2/2

and

F ′′(t) =
t√
2π
e−t

2/2 − 1

2
e−t

2/2 +
t2

2
e−t

2/2.

Observe that

F ′

(√
2

π

)
= 0,

and

F ′′(t) ≥ 0 if and only if t ≥
√

2

π
.

Note also that
F → 0 as t→∞,

and that F (0) = 0. This means that F is concave and non-decreasing on [0,
√

2
π
] (and thus

is non-negative on that interval), and convex and non-increasing on [
√

2
π
,∞], and as it also

tends to zero at infinity, we conclude that it must remain non-negative. This concludes the
proof.

6.6 Isoperimetry on the cube

We will now be discussing another application of the Gaussian isoperimetry.
Recall the notion of the isoperimetric profile for a measure µ :

Iµ(a) = inf
µ(A)=a

µ+(∂A).
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For specific nice convex bodies K, one can ask what is the isopereimetric profile for dµ
uniform on K. In other words, we ask the question: if for a measurable set A ⊂ Rn, we have
|K ∩ A| = a, then what is the lower bound for |K ∩ ∂A|? This is known for K = Bn

2 : the
optimal A are balls, appropriately positioned (see picture below).

How about K = [0, 1]n? The following seemingly simple question is open.

Conjecture 6.12 (Isoperimetry on the cube). Suppose A ⊂ Rn is a measurable set such
that |[0, 1]n ∩ A| = a ∈ [0, 1]. Then

|∂A ∩ (0, 1)n| ≥ min(|∂Ck(a) ∩ (0, 1)n|, |∂Cc
k(a) ∩ (0, 1)n|)

where Ck(a) = r ·Bk
2 × Rn−k + x0 is a k-dimensional round cylinder such that

|Ck(a) ∩Bn
∞| = a.

In fact, while the exact isoperimetric problem for the cube is open (except in dimension
2), the following lower bound can be achieved:

Theorem 6.13 (Barthe-Maurey [18], Hadwiger). Let µ be the uniform measure on [0, 1]n.
Then

Iµ(a) ≥
√

2πIγ(a).

In other words, for all measurable sets A in Rn, if

|[0, 1]n ∩ A| = a ∈ [0, 1],

then

|(0, 1)n ∩ ∂A| ≥ e−
Φ−1(a)2

2 .
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See also Glaudo [72].

Remark 6.14. Let µ, ν be any pair of probability measures such that

T#µ = ν

where T is L-Lipschitz. Then

αν(t) ≤
1

L
αµ(t)

and

Iν(a) ≥ 1

L
Iµ(a)

Indeed, to see this, consider A, µ(A) = µ(TA). If T is 1-Lipschitz, then T (At) ⊂ (TA)t,
which implies the inequalities above.

Corollary 6.15. Let dµ = e−vdx, ∇2v ≥ k · Id. Then

αµ(t) ≤ 1

k
αγ(t) =

1

2k
e−t

2/2

Iµ(a) ≥ k · Iγ(a) =
k√
2π
e−Φ−1(a)2/2.

Proof. This corollary follows from Corollary 6.15 and from Cafarelli’s theorem 4.50.

Next, we shift our discussion to the uniform measure on the unit cube.

Lemma 6.16. There is a map π : Rn → Rn that is 1√
2π
-Lipschitz such that

π#γ = unif([0, 1]n).

Proof. Recall (Example 4.41) that Φ#γ1 = unif[0, 1], where as usual Φ stands for the Gaus-
sian cdf: ˆ 1

0

f(x)dx =

ˆ ∞

−∞
f(Φ(s)) · jac(Φ)ds =

ˆ ∞

−∞
f(Φ(s))dγ(s).
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We construct π as follows

(x1, . . . , xn)
π−→ (Φ(x1), . . . ,Φ(xn)).

So π#γ = [0, 1]n. Next, to confirm the Lipschitzness, note

(π(x)− π(y))2 =
∑

(Φ(xi)
2 − Φ(yi)

2)

≤ sup(Φ′)2 |x− y|2 ,

and recall

Φ′(s) =
1√
2π
e−s

2/2 ≤ 1√
2π
.

Proof. (of the Barthe-Maurey theorem) The result follows from combining the Lemma 6.16
and Corollary 6.15.

We will now present some more results related to the isoperimetry on the cube conjecture.

Corollary 6.17. A ⊂ Rn, |A ∩ [0, 1]n| = 1
2

=⇒ |∂A ∩ (0, 1)n| ≥ 1, and it is attained for

A =

{
x1 ≤

1

2

}
In fact, as a corollary we get the following non-trivial result:

Corollary 6.18 (Vaaler [168]). For any θ ∈ Sn−1,∣∣∣∣θ⊥ ∩ [−1

2
,
1

2

]n∣∣∣∣
n−1

≥ 1,

with equality when θ = (1, 0, ..., 0).
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Remark 6.19. As for the converse estimate, Ball [7] showed that∣∣∣∣θ⊥ ∩ [−1

2
,
1

2

]n∣∣∣∣ ≤ √2

where the optimal θ is (
1√
2
,

1√
2
, 0, . . . , 0

)
.

6.7 Gaussian symmetrization and the proof of the Ehrhard in-
equality

The following concept was introduced by Ehrhard [56], [57], see also Borell [33] and Bogachev
[27].

Definition 6.20 (Gaussian symmetrization). Fix an integer k, 1 ≤ k ≤ n. Fix also L, a
subspace of Rn with dimL = n−k. Fix any e ⊥ L. Then for a Borel measurable set A ⊂ Rn,
consider the Gaussian symmetrization of A denoted by

S(L, e)(A)

such that for all x ∈ L

S(L, e)(A) ∩ (x+ L⊥) = {y : ⟨y, e⟩ ≥ r} ∩ (x+ L⊥)

where r = r(x) is chosen so that

γk(S(L, e)(A) ∩ (x+ L⊥)) = γk(A ∩ (x+ L⊥)).

Here are some examples:

• If L = e⊥1 and e = e1 , then S(e⊥1 , e1)(A) =
{
x ∈ Rn : x1 ≤ Φ−1

1 (γ(A))
}

;

• If k = n− 1, then this corresponds to matching (n− 1)-dimensional slices of set A to
rays J of a 2-dimensional set.
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Some properties of the Gaussian symmetrization are left as homework:

Lemma 6.21. Let A and B be Borel-measurable sets in Rn and v ∈ Rn. Then

• γ(S(L, e)(A)) = γ(A);

• A ⊂ B =⇒ S(L, e)(A) ⊂ S(L, e)(B);

• S(L, e)(A+ v) = S(L, e)(A) + v.

Also,

Lemma 6.22. Let L1, L2 be linear subspaces such that (L1 ∩ L2)
⊥ ∩L1 and (L1 ∩ L2)

⊥ ∩L2

are orthogonal. Then

S(L1, e) ◦ S(L2, e) = S(L2, e) ◦ S(L1, e) = S(L1 ∩ L2, e)

This implies:

Corollary 6.23. Let n ≥ 3 and k ≥ 2. Then for all k-symmetrizations S = S(L, e), there
is a sequence of 2-symmetrizations S1, . . . , Sk−1 such that S = S1 ◦ . . . ◦ Sk−1.

Furthermore,

Lemma 6.24. In dimension 2, there exists a sequence θ1, . . . , θk, . . . such that

S(θ⊥k , θk) ◦ S(θ⊥k−1, θk−1) ◦ . . . ◦ S(θ⊥1 , θ1)(A)

converges in Hausdorff distance to a half-space of the same Gaussian measure as A.

Combining Corollary 6.23 and Lemma 6.24 we get

Corollary 6.25. The statement of Lemma 6.24 is true in any dimension.

Remark 6.26. If A is a half-space, then it is invariant under any symmetrizations.

Next, we formulate:

Theorem 6.27. If A is a closed set in Rn, then for all L and for all e ∈ L⊥,

S(L, e)(A) + rBn
2 ⊂ S(L, e)(A+ rBn

2 ).

Proof. Home work!

Remark 6.28. The previous Theorem implies the Gaussian isoperimetric inequality, when
combined with Corolalry 6.25 (without going via Ehrhard’s inequality).

Finally, the following result is crucial in our proof of Ehrhard’s inequality, and its proof
is based on all the results above, and is left as a home work:
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Theorem 6.29. If A is an open convex set in Rn, then for all L and for all e ∈ L⊥, then
S(L, e)(A) is convex.

Proof. Home work!

We are now ready to prove the Ehrhard inequality for convex sets A and B. Recall
that it states that for any λ ∈ [0, 1],

Φ−1 (γ (λA+ (1− λ)B)) ≥ λΦ−1(γ(A)) + (1− λ)Φ−1(γ(B)). (23)

The idea is to consider n-dimensional convex sets A and B as parallel sections of an (n+ 1)-
dimensional convex set, symmetrize it into a 2-dimensional convex set, and the convexity of
this set (which follows from Theorem 6.29) is exactly the statement of Ehrhard’s inequality
(23).

Proof. (of Ehrhard’s inequality for convex sets.)
Consider A,B as subsets of Rn+1: let

Ã = A× {0},

B̃ = B × {0}

and C = conv(Ã, B̃). Then

C ∩
{
e⊥n+1 +

1

2
en+1

}
=
A+B

2
∩
{
e⊥n+1 +

1

2
en+1

}

Take n-symmetrizations in Rn+1 of C such that intersections with n-dimensional hyper-
planes are preserved. Let

Cλ = e⊥n+1 ∩ (C − λen+1) = e⊥n+1 ∩ (λA+ (1− λ)B)

and
f(λ) = Φ−1(γ(Cλ))
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Then by definition of symmetrization

(λen+1 + e⊥n+1) ∩ S(C) = (en+1 + e⊥n+1) ∩ {x ∈ Rn : ⟨x, e⟩ ≥ r}

where r = −f(λ). By Theorem 6.29, the set S(C) is convex, or equivalently f(λ) is concave.
Therefore,

Φ−1(γ(Cλ)) is convex,

yielding
⇐⇒ Φ−1(γ(λA+ (1− λ)B)) ≥ λΦ−1(γ(A)) + (1− λ)Φ−1(γ(B)).

6.8 The Lata la’s Functional Ehrhard inequality

In this subsection, we present the funcitonal version of the Ehrhard inequality which was
observed by Lata la [125]

Theorem 6.30 (Functional Ehrhard’s inequality, Lata la [125]). Let λ ∈ [0, 1], and suppose
F,G,H : Rn → [0, 1] are such that for all x, y ∈ Rn,

Φ−1(H(λx+ (1− λ)y)) ≥ λΦ−1(F (x)) + (1− λ)Φ−1(G(y)). (24)

Then

Φ−1

(ˆ
Rn
Hdγ

)
≥ λΦ−1

(ˆ
Rn
Fdγ

)
+ (1− λ)Φ−1

(ˆ
Rn
Gdγ

)
.

Therefore, for convex f, g,

Φ−1

(ˆ
Φ(−(λf + (1− λ)g)∗dγ

)
≥ λΦ−1

(ˆ
Φ(−f ∗)dγ

)
+ (1− λ)Φ−1

(ˆ
Φ(−g∗)dγ

)
.

In other words, Φ−1
(´

Φ(−(f + tg)∗dγ
)

is concave. Here, as before, f ∗ stands for Legendre
transform.

Remark 6.31. As before, one may note that (λf ∗ + (1− λ)g∗)∗ = f□λg satisfies (24) and
this is why one can reformulate it in terms of Legendre transform.

Proof. Consider A,B ⊂ Rn × R = Rn+1 given by

A =
{

(x, y) : y ≤ Φ−1(F (x))
}

B =
{

(x, y) : y ≤ Φ−1(G(x))
}
.

A and B are subgraphs, and x ∈ Rn, y ∈ R. Then the condition of the theorem implies

λA+ (1− λ)B ⊂
{

(x, y) : y ≤ Φ−1(H(x))
}
⊂ Rn+1. (25)
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Ehrhard’s inequality in Rn+1 implies

Φ−1 (γ(λA+ (1− λ)B)) ≥ λΦ−1(γ(A)) + (1− λ)Φ−1(γ(B)). (26)

Then (25) and (26) imply
Φ−1(γ((x, y) : y ≤ Φ−1(H))) ≥

λΦ−1(γ((x, y) : y ≤ Φ−1(F ))) + (1− λ)Φ−1(γ((x, y) : y ≤ Φ−1(G))).

This implies the desired inequality, in view of the fact that by Fubini

γ((x, y) : y ≤ Φ−1(F )) =

ˆ
Fdγ.

Remark 6.32. Functional Ehrhard also tensorizes (this is left as homework). But the base
case of the induction (the 1-dimensional case) is difficult.

6.9 Generalized Bobkov’s inequality via linearizing functional Ehrhard’s
inequality

In this subsection we will do the same procedure with Ehrhard’s inequality that allowed
us to deduce the Generalized Log-Sobolev inequality from the Prekopa-Leindler inequality,
following Barthe, Cordero-Erausquin, Ivanisvili, Livshyts [15]. We remark that an alternative
procedure which involved linearization of the geometric Ehrhard inequality directly (rather
than its functional version) was done by Kolesnikov and Milman [115], and a number of
interesting geometric corollaries was obtained. It remains unclear if there are direct links
between the work in [115] and what we are about to present.

Consider

α(t) = Φ−1

(ˆ
Φ(−((1− t)f + tg)∗dγ

)
− (1− t)Φ−1

(ˆ
Φ(−f ∗)dγ

)
− tΦ−1

(ˆ
Φ(−g∗)dγ

)
.

Then Functional Ehrhard’s inequality Theorem 6.30 implies

α(t) ≥ 0 for all t ∈ [0, 1]

and
α(0) = 0

=⇒ α′(0) ≥ 0.

Recall

Φ′(s) =
1√
2π
e−

s2

2 ,
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and
d

da
Φ−1(a) =

1

Φ′(Φ−1(a))
=
√

2πe
Φ−1(a)2

2 =
1

I(a)
,

where

I(a) =
1√
2π
e−

Φ−1(a)2

2

is the Gaussian isoperimetric profile. Recall that d
dt

((1 − t)f + tg)∗ = (f − g)(∇f ∗) (see
Lemma 3.42). We then write

α′(0) =
1

I
(´

Φ(−f ∗)
) · ˆ 1√

2π
e−

f∗2
2 · −(f(∇f ∗)− g(∇f ∗))dγ

+ Φ−1

(ˆ
Φ(−f ∗)dγ

)
− Φ−1

(ˆ
Φ(−g∗)dγ

)
≥ 0.

So we have

♠(f) +

ˆ
g(∇f ∗) · 1√

2π
e−

f∗2
2 dγ ≥ I

(ˆ
Φ(−f ∗)dγ

)
· Φ−1

(ˆ
Φ(−g∗)dγ

)
,

where ♠(f) is a function that depends on only f and not g. Set G = g∗, f ∗ = −Φ−1(h) for
function h. Then

∇f ∗ = − ∇h
I(h)

,

I(h) =
1√
2π
e−

f∗2
2 ,

♠(h) +

ˆ
G∗
(
− ∇h
I(h)

)
· I(h)dγ ≥ I

(ˆ
hdγ

)
· Φ−1

(ˆ
Φ(−G)dγ

)
.

Recall (
λG
(x
λ

))∗∣∣∣
z

= sup
y

(
⟨y, z⟩ − λG

(y
λ

))
= λ sup

t
(⟨t, z⟩ −G (t))

= λG∗(z).

where we did a change of variables t = y
λ
. Then for every λ,

♠(h) +

ˆ
G∗
(
− ∇h
I(h)

)
· I(h)dγ ≥ I

(ˆ
hdγ

)
· Φ−1

(ˆ
Φ
(
−λG

(x
λ

))
dγ

)
.

We divide both sides by λ and let λ→∞. Note that ♠(h)
λ
→ 0, and we get:
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Theorem 6.33 (“Generalized Bobkov’s inequality”, Barthe, Cordero-Erasquin, Ivanisvili,
Livshyts [15]). For all convex G and for all h (such that the integrals make sense)

ˆ
G∗
(
− ∇h
I(h)

)
· I(h)dγ ≥ I

(ˆ
hdγ

)
· lim
λ→∞

Φ−1
(´

Φ
(
−λG

(
x
λ

))
dγ
)

λ
.

Remark 6.34. If G is ray-increasing, we have

G
(x
λ

)
≥ G(0).

Thus

lim
λ→∞

Φ−1
(´

Φ
(
−λG

(
x
λ

))
dγ
)

λ
≤ lim

λ→∞

Φ−1
(´

Φ (−λG (0)) dγ
)

λ

= lim
λ→∞

−λG(0)

λ
= −G(0).

In fact, often ≥ holds as well. Note that ray increasing means that ∀t > 0, ∀θ ∈ Sn−1, G(tθ)
is increasing in t.

We will consider the following example

G(x) =

{
−
√

1− |x|2 if |x| ≤ 1

∞ if |x| > 1
.

Φ
(
−λG

(x
λ

))
dγ =

ˆ
λBn2

Φ
(√

λ2 − x2
)
dγ ≈ Φ(λ),

and

lim
λ→∞

Φ−1 (Φ(λ))

λ
= 1.

We leave the details of this limit as a home work.

Recall (Example 3.35, part 5) that G∗(x) =
√

1 + |x|2. Note that

I(h)G∗
(
∇h
I(h)

)
≥ I(h)

√
1 +
|∇h|2
I(h)2

=
√
I(h)2 + |∇h|2.

Plugging this G into Theorem 6.33 we deduce the following celebrated inequality of Bobkov
(which was originally proved via different means).

Theorem 6.35 (Bobkov [21]).

ˆ
Rn

√
I(h)2 + |∇h|2 ≥ I

(ˆ
Rn
hdγ

)
.
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The inequality tenzorizes, so one can use induction in dimension and so-called 2-point
symmetrizations for the proof, as was done in [21]. Several alternative proofs were given by
Barthe, Ivanisvili [16], Carlen, Kerce [42], Neeman, Paouris [150], among others. The proof
that was presented in these notes is by Barthe, Cordero-Erausquin, Ivanisvili, Livshyts [15].

Remark 6.36. Bobkov’s inequality is implies (and in fact follows from) the Gaussian isoperi-
metric inequality. Indeed, let h = 1K and so |∇h| = hx1{x∈∂K}. The LHS of the inequality
is γ+(∂K) and the RHS is I(γ(K)). So we have

γ+(∂K) ≥ I(γ(K)) = γ+(∂H),

where H is a half-space and γ(H) = γ(K). See e.g. Neeman [149] for the opposite implica-
tion.

So we get the following “diagram”:

Ehrhard −→ Prekopa-Leindler

↓ ↓
Generalized Bobkov −→ Generalized log-Sobolev

↓ ↓
Bobkov −→ Log-Sobolev

↕ ↕
Gaussian Isoperimetry Classical isoperimetry

Consider now another example:

G(x) =

{
−1 if ∥x∥K ≤ 1

∞ if ∥x∥K > 1

Then G∗(x) = 1 + hK(x) = 1 + ∥x∥Ko , and we get:

Corollary 6.37.

I

(ˆ
hdγ

)
· lim
λ→∞

Φ−1(Φ(λ)γ(λK))

λ
≤
ˆ
|∇h|dγ +

ˆ
I(h)dγ.

In particular, for K = Bn
2

I

(ˆ
hdγ

)
−
ˆ
I(h)dγ ≤

ˆ
|∇h|dγ.
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Remark 6.38. The last inequality is weaker than Bobkov’s inequality since
ˆ
Rn

√
I(h)2 + |∇h|2 ≤ I

(ˆ
hdγ

)
−
ˆ
I(h)dγ.

Remark 6.39. More generally for

G(x) =

{
− p
√

1− |x|p if ∥x∥K ≤ 1

∞ if ∥x∥K > 1
,

one can obtain p-Bobkov inequalities.

6.10 An Ehrhard-Brascamp-Lieb type inequality

We will now differentiate Ehrhard’s inequality twice to obtain a version of Ehrhard-Brascamp-
Lieb inequality. Note that Theorem 6.30 implies that

d2

dt2
Φ−1

(ˆ
Φ(−(f + tg)∗)dγ

)
≤ 0 (27)

The left hand side of the above equals to

d

dt

[
1

I
(´

Φ(−f ∗
t )
) · ˆ e−

f∗2t
2 · 1√

2π
(−1)

d

dt
f ∗
t dγ

]
.

Recall d
dt
f ∗
t = −g(∇f ∗

t ). So this becomes (after evaluating at t = 0).

= −
I ′
(´

Φ(−f ∗
t )
)

I2
(´

Φ(−f ∗
t )
) · (ˆ e−

f∗2
2 · 1√

2π
g(∇f ∗)dγ

)2

+
1

I
(´

Φ(−f ∗
t )
) · (ˆ −f ∗e−

f∗2
2 · −1√

2π
g(∇f ∗)2dγ

)
+

1

I
(´

Φ(−f ∗
t )
) · (ˆ e−

f∗2
2 · −1√

2π

d2

dt2
f ∗
t dγ

)
.

We recall, by Lemma 3.42:

d2

dt2
f ∗
t = −

〈
∇2f∇f∗∇g(∇f),∇g(∇f)

〉
= −

〈(
∇2W

)−1∇ϕ,∇ϕ
〉
,

where ϕ = g(∇f ∗) and W = f ∗. With this change of variables, and in view of the computa-
tion above, we see that (27) amounts to:

Theorem 6.40 (Barthe, Cordero-Erasquin, Ivanisvili, Livshyts [15]). Consider convex W ≥
0 and consider the probability measure dµ = e−

W2

2
+Cdγ, let

a =

ˆ
Φ(−W )dγ ∈ [0, 1],
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and

A =

ˆ
e−

W2

2 dγ · Φ−1(a)eΦ
−1(a)2/2.

Then for any locally Lipschitz function h,
ˆ
h2Wdµ− A

(ˆ
hdµ

)2

≤
ˆ 〈(

∇2W
)−1∇h,∇h

〉
dµ.

Remark 6.41. In fact, one could deduce Theorem 6.40 by linearizing Theorem 6.33, similar
to how we deduced the Brascamp-Lieb inequality from the Generalized Log-Sobolev inequality;
this is left as a home work. In fact, as we pointed out before, one could also deduce Brascamp-
Lieb by taking the second derivative of Prekopa-Leindler inequality; this was also left as a
home work.

6.11 Minimizing centered in-radius of a convex set of fixed Gaus-
sian measure

We now discuss a few other isoperimetric inequalities related to the Gaussian measure.

Definition 6.42. Let K be a convex set in Rn that contains the origin. Then the centered
in-radius of K is defined as

r(k) = sup{r > 0 : rBn
2 ⊂ K}.

Proposition 6.43. Let K be a convex set with γ(K) = a > 1
2
. Then

r(K) ≥ r(Ha)

where Ha = {x ∈ Rn : x1 ≤ Φ−1(a)}, γ(Ha) = a.

Proof. Consider K with r(K) = r. Then there exists a hyperplane that supports both K
and rBn

2 . Consider H = {x ∈ Rn : ⟨x, θ⟩ ≤ r} where θ is the outer unit normal. Then
K ⊂ H and γ(K) ⊂ γ(H).

Proposition 6.44. Let K be a symmetric convex set in Rn with γ(K) = a ∈ [0, 1]. Then

r(K) ≥ r(SK)

where SK is a symmetric strip of Gaussian measure a.

6.12 Gaussian barycenter inequality and some extensions

Proposition 6.45. Let F : R→ R be an increasing function.
Let K be a convex set in Rn. Then ∀θ ∈ Sn−1,ˆ

K

F (⟨x, θ⟩)dγ ≥
ˆ
HK

F (⟨x, θ⟩)dγ

where HK(θ) = {x ∈ Rn : ⟨x, θ⟩ ≤ Φ−1(γ(K))}, γ(HK(θ)) = γ(K).
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Lemma 6.46. Let F : R → R be increasing. Let G be given by G′(t) = F (t)e−
t2

2 . Then
G ◦ Φ−1 is convex on (0, 1].

Proof.
(G ◦ Φ−1)′′

∣∣
t

= 2π(G′′(s) +G′(s)s)es
2

where s = Φ−1(t). Note that

G′′(s) +G′(s) · s = e−s
2/2 · (F (s)s− F (s)s+ F ′(s))

= F ′(s)e−s
2/2 ≥ 0

We now prove the previous proposition.

Proof. WLOG, let θ = e1. For x ∈ e⊥1 , denote Ix = K∩{x+ te1} = [Φ−1(αx),Φ
−1(αx + ax)].ˆ

K

F (x1)dγ =

ˆ
Rn−1

1√
2π

ˆ
Ix

F (t)e−t
2/2dtdγn−1

=

ˆ
Rn−1

1√
2π

(
G ◦ Φ−1(αx + ax)−G ◦ Φ−1(αx)

)
dγn−1

(28)

where G is such that G′ = Fe−t
2/2. Note that G ◦ Φ−1 is convex by the previous Lemma,

and therefore

G ◦ Φ−1(αx + ax)−G ◦ Φ−1(αx) ≥ G ◦ Φ−1(ax)−G ◦ Φ−1(0).

So (28) is

≥
ˆ
Rn−1

1√
2π

(
G ◦ Φ−1(ax)−G ◦ Φ−1(0)

)
dγn−1

≥ 1√
2π
G ◦ Φ−1

(ˆ
Rn−1

axdγn−1

)
−G ◦ Φ−1(0)

=
1√
2π
G ◦ Φ−1(γ(K))−G ◦ Φ−1(0) =

ˆ
HK(e1)

F (x1)dγ.

where the last inequality follows from Jensen’s inequality (by convexity of G ◦ Φ−1). Also,
equality is attained if K is the appropriate half-space.

As a corollary, we deduce:

Theorem 6.47 (Bobkov [22]). The L2-norm of the Gaussian barycenter of a convex set K
is maximized by a half-space when γ(K) is prescribed.∣∣∣∣ˆ

K

xdγ

∣∣∣∣ ≤ ∣∣∣∣ˆ
HK

xdγ

∣∣∣∣
where HK is any half-space with γ(HK) = γ(K).
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Proof. WLOG say
´
K
xdγ = −te1, t ≥ 0. Then∣∣∣∣ˆ

K

xdγ

∣∣∣∣ = t

= −
ˆ
K

x1dγ

≤ −
ˆ
HK

x1dγ

=

∣∣∣∣ˆ
HK

xdγ

∣∣∣∣
where the last inequality follows from Proposition 6.45 andHK = {x ∈ Rn : x1 ≤ Φ−1(γ(K))}.

6.13 Gaussian measure of dilates of convex sets in a direction, and
an improved Gaussian Poincare inequality for linear func-
tions on convex sets

Proposition 6.48. Let K be a convex set and θ ∈ Sn−1. Let, as before,

HK(θ) =
{
x ∈ Rn : ⟨x, θ⟩ ≤ Φ−1(γ(K))

}
.

Then ˆ
K

⟨x, θ⟩2 dγ ≤
ˆ
HK(θ)

⟨x, θ⟩2 dγ.

Before we prove this proposition, let us outline an interesting implication. Throughout
this subsection denote

Tt =


t 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 , (29)

the dilation operator in the direction e1. We get:

Corollary 6.49. Let K be a convex set in Rn and HK(e1) be defined as before. Then ∀t ≥ 0,

γ (TtK) ≥ γ (TtHK(e1)) .

Proof. It is enough to show

d

dt
γ(TtK)

∣∣∣∣
t=1

≥ d

dt
γ (TtHK(e1))

∣∣∣∣
t=1

.
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We have
d

dt
γ(TtK)

∣∣∣∣
t=1

=

(
1√
2π

n

ˆ
TtK

e−x
2/2dx

)′

1

=y=T−1
t x

(
1√
2π

n

ˆ
K

e−ty
2
1/2−(

∑n
i=2 y

2
i )/2tdy

)′

1

=

ˆ
K

(1− x21)dγ

= γ(K)−
ˆ
K

x21dγ

≥ γ (HK(e1))−
ˆ
HK(e1)

x21dγ

=
d

dt
γ(TtHK)t=1.

Remark 6.50. Let K be a asymmetric convex set in Rn. Then for all t ≥ 1, γ (TtK) = α(t)
increases in t, where Tt is defined in (29).

Indeed,

α′(t)t=1 = γ(K)−
ˆ
K

x21dγ ≥ 0.

We know by Poincare inequality,

 
K

x21dγ −
( 

K

x1dγ

)2

≤ 1.

Since
ffl
K
x1dγ = 0, ˆ

K

x21dγ ≤ γ(K).

This property is rather special for the Gaussian measure.

Definition 6.51. Let f : R→ R be a function, f ≥ 0. Denote f ∗ a non-increasing function
such that

γ1(f > t) = γ1(f
∗ > t).

Lemma 6.52. Let K ⊂ R be connected. f : K → R, f ≥ 0, measurable, f ∈ L1(K, γ).
Suppose {f > t} are connected for each t. Then

ˆ
K

fx2dγ1(x) ≤
ˆ
K

f ∗x2dγ1.
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Proof. a =
´∞
0

1{t<a}dt.

ˆ
K

fx2dγ1 =

ˆ
K

ˆ ∞

0

ˆ ∞

0

1{f(x)>s} · 1{x2>t}dtdsdγ1(x)

=

ˆ ∞

0

ˆ ∞

0

γ1
(
{f(x) > s} ∩ {x2 > t}

)
dtds.

(30)

Now notice for all A ⊂ R,

γ1(A ∩ [−α, α]) ≥ γ1(A
∗ ∩ [−α, α])

where A∗ = (−∞,Φ−1(γ(A))). So (30) is

≤
ˆ ∞

0

ˆ ∞

0

γ1
(
{f ∗ > t} ∩ {x2 > s}

)
dtds

=

ˆ
K

f ∗x2dγ.

We will now prove the previous Proposition.

Proof. WLOG let θ = e1. Let f(t) = γ1(K ∩ {x1 = t}).
ˆ
K

x21dγ =

ˆ
R
x2f(x)dγ1(x)

≤
ˆ
R
x2f ∗(x)dγ1(x)

=

ˆ
HK

x21dγ.

Finally, we deduce the following result which will appear in [138]:

Theorem 6.53 ([138]). Let K be any convex set, γ(K) = a ∈ [0, 1].

η(a) =
√

2πaΦ−1(a)eΦ
−1(a)2/2 ∈ [−1, 0] (31)

Then  
K

⟨x, θ⟩2 dγ + η(a)

( 
K

⟨x, θ⟩ dγ
)2

≤ 1.

Proof.  
K

⟨x, θ⟩2 dγ ≤
 
HK(θ)

⟨x, θ⟩2 dγ.
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WLOG
ffl
K
⟨x, θ⟩2 dγ ≤ 0 =⇒

ffl
K
⟨x, θ⟩ dγ ≥

´
HK
⟨x, θ⟩ dγ. So the LHS of the above is

≤
 
K

⟨x, θ⟩2 dγ + η(a)

( 
HK(θ)

⟨x, θ⟩ dγ
)2

= 1

where the last equality is left as homework (one can deduce this from Ehrhard’s inequality).

Remark 6.54. This is a stronger version of Poincare inequality for linear functions.

6.14 Gaussian measure of dilates of convex sets

For t ≥ 1, K a set, and γ(K) fixed, for what:
♠ is

γ(tK) ≥ γ(t♠)? (32)

♣ is
γ(tK) ≥ γ(t♣)? (33)

Lemma 6.55. (32) is equivalent to γ(K) = γ(♠),

ˆ
K

|x|2dγ ≤
ˆ
♠
|x|2dγ.

(33) is equivalent to γ(K) = γ(♣),

ˆ
K

|x|2dγ ≥
ˆ
♣
|x|2dγ.

Proof. (32) is equivalent to
d

dt
γ(tK)t=1 ≥

d

dt
γ(t♠)t=1.

d

dt
γ(tK) =

(
cn

ˆ
tK

e−x
2/2dx

)′

t=1

=

(
cn

ˆ
K

e−t
2y2/2tndy

)′

t=1

= nγ(K)−
ˆ
K

x2dγ.

Remark 6.56. x2 = ⟨x, x⟩ = |x|2
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Proposition 6.57. Let K be a measurable set in Rn such that

γ(K) = γ(RBn
2 ).

Then ˆ
K

x2dγ ≥
ˆ
RBn2

xdγ

Proof.

√
2π

n

(ˆ
K

x2dγ −
ˆ
RBn2

x2dγ

)
=

ˆ
Sn−1

ˆ ρK(θ)

0

tn+1e−t
2/2dtdθ −

ˆ
Sn−1

ˆ R

0

tn+1e−t
2/2dtdθ

=

ˆ
{θ:ρK(θ)≥R}

ˆ ρK(θ)

R

tn+1e−t
2/2dtdθ −

ˆ
{θ:ρK(θ)≤R}

ˆ R

ρK(θ)

tn+1e−t
2/2dtdθ ≥

R2

(ˆ
Sn−1

ˆ ρK(θ)

0

tn−1e−t
2/2dtdθ −

ˆ
Sn−1

ˆ R

0

tn−1e−t
2/2dtdθ

)
= R2 (γ(K)− γ(RBn

2 )) = 0.

Corollary 6.58. γ(K) = a, K ⊂ Rn some measurable set. Then ∀t ≥ 1,

γ(tK) ≤ γ(tRBn
2 )

with γ(RBn
2 ) = a. And

γ(tK) ≥ γ(t · (Rn\rBn
2 ))

with γ(Rn\rBn
2 ) = a.

Next, we ask ourselves the following question: which convex set K minimizes γ(tK) for
t ≥ 1, while γ(K) is fixed? Without the convexity assumption, we just saw that the answer
would be – the complement of a centered ball. But with the convexity assumption?

Theorem 6.59. Let K be convex and t ≥ 1. Let H be a half space with γ(H) = γ(K) and
suppose γ(K) ≥ 1

2
. Then

γ(tK) ≥ γ(tH).

Proof. As before, it suffices to establish the inequality for derivatives, and get the conclusion
by Newton’s theorem. This time, we shall use another expression for the derivative:

d

dt
γ(tK) =

d

dt
γ(tK\K) =

d

dt

ˆ
tK\K

dγ =

ˆ
∂K

hK(nx)dγ

≥ r(K) ·
ˆ
∂K

dγ = r(K) · γ+(∂K) ≥ r(H) · γ+(∂H) =
d

dt
γ(tH),

where we used the fact that hK(nx) ≥ r(K), and the last inequality comes from the Gaussian
isoperimetric inequality and the fact that r(K) ≥ r(H) (which we proved in Proposition
6.43.)
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Remark 6.60. Note that earlier we showed that on one hand,

d

dt
γ(tK)t=1 = nγ(K)−

ˆ
K

x2dγ,

and on the other hand,

d

dt
γ(tK)t=1 =

ˆ
∂K

hK(nx)dγ =

ˆ
∂K

⟨x, nx⟩dγ.

The two expressions could also be shown to be equal using integration by parts with boundary.
However, in this course we strive to avoid integrating by parts with boundary.

Remark 6.61. Theorem 6.59 is also true for γ(K) ≤ 1
2
, as can be shown via slightly mod-

ifying the argument (see home work). This result could also be deduced directly from the
Ehrhard inequality.

6.15 Gaussian measure of dilates of symmetric convex sets: the
S-inequality of R. Lata la, K. Oleszkiewicz [123]

Next, we ask the same question as in the last subsection, but restrict attention to symmetric
convex sets : for t ≥ 1, which symmetric convex set minimizes γ(tK) while γ(K) is fixed?
The answer to this question is: the symmetric strip, and this is a famous result of R. Lata la,
K. Oleszkiewicz [123].

Theorem 6.62 (Lata la-Oleszkiewicz, S-inequality). Let K be a symmetric convex set,
γ(K) = a ∈ [0, 1]. Then for any t ≥ 1,

γ(tK) ≥ γ(tSK),

where SK is the symmetric strip with same Gaussian measure as K, that is

SK = {x ∈ Rn : |⟨x, θ⟩| ≤ α} so that γ(Sk) = a.

Corollary 6.63. If γ(K) = γ(Sk) for a symmetric strip SK, thenˆ
K

x2dγ ≤
ˆ
SK

x2dγ,

for symmetric convex K.

The key result that they proved in [123] is the following

Theorem 6.64 (L-O). If r(K) = sup{r > 0 : rBn
2 ⊂ K}, K a symmetric convex set, then

r(K)γ+(∂K) ≥ r(SK)γ+(∂SK),

where γ(K) = γ(SK) for a symmetric strip SK.
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Remark 6.65. Unlike in the non-symmetric case, for symmetric sets this statement is highly
non-trivial.

Indeed, if K is symmetric and convex, r(K) ≥ r(SK). But we have

γ+(∂K) ̸≥ γ+(∂SK),

in general.

Let us mention a related

Conjecture 6.66 (Morgan; Heilman [83]). Let K be a symmetric set in Rn with γ(K) = a.
Then,

γ+(∂K) ≥ min
k=1,...,n

{γ+(∂Ck(a)), γ+(∂Cc
k(a))},

where Ck(a) is the k-round cylinder, i.e.

Ck(a) = RkB
k
2 × Rn−k,

such that γ(Ck(a)) = a.

For sets of γ(K) = 1− ε for ε small, indeed γ+(∂K) ≥ γ+(∂SK) is known , see Barchiesi,
Julin [19].

Proof of S-inequality from the Theorem 6.64. As before,

d

dt
γ(tK) ≥ r(K)γ+(∂K) ≥ r(SK)γ+(∂SK) =

d

dt
γ(tSK).

Theorem 6.64 in fact follows from the 2-dimensional fact:

Lemma 6.67. Let K be a convex set in R2 which is symmetric about the y-axis. Then,

r(K)γ+(∂K) ≥ r(SK)γ+(∂SK),

where SK is a symmetric strip.

Proof of the Theorem 6.64 from the Lemma . We use Ehrhard symmetrization. For K ⊂ Rn

symmetrize into 2-dimensional set K̃ which is convex, symmetric about an axis, γ+(∂K) ≥
γ+(∂K̃) and r(K) ≥ r(K̃). Notice that

γ+(∂K)r(K) ≥ γ+(∂K̃)r(K̃) ≥ γ+(∂S̃K)r(S̃K) = γ+(∂SK)r(SK).

As you see, once one thinks of the proof scheme (which is, of course, the hard part), the
proof of the S-inequality readily follows from Lemma 6.15. However, this Lemma is the most
difficult and highly technical step in the proof, and the argument is computer-assisted. We
do not reproduce it here, but refer the interested reader to [123].
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6.16 Home work

Question 6.68 (3 points). Find an alternative proof of Bobkov’s inequality by approximating
the Gaussian measure by the uniform measure on the Hamming cube.

Question 6.69 (1 point). Verify that

ϕ−1(γ(tBn
2 ))

t
→t→∞ 1.

(recall that we used this fact to deduce the Gaussian Isoperimetric Inequality from Ehrhard’s
inequality).

Question 6.70 (1 point). Deduce the Gaussian Isoperimetric Inequality directly from Bobkov’s
inequality.

Question 6.71 (2 points). Prove Kahane’s inequality: let g1, ..., gk, ... be a sequence of i.i.d.
N(0, 1) random variables. For any q ≥ p > 0, any n ≥ 1 and any z1, ..., zn ∈ Rn we have(

E∥
n∑
i=1

gizi∥q
) 1

q

≤ αq
αp

(
E∥

n∑
i=1

gizi∥p
) 1

p

,

where
αp = (E|gi|p)

1
p .

Question 6.72 (2 points). Prove the following properties of Ehrhard symmetrizations. Let
S = S(L, e) be a Gaussian symmetrization and A and B be arbitrary closed sets. Then

• γ(S(A)) = γ(A) provided that A is Borel measurable

• If A ⊂ B then S(A) ⊂ S(B)

• For a vector v, S(A+ v) = S(A) + v

• If A1 ⊂ A2 ⊂ ... are open sets and A = ∪∞
i=1Ai then S(A) = ∪ni=1S(Ai)

Question 6.73 (1 point). Let L1 and L2 be two sub-spaces in Rn such that (L1 ∩L2)
⊥ ∩L1

and (L1 ∩ L2)
⊥ ∩ L2 are orthogonal. Then

S(L1, e) ◦ S(L2, e) = S(L2, e) ◦ S(L1, e) = S(L1 ∩ L2, e).

Question 6.74 (1 point). Let n ≥ 3 and k ≥ 2. Show that for every k−symmetrization S
there exist 2-symmetrizations S1, ..., Sk−1 such that S = S1 ◦ ... ◦ Sk=1. Hint: use Question
6.73.

Question 6.75 (1 point). In dimension 2, show that there is a sequence θ1, ..., θk, ... ∈ Sn−1

such that letting Si = S(θ⊥i , θi) ◦ ... ◦S(θ⊥1 , θ1), one has for every set A, that Si(A) converges
to a half-space of the same Gaussian measure as A.
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Question 6.76 (2 points). Prove, for any ϵ > 0, any Gaussian symmetrization S and any
set A :

S(A) + ϵBn
2 ⊂ S(A+ ϵBn

2 ).

Conclude that the Ehrhard symmetrization decreases the Gaussian Perimeter. Using Ques-
tions 6.75 and 6.74, conclude the Gaussian Isoperimetric Inequality (directly without passing
via the Ehrhard inequality).

Question 6.77 (2 points). Prove that the Gaussian symmetrization of any convex set is
also convex. (recall that this was a crucial step in proving Ehrhard’s inequality.)

Question 6.78 (2 points). Find lower estimates on the isoperimetric profile of some product
measures of your choice (beyond the uniform measure on the cube and the Gaussian).

Question 6.79 (4 points). Solve the isoperimetric problem on the square in dimension 2:
prove that if |A ∩ [0, 1]2| = a ∈ [0, 1] then |∂A ∩ [0, 1]2| is bounded from below by the case of
A being either an appropriately shifted ball, or a half-space.

Question 6.80 (3 points). Let L be a convex body. Find a lower estimate for the anisotropic
Gaussian perimeter of a set A with γ(A) = a, that is

lim inf
ϵ→0

γ(A+ ϵL)− γ(A)

ϵ
.

For which L is it sharp?

Question 6.81 (2 points). Prove the simple case of the Gaussian Correlation Inequality
(called the Sidak Lemma): let K and L be a pair of symmetric strips. Then γ(K ∩ L) ≥
γ(K)γ(L).

Hint: use the Prekopa-Leindler inequality.

Question 6.82 (1 point). Prove the Gaussian Log-Sobolev inequality by linearizing Bobkov’s
inequality.

Question 6.83 (1 point). Show that the functional Ehrhard inequality tensorizes, i.e. that
from knowing it in dimensions k and m one can deduce it in the dimension k +m.

Question 6.84 (5 points). Try and find the proof of Functional Ehrhard Inequality in di-
mension one, without using the geometric Ehrhard.

Question 6.85 (1 point). Verify that for a ∈ [0, 1],

η(a) =
√

2πaΦ−1(a)eΦ
−1(a)2/2 ≥ −1. (34)

Question 6.86 (3 points). In class we showed that if K is any convex set, γ(K) = a ∈ [0, 1],
then letting η(a) as in (34) we have

1

γ(K)

ˆ
K

⟨x, θ⟩2 dγ +
η(a)

γ(K)2

(ˆ
K

⟨x, θ⟩ dγ
)2

≤ 1.
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Find an alternative proof of this fact using Ehrhard’s inequality, or perhaps the consequences
of Ehrhard’s inequality – the generalized Bobkov inequality or the Ehrhard-Brascamp-Lieb
inequality which we deduced in class.

Question 6.87 (1 point). Modify the proof of the Theorem 6.59 to conclude that also in the
case γ(K) ≤ 1

2
, one has γ(tK) ≥ γ(tH) for all t ≥ 1, were K is a convex set and H is a

half-space with γ(K) = γ(H).

7 Hörmander’s L2 method

7.1 The Bochner formula and its extension

Let dµ = e−v(x)dx on Rn for a convex function v and Lu = ∆u− ⟨∇u,∇v⟩ for u ∈ C2(Rn).
Recall that when the integrals make sense, then we have the following integration by parts
formula: ˆ

vLudµ = −
ˆ
⟨∇u,∇v⟩dµ.

Furthermore, the following classical “double integration by parts” formula is very useful:

Theorem 7.1 (Bochner-Lichnerovich). Assuming that the integrals exist and u ∈ C2(Rn),
we have ˆ

(Lu)2dµ =

ˆ
∥∇2u∥2 + ⟨∇2v∇u,∇u⟩dµ,

where ∇2u = ( ∂2u
∂xi∂xj

)ij is the Hessian matrix and ∥A∥2 =
∑

i,j a
2
ij is the Hilbert-Schmidt

norm.

Standard proof. We have

ˆ
(Lu)2dµ =

ˆ
LuLudµ = −

ˆ
⟨∇u,∇Lu⟩dµ =

ˆ
⟨∇2v∇u,∇u⟩ −

n∑
i=1

∂iuL∂iudµ

=

ˆ
⟨∇2v∇u,∇u⟩+

n∑
i=1

ˆ
⟨∇∂iu,∇∂iu⟩dµ

=

ˆ
∥∇2u∥2 + ⟨∇2v∇u,∇u⟩dµ,

where we have used ∇(Lu) = L∇u−∇2v∇u with L∇u = (L∂1u, ..., L∂nu)T .

Furthermore, the following is true:

Theorem 7.2. Assuming that the integrals exist, u ∈ C2(Rn) and f ∈ C1(Rn), we have

ˆ
f
(
(Lu)2 − ∥∇2u∥2 − ⟨∇2v∇u,∇u⟩

)
dµ = 2

ˆ
⟨∇2u∇u,∇f⟩dµ.
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Remark 7.3. When f ≡ 1, we get Bochner’s formula. Furthermore, this result can be
obtained from Bochner’s formula by changing the measure to fdµ whose potential is V −log f.

Non-standard proof. We shall outline the same argument that we used to prove integration
by parts. We have

ˆ
fdµ =

ˆ
f(x)e−v(x)dx =

ˆ
f(y + t∇u(y))e−v(y+t∇u(y)) det(Id+ t∇2u)dy =: α(t),

where we substituted x = y + t∇u(y) Note that α does not depend on t. Therefore,

d

dt
α(0) = 0.

This implies, as we saw before,
ˆ
fLudµ = −

ˆ
⟨∇f,∇u⟩dµ.

We also have
d2

dt2
α(0) = 0

which implies the theorem (HW). Hint: d
dt

detA(t) = det(A(t)) tr(A−1(t) d
dt
A(t)) which gives

det(Id+ t∇2u) = 1 + t∆u+
t2

2
((∆u)2 − ∥∇2u∥2).

7.2 Sobolev Spaces

For f ∈ C1(Rn), we set

∥f∥ :=

√ˆ
|∇f |2dµ

and define the Sobolev space as

W 1,2(µ) :=

{ˆ
fdµ <∞

}
∩ {f : ∂if ∈ L2(µ)},

where the closure is taken with respect to ∥·∥. Note that if
´
fdµ < ∞ and ∂if ∈ L2(µ),

then by Poincaré inequality
ˆ
f 2dµ ≤

(ˆ
fdµ

)2
+ C(µ)

ˆ
|∇f |2dµ <∞.

More generally, we can define space W k,m(µ) of functions whose k−th (generalized)
derivatives are integrable to the power m with respect to µ. The integration by parts
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formula and Bochner formula are valid in W 1,2 and W 2,2, respectively. In fact, the operator
L on the Soblev space is defined via the integration by parts formula being valid for all test
functions, since Sobolev functions might not be differentiable.

The upshot is that we will work in Sobolev spaces and will freely use all our tools related
to integration by parts, and will freely work with differential operators. See Evans [62] for
more details.

7.3 Density of the image of L in W 1,2(µ)

In this subsection, we prove the following very important fact: for any function f ∈ W 1,2(µ)
with

´
fdµ = 0, we can find a function u such that Lu ≈ f , where ≈ is understood in some

acceptable sense. Namely, we outline the following classical fact:

Theorem 7.4. L(W 2,2(µ)) is dense (w.r.t. the W 1,2-norm) in W 1,2(µ) ∩ {g :
´
gdµ = 0}.

In other words, for any g ∈ W 1,2(µ) such that
´
gdµ = 0 and ε > 0, there exists g̃ such that´

g̃dµ = 0, g̃ ∈ W 1,2(µ) and u ∈ W 2,2(µ) with Lu = g̃ and ∥g − g̃∥W 1,2(µ) < ε.

Remark 7.5. Note that
´
gdµ = 0 is important. Indeed,
ˆ
Ludµ = −

ˆ
⟨∇1,∇u⟩dµ = 0,

and thus Lu = g̃ implies
´
g̃ = 0.

Lemma 7.6 (Lax-Milgram). Let H be a Hilbert space with norm ∥·∥, Q a symmetric bilinear
form on H, ℓ be a linear functional on H. In addition, let

• Q(f, g) ≤ C1∥f∥∥g∥ (continuity),

• Q(f, f) ≥ C2∥f∥2 (coercivity) and

• |ℓ(f) ≤ C3∥f∥ (continuity).

Then, there exists a unique h ∈ H such that

Q(f, h) = ℓ(f).

Sketch of proof. Set H = W 1,2(µ), Q(f, g) =
´
⟨∇f,∇g⟩dµ. Then we have Q(f, g) ≤ ∥f∥∥g∥

and Q(f, f) = ∥f∥2. If we set ℓ(f) = −
´
fg0dµ for some fixed function g0 ∈ W 1,2(µ) with´

g0dµ = 0. This implies

|ℓ(f)| = |
ˆ

(f −
ˆ
fdµ)g0dµ| ≤

∥∥∥f − ˆ
f
∥∥∥∥g0∥ ≤ C(g)CPoin(µ)∥f∥.

By Lax-Milgram there exists h ∈ W 1,2(µ) such that

−
ˆ
ug0dµ =

ˆ
⟨∇h,∇f⟩, qquad∀f ∈ W 1,2.
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which is equivalent to

g0 = Lh,

ˆ
uLhdµ =

ˆ
⟨∇h,∇f⟩,

by integration by parts. The theorem follows by using elliptic regularity methods.

We remark that a somewhat different proof (which is a bit more complicated, but it does
not swap elliptic regularity under the rag) can be found in Cordero-Erausquin, Fradelizi,
Maurey [50].

7.4 Review of dual norms

Definition 7.7. Let (B, ∥·∥) be a Banach space. Then the dual norm is defined by

∥x∥∗ := sup
y∈B:∥y∥≤1

⟨x, y⟩.

Some examples:

1. In Rn, suppose ∥·∥ = ∥·∥K for a symmetric convex body K. Then ∥·∥∗ = ∥·∥K◦ .

2. ∥f∥p =
(´
|f |p
)1/p

for p ≥ 1, then

(∥f∥p)∗ = sup
g:
´
|g|pdµ≤1

ˆ
fgdµ ≤ ∥f∥q∥g∥p = ∥f∥q.

And equality is achieved for f = cg. So Lp(µ)∗ = Lq(µ).

3. Let F be a function space over Rn. Set X = F × ... × F (n-times) a space of vector
functions. Let A be a function matrix of size n × n. Suppose A is positive definite.
Then, for F ∈ X, F = (f1, ..., fn),

∥F∥ :=

√ˆ
⟨AF, F ⟩dµ

is a norm (HW). The dual norm is (HW)

∥F∥∗ =

√ˆ
⟨A−1F, F ⟩dµ.

7.5 The H−1-norm

Recall

∥f∥W 1,2(µ) =

√ˆ
|∇f |2dµ =: ∥f∥H1(µ).

What is the dual norm?

∥f∥H−1(µ) := (∥f∥H1(µ))∗ = sup

{ˆ
ufdµ :

ˆ
|∇u|2dµ ≤ 1

}
.

164



Remark 7.8. Note that ∥f∥H−1(µ) only makes sense when
´
fdµ = 0, otherwise it is infinite.

We shall only consider f with
´
fdµ = 0 when we look at their H−1 norms.

Remark 7.9. Suppose that
´
fdµ = 0 and f = Lv for some v ∈ W 2,2(µ). Then

ˆ
fgdµ =

ˆ
Lvgdµ = −

ˆ
⟨∇v,∇g⟩dµ ≤

√ˆ
|∇v|2dµ

√ˆ
|∇g|2dµ,

If ∥g∥H1 ≤ 1, then ˆ
fgdµ ≤

√ˆ
|∇v|2dµ.

Furthermore,

sup
g: ∥g∥H1≤1

ˆ
fgdµ =

√ˆ
|∇v|2dµ,

since the supremum is attained when g is proportional to v.
In other words, when the equation Lv = f has a solution, then

∥f∥H−1(µ) = ∥v∥H1(µ) where Lv = f.

As we have recently discussed, every f ∈ W 1,2(µ) with
´
fdµ = 0 can be approximated

arbitrarily closely by f̃ such that the equation Lv = f̃ has a solution.

Remark 7.10. Note that if
´
f dµ ̸= 0, then ∥f∥H−1 =∞. Indeed, in this case, we can take

u = sgn
(´

f dµ
)
R where R > 0. Then,

´
fu dµ =

∣∣´ f dµ∣∣R R→∞−−−→ ∞ and
´
|∇u|2 dµ =

0 ≤ 1.
Therefore we shall consider the H−1−norm only for functions which are mean zero.

Let us now discuss the geometric meaning of the H−1 norm. The following result can be
found in Villani [170], see also Klartag [101] (the proof below is taken from the appendix of
[101]).

Theorem 7.11 (Relation of the H−1 norm to mass transport). Let µ be a finite compact
Borel measure on Rn, and h : Rn → R be a bounded measurable function satisfying

´
h dµ =

0. For sufficiently small ε > 0, define µε to be the measure dµε = (1 + εh) dµ. Then

∥h∥H−1(µ) = lim inf
ε→0

W2(µ, µε)

ε
.

Recall

W2(µ, ν)2 = inf
γ∈Γ(µ,ν)

µ,ν

ˆ
Rn

ˆ
Rn
|x− y|2dγ(x, y).
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Proof. We outline the proof of the ≤ inequality. The other direction is left to the reader.
We want to show for all φ ∈ C∞(µ),

ˆ
hφ dµ ≤

√ˆ
|∇φ|2 dµ lim inf

ε→0

W2(µ, µε)

ε
.

Without loss of generality, assume φ is compactly supported. By Taylor’s theorem, we have

φ(y)− φ(x) ≤ |∇φ(x)||x− y|+R|x− y|2 ∀x, y ∈ Rn,

where R depends on φ.
Consider 0 < ε < 1

sup |h| . Then, µε is a measure. Let π be any coupling of µ and µε. We
have ˆ

Rn
hφ dµ =

1

ε

ˆ
Rn
φ(µε − µ) ≤ 1

ε

ˆ
Rn×Rn

|φ(y)− φ(x)| dπ(x, y).

By the Cauchy-Schwartz inequality and the estimate from Taylor’s theorem,

1

ε

ˆ
Rn×Rn

|φ(y)−φ(x)| dπ(x, y) ≤ 1

ε

ˆ
Rn×Rn

|∇φ||x− y|dπ(x, y) +

ˆ
Rn×Rn

R|x− y|2 dπ(x, y)

≤ 1

ε

√ˆ
Rn×Rn

|∇φ|2 dπ(x, y)

√ˆ
Rn×Rn

|x− y|2 dπ(x, y) +
R

ε

ˆ
Rn×Rn

|x− y|2 dπ(x, y).

Taking supremum over all π which are couplings of µ and µϵ, we get

ˆ
Rn
hφ dµ ≤ 1

ε

√ˆ
|∇φ|2 dµW2(µ, µε) +R

W2(µ, µε)
2

ε
.

One can check that W2(µ,µε)2

ε

ε→0−−→ 0, which completes the proof.

7.6 The Hörmander Duality Lemma

We say that norm ∥·∥1 dominates norm ∥·∥2 when any sequence of functions which converges
to zero in ∥ · ∥1, also converges to zero in ∥ · ∥2.

The Lemma below will be the cornerstone of everything that follows.

Lemma 7.12. As usual, let µ be a log-concave probability measure on Rn with density e−V

and the associated Laplace operator L. Suppose for all u ∈ W 2,2(µ), we have
´

(Lu)2 dµ ≥
∥∇u∥2 for some norm ∥·∥ on W 1,2(µ)× . . .×W 1,2(µ)︸ ︷︷ ︸

n times

such that ∥·∥∗ is dominated by ∥·∥H1.

Then, for all f ∈ W 1,2(µ),

ˆ
f 2 dµ−

(ˆ
f dµ

)2

≤ ∥∇f∥2∗ (35)

where ∥ · ∥∗ is the dual norm. The reverse implication holds as well.
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Proof. Without loss of generality, assume
´
f dµ = 0 (since Equation (35) is invariant under

addition of constants to f) and that there exists u ∈ W 2,2(µ) such that Lu = f . Indeed,
recall by Theorem 7.4 that L(W 2,2(µ)) is dense in W 1,2(µ), i.e., for all ε > 0, there exists

f̃ ∈ W 1,2(µ) and u ∈ W 2,2(µ) such that Lu = f̃ and
´
|∇f − ∇f̃ |2 dµ < ε. Since ∥ · ∥∗ is

dominated by ∥ · ∥H1 , this implies that ∥∇f −∇f̃∥∗ ≤ δ(ϵ) where δ(ϵ)→ϵ→0 0. By passing
to a sequence of functions and sending ϵ→ 0 we get the conclusion for f, provided that we
can get the conclusion for each of the functions f̃ in the sequence, for which the solution
to the PDE Lu = f̃ exists. Therefore, to keep the notation clean, let us assume that the
solution to Lu = f exists.

Then, integrating by parts and using the assumption
´

(Lu)2dµ ≥ ∥∇u∥2, we get:

ˆ
f 2 dµ = 2

ˆ
Lu · f dµ−

ˆ
(Lu)2 dµ

= −2

ˆ
⟨∇u,∇f⟩ dµ−

ˆ
(Lu)2 dµ

≤
ˆ
−2⟨∇u,∇f⟩ dµ− ∥∇u∥2 ≤ ∥∇f∥2∗,

where in the last passage we used the fact that for any norm ∥ · ∥ one has

∥∇u∥ · ∥∇f∥∗ ≥ ⟨∇u,∇f⟩,

and therefore, by the AM-GM inequality,

∥∇u∥2 + ∥∇f∥2∗ − 2⟨∇u,∇f⟩ ≥ 0. (36)

Remark 7.13. Note that if we replace the pair of dual norms ∥ · ∥ and ∥ · ∥⋆ with any pair
of functionals that satisfy (36) then the conclusion of Lemma 7.12 still remains valid.

Recall Bochner’s formula Theorem 7.1 which tells us thatˆ
(Lu)2 dµ =

ˆ
∥∇2u∥2 + ⟨∇2V∇u,∇u⟩ dµ,

where ∥ · ∥ is the Hilbert-Schmidt norm. This immideately gives us two situations in which
Lemma 7.12 is applicable.

On one hand, by convexity of V we know that ∇2V is non-negative definite, we haveˆ
(Lu)2 dµ ≥

ˆ
∥∇2u∥2 dµ = ∥∇u∥2H1(µ). (37)

Another estimate is ˆ
(Lu)2 dµ ≥

ˆ
⟨∇2V∇u,∇u⟩ dµ. (38)

Let us discuss the implications of both of these estimates in detail in the coming subsections.
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7.7 Klartag’s H−1 inequality

Combining (37) with Hörmander’s lemma, we get

Corollary 7.14 (Klartag’s H−1 inequality [101], see also Barthe-Klartag [17]). For any
f ∈ W 1,2(µ), ˆ

f 2 dµ−
(ˆ

f dµ

)2

≤ ∥∇f∥2H−1 .

The following corollary of Corollary 7.14 and Theorem 7.11 is now immideate.

Corollary 7.15. For all f ∈ W 1,2(µ),

varµ(f) ≤ lim inf
ε→0

n∑
i=1

(
W2(µ, µ(1 + ε∂if))

ε

)2

.

Suppose for a measure µ and ε > 0 one manages to construct a transport map T : µ →
µ(1 + εψ) such that

´
|x−Tx|2 dµ ≤ C(µ)

´
ψ2 dµ. Then, in view of Corollary 7.15, we have

for all f ∈ W 1,2(µ),
varµ(f) ≤ C(µ)Eµ|∇f |2.

Using these ideas, Klartag [101] showed:

Theorem 7.16 (Klartag). If µ is an unconditional log-concave probability measure, then for
any f ∈ W 1,2(µ),

varµ(f) ≤ C
√

log n

ˆ
|∇f |2 dµ,

where C is an absolute constant.

We have previously discussed this result in the context of other conjectures and results
in section 5.7.

7.8 The L2 proof of the Brascamp-Lieb inequality, which gives an-
other proof of the Prekopa-Leindler and the Brunn-Minkowski
inequality

On the other hand, combining (38) with Hörmander’s lemma, and recalling the third example
of dual norms from subsection 7.4, we get a new proof of the very familiar Theorem 3.75:

Corollary 7.17 (Brasscamp-Lieb inequality (1976.)). For any f ∈ W 1,2(µ),

ˆ
f 2 dµ−

(ˆ
f dµ

)2

≤
ˆ
⟨(∇2V )−1∇f,∇f⟩ dµ.
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Recall that he above statement is equivalent to d2

dt2
log

´
e−(F+tG)∗ dx ≤ 0, i.e. the

Prekopa-Leindler inequality (see the proof of Theorem 3.75 earlier in the notes). There-
fore, Hörmander’s L2 approach gives us another proof of the Prekopa-Leindler inequality
Theorem 3.20, and therefore the Brunn-Minkowski inequality Theorem 3.1 (which followed
as a corollary of Theorem 3.20)!

In fact, a remarkable direct proof of the Brunn-Minkowski inequality (omitting the
Prekopa-Leindler) using this circle of ideas was given by Kolesnikov and Milman [114] (in
fact, their results hold in much greater generality in a Riemannian setting). Hörmander’s L2
method on measure spaces with boundary requires significant modifications, and yields some
additional freedom and a new circle of ideas. We do not go into detail here but refer the
interested reader to Kolesnikov, Milman [112], [113], [114], [115], [116], Kolesnikov, Livshyts
[117], [118], as well as the aforementioned paper by Klartag [101].

Let us point out also another result which follows from the generalized Bochner formula
Theorem 7.2, and the proof is left as a home work.

Theorem 7.18. ([138]) Suppose K is a convex set, g is a concave function, and µ is a
log-concave probability measure. Then,

ˆ
gf 2 dµ−

(ˆ
gf dµ

)2

≤
ˆ
g⟨(∇2v)−1∇f,∇f⟩ dµ,

where dµ = e−v dx.

7.9 The L2 proof of the symmetric Gaussian Poincaré inequality
restricted to a symmetric convex set

Earlier this semester, we proved the symmetric Gaussian Poincaré inequality restricted to
a symmetric convex set by linearlizing the Blaschke-Santaló inequality, and referring to
Cafarelli’s contraction theorem (see section 4.11). However, the Cafarelli theorem was only
stated without proof. Finally, we prove this inequality honestly. This subsection follows the
work of Cordero-Erausquin, Fradelizi, Maurey [50].

First, we shall need the uniqueness of the solution to our PDE:

Lemma 7.19. For any function f ∈ W 1,2(µ), in case the solution to Lu = f exists in
W 2,2(µ), it is unique up to adding a constant to u.

Proof. Suppose not. Let u, v ∈ W 2,2(µ) be such that Lu = Lv and let h = u − v. We get
Lh = 0. Therefore, integrating by parts we see

0 =

ˆ
hLhdµ = −

ˆ
|∇h|2dµ,

and therefore h = C almost everywhere for some constant C (this little step we leave as a
home work). The conclusion follows.
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As a corollary, we get

Corollary 7.20. Suppose u ∈ W 2,2(µ) is a solution to Lu = f for some f ∈ W 1,2(µ) such
that f is an even function, and µ is an even measure. Then u is also an even function.

Proof. Suppose u is not even. Note that v(x) = u(−x) satisfies Lv = f also, since f and V
are even. Thus when u is not even, the uniqueness of the solution to our PDE (which we
saw in Lemma 7.19) is violated, and we get a contradiction.

Finally, we deduce from Hörmander’s Lemma 7.12:

Corollary 7.21. Suppose K is a symmetric convex set, γ is the Gaussian measure, and
f ∈ W 1,2(µ) is an even function. Then,

 
K

f 2 dγ −
( 

K

f dγ

)2

≤ 1

2

 
K

|∇f |2 dγ,

where
ffl
K
♡ dγ = 1

γ(K)

´
K
♡ dγ.

Proof. Let dµ = e−wdγ where w is an even convex function, and
´
dµ = 1. Then, Lu =

△u− ⟨∇w + x,∇u⟩ and using Bochner’s formula Theorem 7.1,

ˆ
(Lu)2 dµ =

ˆ
∥∇2u∥2 + ⟨(∇2w + Id)∇u,∇u⟩ dµ

≥
ˆ
∥∇2u∥2 + ⟨Id∇u,∇u⟩ dµ

=

ˆ
∥∇2u∥2 + |∇u|2 dµ.

Since f is an even function, and w + x2

2
is an even function, we may infer that u is an even

function by Corollary 7.20. Then,
´
∇u dµ = 0. We have the estimate

ˆ
∥∇2u∥2 dµ ≥

ˆ
|∇u|2 dµ−

(ˆ
∇u dµ

)2

=

ˆ
|∇u|2 dµ.

Therefore, ˆ
(Lu)2 dµ ≥

ˆ
∥∇2u∥2 + |∇u|2 dµ ≥ 2

ˆ
|∇u|2 dµ.

Consider the norm ∥ · ∥ =
√

2∥ · ∥L2(µ), so that ∥ · ∥∗ = 1√
2
∥ · ∥L2(µ). By Hörmander’s lemma,

varµ(f) ≤ 1

2
∥∇f∥2L2(µ) =

1

2
Eµ|∇f |2.

Finally, set e−w = 1K to reach the conclusion.
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7.10 Connections to the B-conjecture.

Recall the B-conjecture, previously stated as Conjecture 4.54: for all even log-concave prob-
ability measures µ and for all symmetric convex sets K in Rn, the function log µ(etK) is
concave in t > 0. Recall section 4.12 where we outlined that this conjecture is true when
µ = γ, as was shown by Cordero-Erausquin, Fradelizi and Maurey. Recall that this follows
from Corollary 7.21 which we have just proved using the L2-method.

It turns out that the L2-method is relevant for the B-conjecture in general. We start
by outlining the equivalent local version of the B-conjecture, which is a generalization of
the assertion of Corollary 7.21 (but this more general inequality is currently not known in
general).

Proposition 7.22. For dµ = e−V dx, we have d2

dt2
log µ(etK) ≤ 0 if and only if

 
K

⟨∇V, x⟩2 dµ−
( 

K

⟨∇V, x⟩ dµ
)2

≤
 
K

⟨(∇2V )x, x⟩+ ⟨∇V, x⟩ dµ. (39)

Proof. Home work! Very similar to the Gaussian case which we outlined while proving
Theorem 4.56.

Below we shall see that (39) would follow from the following conjecture.

Conjecture 7.23. For any even log-concave probability measure µ given by dµ = e−V dx),
for all symmetric convex sets K, and for all even f ∈ W 1,2(µ), we have

 
K

f 2 dµ−
( 

K

f dµ

)2

≤
 
K

⟨(∇2V + T )−1∇f,∇f⟩ dµ (40)

for some positive definite functional matrix T = T (x) such that Tx = ∇V .

Remark 7.24. Equation (40) is stronger than the Brasscamp-Lieb inequality since

(∇2V + T )−1 ≤ (∇2V )−1.

Next, we outline

Proposition 7.25. We claim that Conjecture 7.23 implies (39) for any even function f and
even µ, and therefore (in view of Proposition 39), it implies the B-conjecture for an even µ.

Proof. Take f = ⟨∇V, x⟩. Then, ∇f = ∇2V x+∇V . Assuming Conjecture 7.23, we have

varµ|K (⟨∇V, x⟩) ≤
 
K

⟨(∇2V + T )−1(∇2V x+∇V ),∇2V x+∇V ⟩ dµ =

 
K

⟨x,∇2V x+∇V ⟩ dµ.
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For some T such that Tx = ∇V , notice ∇2V x+∇V = (∇2V + T )x, so

varµ|K (⟨∇V, x⟩) ≤
 
K

⟨x,∇2V x+∇V ⟩ dµ.

In remains to note, as before, that to conclude that µ(etK) is log-concave for all symmetric
convex K it suffices to show that d2

dt2
log µ(etK) ≤ 0.

The next result once again shall utilize Hörmander’s duality lemma.

Proposition 7.26 (Corollary of Hörmander’s lemma). Suppose for a given even log-concave
probability measure dµ = e−V dx on Rn, for all even u ∈ W 2,2(µ), for all symmetric convex
sets K ⊂ Rn, we have ˆ

K

∥∇2u∥2 dµ ≥
ˆ
K

⟨T∇u,∇u⟩ dµ

for some positive definite T such that Tx = ∇V . Then, Conjecture 7.23 is true, i.e., for all
even f ∈ W 1,2(µ), we have

 
K

f 2 dµ−
( 

K

f dµ

)2

≤
 
K

⟨(∇2V + T )−1∇f,∇f⟩ dµ.

Proof. Recall Hörmander’s lemma 7.12: if
´

(Lu)2 dν ≥ ∥∇u∥2, then varν(f) ≤ ∥∇f∥2∗. Here
dν = e−w dµ for some convex w,

´
dν = 1. We haveˆ

(Lu)2 dν =

ˆ
∥∇2u∥2 dν +

ˆ
⟨(∇2V +∇2w)∇u,∇u⟩ dν

≥
ˆ
∥∇2u∥2 dν +

ˆ
⟨(∇2V )∇u,∇u⟩ dν

≥
ˆ
⟨T∇u,∇u⟩+ ⟨(∇2V )∇u,∇u⟩ dν

=

ˆ
⟨(T +∇2V )∇u,∇u⟩ dν

= ∥∇u∥2

where ∥∇f∥2∗ =
´
⟨(T +∇2V )−1∇f,∇f⟩ dν (by example 3 from subsection 7.4). It remains

to apply this with dν(x) = 1
µ(K)

1K dµ(x).

We conclude this subsection with the following ultimate combination of Propositions 7.25
and 7.26:

Corollary 7.27. Suppose for a given even log-concave probability measure dµ = e−V dx on
Rn, for all even u ∈ W 2,2(µ), for all symmetric convex sets K ⊂ Rn, we haveˆ

K

∥∇2u∥2 dµ ≥
ˆ
K

⟨T∇u,∇u⟩ dµ

for some positive definite T such that Tx = ∇V . Then, the B-conjecture is true for this
measure µ, i.e. for any symmetric convex K in Rn, we have µ(etK) is log-concave in t > 0.
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7.11 B-conjecture for Rotation-Invariant Measures.

Finally, we outline the proof, due to Cordero-Erausquin and Rotem [49], of the B-conjecture
for rotation-invariant log-concave measures, which is the state of the art in the general topic
of the L2 method.

Definition 7.28. A measure µ is rotation-invariant if for all measurable Ω ⊂ Rn, we have
µ(Ω) = µ(RΩ) where R is a rotation operator.

Some examples include the Gaussian, e−|x|, e−|x|p/p, and unif(Bn
2 ).

The following result is a fundamental new estimate which has already found more than
one application:

Theorem 7.29 (Cordero-Erausquin and Rotem (2021.)). If dµ = e−V dx is a log-concave
probability measure, V (x) := v(|x|) where v : R+ → R, then for all odd functions g ∈ W 1,2(µ)
and all symmetric convex sets K, we haveˆ

K

|∇g|2 dµ ≥
ˆ
K

v′(|x|)
|x|

g2 dµ.

This Theorem implies:

Corollary 7.30. The B-conjecture is true for all rotation-invariant log-concave measures.
In other words, for all log-concave rotation-invariant probability measures µ on Rn, and all
symmetric convex sets K, the map t 7→ µ(etK) is log-concave in t.

Proof of Corollary 7.30 from Theorem 7.29. By Corollary 7.27 it is enough to show, for some
positive-definite T with Tx = ∇V ,ˆ

K

∥∇2u∥2 dµ ≥
ˆ
K

⟨T∇u,∇u⟩ dµ (41)

for all even u. We take T = v′(|x|)
|x| · Id, and then indeed Tx = v′(|x|) · x|x| = ∇V = ∇v(|x|) as

required.
We apply Theorem 7.29 to all the partial derivatives ∂iu of u, 1 ≤ i ≤ n. We get

n∑
i=1

ˆ
K

(∇∂if)2 dµ ≥
n∑
i=1

ˆ
K

v′(|x|)
|x|

(∂iu)2 dµ,

from which (41) follows.

We shall now prove the key Theorem 7.29. The proof will be based on two lemmas.

Lemma 7.31 (One-dimensional inequality). If w, v : [0,∞)→ R are continuous functions,
that are C1 on (0,∞), and f is compactly supported, f(0) = 0, and f ∈ C1([0,∞)), then for
all α ≥ 0, ˆ ∞

0

v′(t)

t
f 2tαe−w−v dt ≤

ˆ ∞

0

((f ′)2 + α(f/t)2 − v′f 2/t)tαe−w−v dt.
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Remark 7.32. If α = 0, then

ˆ ∞

0

v′(t)

t
f 2 dν ≤

ˆ ∞

0

((f ′)2 − v′f 2/t) dν ≤
ˆ ∞

0

(f ′)2 dν

if f is our odd function, thus this Lemma implies Theorem 7.29 in dimension 1 right away.

Proof of Lemma 7.31. We approximate f with a C2 function. Let f(t) = tg(t). Since
f(0) = 0, g is continuous, and g ∈ C1(0,∞).

The left hand side is
ˆ ∞

0

v′(t)

t
f 2tαe−w−v dt =

ˆ ∞

0

v′(t)g2tα+1e−w−v dt

= −
ˆ ∞

0

(g2tα+1e−w)(e−v)′ dt

=

ˆ ∞

0

e−v(2gg′tα+1e−w + (α + 1)g2tαe−w − w′g2tα+1e−w)dt

=

ˆ ∞

0

(2gg′t+ (α + 1)g2 − w′g2t)tαe−w−v dt,

where the last equality follows from integration by parts.

The right hand side is

ˆ ∞

0

((f ′)2 + α(f/t)2 − v′f 2/t)tαew−v dt =

ˆ ∞

0

((g + tg′)2 + αg2 − w′tg2)tαe−w−v dt

=

ˆ ∞

0

(g2 + 2tgg′ + t2(g′)2 + αg2 − w′tg2)tαew−v dt.

The difference is

RHS−LHS =

ˆ ∞

0

t2(g′)2tαe−w−v dt ≥ 0,

which completes the proof.

Next, the following result is a consequence of the log-concavity of µ, and does not formally
rely on the evenness assumption. It was formally deduced, in a much greater generality, by
Kolesnikov and Milman [114].

Lemma 7.33. Let w : Rn → R be a convex C1 function on Rn and dµ = e−w(θ) dθ on Sn−1.
Then, for any C1 function g : Sn−1 → R such that

´
Sn−1 g dµ = 0, we have

ˆ
Sn−1

(n− 1− ⟨∇w(θ), θ⟩)g2 dµ ≤
ˆ
Sn−1

|∇Sn−1g|2 dµ.

Here, ∇Sn−1g = ∇g − ⟨∇g(θ), θ⟩θ if g ∈ C1(Rn).
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Proof Sketch for Lemma 7.33. Let Kt := (1− t)Bn
2 + tL for some convex body L. Then, we

can write hKt(θ) = 1 + tg(θ) for small enough t. Also, by the Prekopa-Leindler inequality,

µ(Kt) = µ((1− t)Bn
2 + tL) ≥ µ(Bn

2 )1−tµ(L)t.

Therefore, d2

dt2
log µ(Kt) ≤ 0 at t = 0, which yields

µ(K0)µ
′′(Kt)|t=0 ≤ (µ′(Kt)|t=0)

2
. (42)

We have µ(K0) = µ(Bn
2 ), and one might believe that

µ′(Kt)|t=0 =
d

dt
µ((1− t)Bn

2 + tL)|t=0 =

ˆ
Sn−1

g dµ,

where hKt = 1 + tg. Further, it was shown by Kolesnikov, Milman [114] that

µ′′(Kt)|t=0 =

ˆ
Sn−1

(n− 1− ⟨∇w(θ), θ⟩)g2 − |∇Sn−1g|2dµ.

Therefore, by Equation (42), µ′′(Kt)|t=0 ≤ 0. The proof is complete.

Remark 7.34. Alternatively, one might hope to deduce Lemma 7.33 using the log-concavity
of

´
e−F

∗
dµ, specifically for the class of rotation-invariant F. As we know, this is equivalent

to ˆ
⟨(∇2F )−1∇φ,∇φ⟩dν ≥ V arν(φ),

where dν = e−F−V dx = e−Fdµ. Is it possible to select a particular rotation-invariant F in
this inequality, and either integrate in polar coordinates, or pass to a limit, and end up with
Lemma 7.33? This is left as a home work.

Proof of the Theorem. With dν = e−v(|x|)−w(x) dx, where v is convex on [0,∞] and w is even
convex on Rn, we haveˆ

Rn

v′(|x|)
|x|

h2 dν = cn

ˆ
Sn−1

ˆ ∞

0

v′(t)

t
h2(tθ)tn−1e−v(t)−w(tθ) dtdθ. (♠)

We use Lemma 7.31 with fθ(t) = h(tθ), wθ(t) = w(tθ) and α = n − 1. Then, w′
θ(t) =

⟨∇w(tθ), θ⟩, and

♠ ≤ cn

ˆ
Sn−1

ˆ ∞

0

(
⟨h(tθ), θ⟩2 + (n− 1)

(
h(tθ)

t

)2

− 1

t
⟨∇w(tθ), θ⟩h(tθ)2

t

)
tn−1e−v(t)−w(tθ) dtdθ.

We use Lemma 7.33 and ∇Sn−1h(x) = ∇h(x)− ⟨∇h, x/|x|⟩x/|x| , to get

cn

ˆ
Sn−1

ˆ ∞

0

(
(n− 1)

(
h(tθ)

t

)2

− 1

t
⟨∇w(tθ), θ⟩h(tθ)2

t

)
tn−1e−v(t)−w(tθ) dtdθ

≤ cn

ˆ ∞

0

tn−1e−v(t)
ˆ
Sn−1

|∇Sn−1h(tθ)|2e−w(tθ) dθdt.
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Therefore,
ˆ
w′(|x|)
|x|

h2 dν ≤ cn

ˆ
Sn−1

ˆ ∞

0

(⟨h(tθ), θ⟩2 + |∇Sn−1h(tθ)|2)tn−1e−w(tθ)−v(t) dtdθ

= cn

ˆ
Sn−1

ˆ ∞

0

|∇h(tθ)|2tn−1e−w(tθ)−v(t) dtdθ

=

ˆ
Rn
|∇h(x)|2e−w(x)−v(|x|) dx.

This concludes the proof of the B-conjecture in the case of rotation-invariant measures.

Remark 7.35. The following claim is left as a home work: µ(etK) is log-concave for any
symmetric convex set K and any rotation-invariant log-concave measure µ, if and only if
for all log-concave measures ν, and for all t > 0, ν(tBn

2 )ν(1
t
Bn

2 ) ≤ ν(Bn
2 )2. In other words,

the work of Cordero-Erausquin and Rotem [49] implies a particular case of the “Log-concave
Blaschke-Santaló” conjecture (Conjecture 4.22) that we discussed earlier.

Remark 7.36. In fact, Cordero-Erausquin and Rotem [49] showed that the B-conjecture is
true for a larger class of rotation-invariant measures, which goes beyond log-concave mea-
sures.

7.12 Klartag’s improvement of Lichnerowicz’s inequality

Recall that the Poincaré constant CPoin(µ) is the smallest c > 0 such that for all locally
Lipschitz f, ˆ

f 2 dµ−
( ˆ

f dµ
)2
≤ c

ˆ
|∇f |2 dµ.

Recall that the KLS conjecture 4.19 states that for any log-concave isotropic probability
measure, CPoin(µ) ≤ C, where C > 0 is an absolute constant independent of the dimension.
Equivalently, for any log-concave probability measure,

CPoin(µ) ≤ C∥Cov(µ)∥op, (43)

where C > 0 is an absolute constant, ∥ · ∥op stands for an operator norm of a matrix, and
Cov(µ) is the covariance matrix of µ. Recall that the (i, j)-entry of the covariance matrix
is given by Cov(µ)ij = E ((Xi − EXi)(Xj − EXj)) , where X is a random vector distributed
according to µ.

Recall also Lichnerowicz’s inequality (which follows, for instance from the Brascamp-Lieb
inequality Theorem 3.75, or alternatively from Cafarelli’s Theorem 4.50): if dµ = e−V dx be
a log-concave probability measure on Rn. with ∇2V ≥ t · Id then one has CPoin(µ) ≤ 1/t, or
in other words, for all locally Lipschitz f,ˆ

f 2 dµ−
( ˆ

f dµ
)2
≤ 1

t

ˆ
|∇f |2 dµ. (44)
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Recall also that the Gaussian measure minimizes the Poincaré constant among all isotropic
measures (see Proposition 6.2). Therefore, if dµ is such that∇2V ≥ Id then µ is not isotropic
unless it is Gaussian. Therefore if one would like to use Lichnerowicz’s inequality in order to
obtain bounds on the Poincaré constant of isotropic log-concave measures (which was a foun-
dation of some powerful recent advances on the subject, see Eldan [58], Lee, Vempala [124],
Chen [44], Klartag, Lehec [106]), then something is missing in the estimate. Furthermore,
one may note that if for dµ = e−V dx we have ∇2V ≥ t · Id then

∥Cov(µ)∥op ≤
1

t
. (45)

Indeed, this can be seen by applying Lichnerowicz’s inequality to linear functions; the details
are left to (a one line) home work. The inequality (45) shows that the conjectured KLS bound
is in fact stronger than Lichnerowicz’s inequality (44), at least up to an absolute constant.

Recently, Klartag [103] improved Lichnerowicz’s inequality and obtained the bound which
is a geometric average of the Lichnerowicz’s bound (44) and the conjectured KLS bound (43):

Theorem 7.37 (Klartag [103]). If µ is a probability log-concave measure dµ = e−V dx and

∇2V ≥ t · Id then CPoin(µ) ≤
√

∥Cov(µ)∥op
t

, where ∥ · ∥op is operator norm.

Without loss of generality we assume that µ is barycentered, i.e.
´
x dµ = 0. Then

Cov(µ) =
(
Eµ(Xi ·Xj)

)
. Note also

∥Cov(µ)∥op = sup
θ∈Sn−1

⟨Cov(µ)θ, θ⟩ = sup
θ

∑
EµXiXjθiθj = sup

θ∈Sn−1

ˆ
⟨x, θ⟩2 dµ. (46)

Assume also without loss of the generality that the support of the measure µ is the whole
of Rn. Recall that the Poincaré constant CPoin(µ) = 1

λ1
where λ1 is the 1st eigenvalue of the

operator
Lu = ∆u− ⟨∇V,∇u⟩.

In other words,

λ1 = inf
f ̸=0,f∈W 1,2(µ)

´
|∇f |2 dµ´
f 2 dµ

= inf
f ̸=0,f∈W 1,2(µ)

´
|∇f |2 dµ´

f 2 dµ− (
´
f dµ)2

.

If the infimum is attained then λ1 > 0 is the smallest number such that ∃f ̸= 0 such
that Lf = −λ1f . This function f is called the first eigenfunction of µ. Note that the first
eigenfunction may not exist. The measure dµ = e−|x| dx on R is an example (see home
work). However, modulo technical details which were fully outlined in [103] we assume “by
approximation” that µ has an eigenfunction f ∈ W 2,2(µ) ∩ C∞ (in fact, even a stronger
statement, related to µ-tempered eigenfunctions, was obtained in [103]).

The following Lemma is a key step in the proof:
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Lemma 7.38. Suppose f is a first eigenfunction of µ and
´
f dµ = 0, with

´
f 2 dµ = 1.

Then

(i) (ˆ
∇f dµ

)2
≥ 1

λ

ˆ
⟨∇2V∇f,∇f⟩ dµ

and

(ii) (ˆ
∇f dµ

)2
≤ λ2 · ∥Cov(µ)∥op.

Proof of the Lemma. We apply Bochner’s formula (Theorem 7.1) to f , which states that

ˆ
(Lf)2 =

ˆ
∥∇2f∥2 + ⟨∇2V∇f,∇f⟩ dµ. (47)

An application of the Poincaré inequality gives that

ˆ
|∇∂if |2 dµ ≥ λ

(ˆ
(∂if)2 −

(ˆ
∂if

)2
)
. (48)

Further, summing up (48) over all i = 1, ..., n, and applying the Cauchy-Schwarz inequality,
we get

ˆ
∥∇2f∥2 dµ ≥ λ

(ˆ
|∇f |2 −

∑
(∂if)2

)
≥ λ

( ˆ
|∇f |2 −

(ˆ
∇f
)2 )

. (49)

In view of (49)and (47) we get

ˆ
(Lu)2dµ ≥ λ ·

(ˆ
|∇f |2 dµ−

(ˆ
∇f dµ

)2 )
+

ˆ
⟨∇2V∇f,∇f⟩ dµ. (50)

On the other hand, since f is the normalized first eigenfunction, we have

ˆ
(Lu)2dµ = λ2

ˆ
f 2dµ = λ2,

and therefore, (50) implies

λ2 ≥ λ

ˆ
|∇f |2 − λ

(ˆ
∇f
)2

+

ˆ
⟨∇2V∇f,∇f⟩ dµ, (51)
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Furthermore, since f is the normalized first eigenfunction, we have

1 =

ˆ
f 2 dµ−

( ˆ
f dµ

)2
=

1

λ

ˆ
|∇f |2 dµ,

or in other words,
´
|∇f |2dµ = λ. Combining this fact with (51) we get the first part of the

Lemma.

For part (ii), note that for all θ ∈ Sn−1 one has, using integration by parts along with
the equation Lf = −λf :

ˆ
⟨∇f, θ⟩ dµ =

ˆ
⟨∇f,∇⟨x, θ⟩⟩ dµ =

ˆ
−Lf · ⟨x, θ⟩ dµ

=

ˆ
λf⟨x, θ⟩ dµ

≤ λ∥f∥L2(µ) ·
(ˆ
⟨x, θ⟩2 dµ

)1/2
= λ

(ˆ
⟨x, θ⟩2 dµ

)1/2
.

Recall that ∥Cov(µ)∥op = supθ∈Sn−1

´
⟨x, θ⟩2 dµ, and thus we get(ˆ

∇f dµ
)2

= sup
θ∈Sn−1

(ˆ
⟨f, θ⟩ dµ

)2
≤ λ2 sup

θ∈Sn−1

ˆ
⟨x, θ⟩2 dµ

= λ2∥Cov(µ)∥op.

Proof of Klartag’s Theorem. Combining both parts of the Lemma 7.38 gives

λ2∥Cov(µ)∥op ≥
1

λ

ˆ
⟨∇2V∇f,∇f⟩ dµ ≥ t

λ

ˆ
|∇f |2 dµ

where we used that ∇2ν ≥ t · Id. Recall that
´
|∇f |2 dµ = λ. The Theorem now follows if

we recall that Cpoin(µ) = 1
λ
.

Remark 7.39. Klartag used Theorem 7.37, in conjunction with the Stochastic Localization
technique (pioneered by Eldan [58] and developed in this context by Lee, Vempala [124], Chen
[44], Klartag, Lehec [106]), to deduce the best to date bound regarding the KLS conjecture
4.19: he proved that for any isotropic log-concave probability measure µ, the Poincaré con-
stant CPoin(µ) is bounded above by C

√
log n, where C > 0 is an absolute constant that does

not depend on the dimension.

Let us conclude with the following series of remarks. Note that linear functions f(x) =
⟨x, θ⟩ form the space of the first eigenfunctions for the Gaussian measure. Another ex-
ample when the first eigenfunction is understood is the uniform probability measure on a
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coordinate parallelepiped: the eigenfunctions are given by f(x) = sin(tixi) for each i, with
the appropriate choice of ti. In both of these cases, the first eigenfunctions are odd and
“one-dimensional” (that is, they only depend on one variable rather than n variables).

Perhaps inspired by these examples as well the considerations similar to the ones from
Lemma 7.38, Klartag implicitly made a conjecture:

Conjecture 7.40 (Klartag [103]). Suppose µ is a barycentered isotropic log-concave prob-
ability measure such that its first eigenfunction f exists and is smooth (and tempered, see
[103] for details). Then f has a “preferred direction”, i.e.(ˆ

∇f dµ
)2
≥ c0

ˆ
|∇f |2 dµ.

Here c0 is an absolute constant that does not depend on dimension or µ.

We leave it as a homework to deduce that this conjecture would imply the KLS conjecture.

7.13 The Dimensional Brunn-Minkowski Conjecture

We close with a discussion of the following Conjecture, first made in a partial case by Gardner,
Zvavitch [69], and then formulated in general by Colesanti, Livshyts, Marsiglietti [47]:

Conjecture 7.41 (Dimensional Brunn-Minkowski conjecture). Suppose µ is an even log-
concave probability measure, and K,L are symmetric convex sets. Take λ ∈ [0, 1]. Then

µ
(
λK + (1− λ)L

)1/n
≥ λµ(K)1/n + (1− λ)µ(L)1/n. (52)

Remarks and History

• We know by Prekopa-Leindler inequality (Theorem 3.20) that

µ
(
λK + (1− λ)L

)
≥ µ(K)λµ(L)1−λ. (53)

Note that this is a weaker inequality than the statement of Conjecture 7.41, since for
any a, b > 0 and p ≥ q > 0 one has(

λap + (1− λ)bp
)1/p
≥
(
λaq + (1− λ)bq

)1/q
→q→0 a

λb1−λ.

In other words, the inequality

µ
(
λK + (1− λ)L

)p
≥ λµ(K)p + (1− λ)µ(L)p (54)

is stronger when p > 0 is larger.

180



• As we discussed before, if µ is the Lebesgue measure then by homogeneity (52) and
(53) are equivalent.

• Symmetry (or some structural assumption) is important. Indeed, If K = Bn
2 and

L = Bn
2 + Re1 for large R > 0 (so that L is a ball shifted far away from the origin),

then µ
(
K+L
2

)
→R→∞ 0 while µ(K) remains fixed. Therefore, (52) fails for this K and

L. Furthermore, this example shows that the inequality (54) cannot hold for all convex
sets, without additional assumptions, for no p > 0.

• If p > 1
n

then we cannot hope to get (54) for all symmetric convex sets. This follows
from the fact that the Lebesgue measure approximates any even log-concave measure
µ near the origin, thus one cannot hope to have a larger p in (54) than in the Lebesgue
case (which is sharp).

• However, in some cases one may hope to have (54) for convex sets K and L with
µ(K), µ(K) ≥ a, for some a ∈ [0, 1], with the exponent p = p(a) →a→1 ∞. Indeed,
this is the case for the Gaussian measure γ, as follows from the Ehrhard inequality
(see home work). This is also the case for strictly log-concave even measures, as was
shown by Livshyts [137].

• Gardner, Zvavitch [69], who first formulated Conjecture 7.41 in the case of the Gaussian
measure, showed that in the case n = 1 the conjecture is true.

• Gardner, Zvavitch [69] also asked if it is enough to assume that the convex sets K
and L contain the origin, for Conjecture 7.41 to be true in the case of the Gaussian
measure. However, Nayar and Tkocz [147] proved that this is not the case: they
constructed an example on the plane of K and L both containing the origin however
the optimal p in (54) for them is approximately 0.3 < 0.5. See the picture below of
their counterexample:
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• Livshyts, Marsighetti, Nayar and Zvavitch [134], and later Hosle, Kolesnikov, Livshyts
[86] showed that Conjecture 7.41 follows from the Log Brunn-Minkowski Conjecture
4.63. Therefore, Conjecture 7.41 is true in dimension 2. Also, Conjecture 7.41 is true
if the log-concave measure µ and the convex sets K,L are all unconditional.

Below, we shall discuss the following results concerning Conjecture 7.41. As a first
application of the L2 approach to this problem, it was shown:

Theorem 7.42 (Kolesnikov, Livshyts [117]). For all convex sets K,L containing the origin
and any λ ∈ [0, 1],

γ (λK + (1− λ)L)
1
2n ≥ λγ(K)

1
2n + (1− λ)γ(L)

1
2n ,

where γ is the standard Gaussian measure.

Note that the sets are not required to be symmetric in this Theorem, although the
exponent is 1

2n
rather than 1

n
(which is weaker). This result was recently extended by

Aishwarya, Rotem [1] to p-homogeneous potentials, and especially interestingly, they showed
that the assumption of the convexity of the sets can be dropped! We will discuss their
extension as well.

Next, we state the remarkable

Theorem 7.43 (Cordero-Erausquin, Rotem [49]). Suppose µ is rotation-invariant and log-
concave and suppose that K and L are symmetric and convex sets. Let λ ∈ [0, 1]]. Then

µ (λK + (1− λ)L)
1
n ≥ λµ(K)

1
n + (1− λ)µ(L)

1
n .

In other words, Conjecture 7.41 holds for rotation-invariant log-concave measures.

Earlier, this result was proved in the Gaussian case µ = γ by Eskenazis and Moschidis
[61], and a key idea from their argument was also used by Cordero-Erausquin and Rotem [49].
The key new ingredient in the work of [49] was Theorem 49, the same key fact which allowed
Cordero-Erausquin and Rotem [49] to prove the B-conjecture in the rotation-invariant case.
Furthermore, we shall see that the following more general fact is true:

Proposition 7.44. Let µ be an even log-concave probability measure. Suppose for all even
functions u ∈ W 2,2(µ) one has

ˆ
∥∇u∥2 dµ ≥

ˆ
⟨∇T∇u,∇u⟩ dµ,

for some non-negative definite matrix T (that depends on x) such that Tx = ∇V . Then
Conjecture 7.41 is true for this measure µ.
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One should compare Proposition 7.44 to Proposition 7.26, which states that the same
exact condition would imply the B-conjecture for a given measure µ.

Lastly, the following result shows that indeed the log-concavity (guaranteed by Prekopa-
Leindler’s inequality) can be improved to power-concavity for all even log-concave probability
measures, and for symmetric convex sets.

Theorem 7.45 (Livshyts [137]). For all even log-concave measures µ and symmetric convex
sets K,L one has

µ
(
λK + (1− λ)L

)cn
≥ λµ(K)cn + (1− λ)µ(L)cn ,

where

cn = cn−4(log n)−1/2.

TBC... all the proofs will be added soon.

7.14 Home work

Question 7.46 (1 point). Outline a second proof of Bochner’s identity, via the change of
variables x = y+ t∇u(y), and taking the second derivative, that we briefly discussed in class.

Question 7.47 (1 point). a) Consider the Banach space X = W 1,2(µ) × ... ×W 1,2(µ) (n
times), let F = (f1, ..., fn) ∈ X and consider

∥F∥ =

√ˆ
⟨AF, F ⟩dµ,

where A = A(x) is a positive definite matrix of functions in W 1,2(µ). Show that ∥F∥ is a
norm.
b) Show that its dual norm is

∥F∥∗ =

√ˆ
⟨A−1F, F ⟩dµ.

Question 7.48 (2 points). In class, we showed that for µ, a finite Borel measure, and a
bounded measurable function h with

´
hdµ = 0, ε > 0, and µε such that dµε = (1 + εh)dµ,

we have

∥h∥H−1(µ) = lim inf
ε→0

≤ W2(µ, µε)

ε
.

Show that the ≥ inequality also holds.
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Question 7.49 (5 points). Suppose µ is an isotropic unconditional log-concave probability
measure and ψ – an unconditional W 1,2(µ) function. Construct a transport map T from µ
to (1 + ϵ∂iψ)µ such that ˆ

|Tx− x|2dµ(x) ≤ C log n

ˆ
|∂iψ|2dµ.

Conclude Klartag’s C log n bound for the KLS conjecture in the case of unconditional log-
concave measures, using also several tools that we discussed the class.

Question 7.50 (1 point). Explain why the conclusion of the Question implies the B-
conjecture for unconditional log-concave measures.

Question 7.51 (1 point). Prove the reverse implication in the Lemma of Hörmander (reverse
to the one we proved in class.)

Question 7.52 (2 points). Deduce (using the generalized Bochner formula that we discussed
in class) the following extension of Brascamp-Lieb inequality: let K be a convex set, µ – log-
concave measure in Rn with potential V such that µ(K) = 1, and let g be a concave function
on K. Then ˆ

gf 2dµ−
(ˆ

gfdµ

)2

≤
ˆ
g⟨(∇2V )−1∇f,∇f⟩dµ,

Question 7.53 (1 point). Let µ be an even log-concave measure on Rn. Show that the fact
that µ(etK) is log-concave in t > 0 for any symmetric convex K is equivalent to the fact that
for any symmetric convex K one has

1

µ(K)

ˆ
K

⟨∇V, x⟩2dµ−
(

1

µ(K)

ˆ
K

⟨∇V, x⟩dµ
)2

≤ 1

µ(K)

ˆ
K

⟨∇2V x, x⟩+ ⟨∇V, x⟩dµ.

Question 7.54 (2 points). Show that the fact that µ(etK) is log-concave in t for any sym-
metric convex K and any rotation-invariant log-concave measure µ is equivalent to the fact
that for any even log-concave measure ν one has

ν(tBn
2 )ν(t−1Bn

2 ) ≤ ν2(Bn
2 ).

In other words, the result of Cordero-Erasquin and Rotem implies the conjectured log-concave
Blaschke-Santalo inequality in a very partial case.

Question 7.55 (4 points). As discussed in class, prove Lemma 2 (from November 29) using
the Brascamp-Lieb inequality.

Question 7.56 (1 point). Let µ be a log-concave probability measure on Rn with density
e−V such that ∇2V ≥ t · Id. Suppose (for simplicity) that

´
xdµ = 0 (the barycenter is

at the origin). Recall that the covariance matrix is then Cov(µ) = (EµXiXj). Prove that
∥Cov(µ)∥ ≤ 1

t
.

Hint: Recall that the operator norm of the covariance matrix is supθ∈Sn−1

´
⟨x, θ⟩2dµ and

use similar ideas to the ones we used when showing that the Gaussian measure minimizes
the Poincaré constant among the isotropic measures.
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Question 7.57 (2 points). Show that there are log-concave probability measures for which
the first eigenfunction does not exist.
Hint: consider dµ = 1

2
e−|x|dx on R.

Question 7.58 (1 point). Recall Klartag’s “preferred direction” conjecture that we discussed
in class: there exists an absolute constant c > 0 such that if µ is an isotropic log-concave
probability measure such that its first eigenfunction exists and is C2, then(ˆ

∇fdµ
)2

≥ c

ˆ
|∇f |2dµ.

Show that this conjecture implies the KLS conjecture (which states that the Poincaré con-
stant of an isotropic log-concave probability measure is bounded from above by an absolute
constant.)

Question 7.59 (4 points). Prove Klartag’s “preferred direction” conjecture from Question
7.58 in dimension 1.

Question 7.60 (8 points). Try to find a lower bound for the c > 0 in Klartag’s “preferred
direction” conjecture from Question 7.58 in all dimensions; it is OK if it depends on n –
what is the largest bound that you can get?
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[85] L. Hörmander, Notions of convexity, Progress in Mathematics 127, Birkh̀‘auser, Boston,
199.

[86] J. Hosle, A. V. Kolesnikov, G. V. Livshyts, On the Lp-Brunn-Minkowski and dimen-
sional Brunn-Minkowski conjectures for log-concave measures, Journal of Geometric
Analysis (2020).

190



[87] P. Ivanisvili, Boundary value problem and the Ehrhard inequality, Studia Mathematica
246 (3), (2019).

[88] R. Kannan, L. Lovasz, M. Simonovits, Isoperimetric problems for convex bodies and a
localization lemma, J. Discr. Comput. Geom., Vol. 13, (1995), 541-559.

[89] J. Kim, Minimal volume product near Hanner polytopes, Journal of Functional Analysis
266 (2014), 2360–2402.

[90] B. Klartag, A central limit theorem for convex sets, Invent. Math., Vol. 168, (2007),
91–131.

[91] B. Klartag, Power-law estimates for the central limit theorem for convex sets, J. Funct.
Anal., Vol. 245, (2007), 284–310.

[92] B. Klartag, 5n Minkowski symmetrizations suffice to arrive at an approximate Euclidean
ball, Ann. of Math. 156 (2002), no. 3, 947–960.

[93] B. Klartag, Isotropic constants and Mahler volumes, Advances in Math., Vol. 330,
(2018), 74-108.

[94] B. Klartag, On nearly radial marginals of high-dimensional probability measures, J. Eur.
Math. Soc, Vol. 12, (2010), 723-754.

[95] B. Klartag, High-dimensional distributions with convexity properties, Proc. of the Fifth
Euro. Congress of Math., Amsterdam, July 2008. Eur. Math. Soc. publishing house,
(2010), 401-417.

[96] B. Klartag, Marginals of geometric inequalities, Geometric Aspects of Functional Anal-
ysis, Lecture Notes in Math. 1910, Springer (2007), 133-166.

[97] B. Klartag, Isomorphic and almost-isometric problems in high-dimensional convex ge-
ometry, proceedings of the Internat. Congress of Mathematicians, Madrid, Spain, 2006.
Eurpoean Math. Soc., Vol. II, (2006), 1547–1562.

[98] B. Klartag, Minerva Mini-Course on Convexity in High Dimensions, Lecture 3 Prince-
ton University, Fall Semester, 2022.

[99] B. Klartag, Minerva Mini-Course on Convexity in High Dimensions, Lecture 4 Prince-
ton University, Fall Semester, 2022.

[100] B. Klartag, On convex perturbations with a bounded isotropic constant, Geometric and
Functional Analysis (GAFA), Vol. 16, Issue 6 (2006) 1274–1290.

[101] B. Klartag, A Berry-Esseen type inequality for convex bodies with an unconditional
basis, Probab. Theory Related Fields, vol. 45, no. 1, (2009), 1-33.

191



[102] B. Klartag, An isomorphic version of the slicing problem, J. Functional Analysis, Vol.
218 (2005) 372-394.

[103] B. Klartag, Logarithmic bounds for isoperimetry and slices of convex sets, Ars Inve-
niendi Analytica (2023), Paper No. 4, 17 pp.

[104] B. Klartag, Logarithmically-concave moment measures I, Geometric Aspects of Func-
tional Analysis, Lecture Notes in Math. 2116, Springer (2014), 231-260.

[105] B. Klartag, Lecture notes in Convex Localization and Mass transport, 2023.

[106] B. Klartag, J. Lehec, Bourgain’s slicing problem and KLS isoperimetry up to polylog,
Geometric and Functional Analysis (GAFA), Vol. 32, Springer (2022), 1134–1159.

[107] B. Klartag, E. Milman, Centroid bodies and the logarithmic Laplace transform - a
unified approach, J. Functional Analysis, Vol. 262, No. 1, (2012), 10–34.

[108] B. Klartag, V.D. Milman, Geometry of log-concave functions and measures, Geom.
Dedicata 112 (2005) 169-182.

[109] B. Klartag, V. D. Milman, The slicing problem by Bourgain, Analysis at Large, Ded-
icated to the Life and Work of Jean Bourgain, edited by A. Avila, M. Rassias and Y.
Sinai, Springer, (2022), 203–232

[110] B. Klartag, R. Vershynin, Small ball probability and Dvoretzky Theorem, Israel J.
Math., Vol. 157, no. 1 (2007), 193–207.

[111] A. Kolesnikov, Mass transportation and Contractions, 2011.

[112] A.V. Kolesnikov, E. Milman, Riemannian metrics on convex sets with applications to
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[161] L. A. Santaló, An affine invariant for convex bodies of n-dimensional space, Portug.
Math., Vol. 8, (1949), 155-161.

[162] R. Schneider, Convex bodies: the Brunn-Minkowski theory, second expanded edition,
Encyclopedia of Mathematics and its Applications, (2013).

[163] C. Saroglou, Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Ded-
icata, (2015), Vol. 177, no. 1, 353–365.

[164] C. Saroglou, More on logarithmic sums of convex bodies, preprint, arXiv:1409.4346.

195



[165] V. N. Sudakov and B. S. Tsirel’son, Extremal properties of half-spaces for spherically
invariant measures. Problems in the theory of probability distributions, II. Zap. Nauch.
Leningrad Otdel. Mat. Inst. Steklov 41 (1974), 14-24 (in Russian).

[166] M. Talagrand, Transportation cost for Gaussian and other measures, Geom. Funct.
Anal. 6, 587–600, 1996.

[167] B. Uhrin, Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality, Adv.
Math. 109 (2) (1994) 288-312.

[168] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math.
83 (1979), 543-553

[169] P. Valettas, On the tightness of Gaussian concentration for convex functions, J.
d’Analyse Math., 2017, to appear.

[170] C. Villani, Optimal transport, old and new, Springer-Verlag, Berlin, 2009.

196


	Volumes in High dimensions, hands-on computations and pretty pictures.
	Introduction
	Computing the volumes of the cube, the cross-polytope and the Euclidean ball.
	The first taste of the Concentration phenomena
	About the thin annulus around the ball
	First hand-wavy glance into the connection between isoperimetry and concentration: most of the mass of a convex body is near the boundary.
	Some more fun regarding metric estimates in high dimension
	Home work

	Background from Convexity
	Convexity: basic concepts
	Minkowski functional of a convex body and the radial function
	Hahn-Banach theorem and the supporting hyperplanes
	Support function of a convex set
	Duality/Polarity
	Home work

	Brunn-Minkowski inequality and friends
	Brunn-Minkowski inequality and the Isoperimetric inequality
	Proof of the Brunn-Minkowski inequality, due to Lazar Lyusternik in 1935.
	Steiner symmetrization
	Proof of the Brunn-Minkowski inequality via Steiner symmetrizations, valid for convex bodies only
	Mixed volumes, Minkowski's first inequality
	Brunn's concavity principle
	Log-concave functions and measures, Borell's theorem and the Prekopa-Leindler inequality
	Proof of Prékopa-Leindler inequality
	Log-concavity of marginals and convolutions of log-concave measures
	Borell-Brascamp-Lieb inequality
	Linearizations of geometric and functional inequalities
	Legendre Transform
	Generalized Log-Sobolev Inequality
	Reformulations and notable partial cases of the Generalized Log-Sobolev Inequality
	The p-Beckner Inequality
	A few words about the Laplace operator with respect to log-concave measures
	A short and non-standard proof sketch of the integration by parts
	A word about eigen-functions
	The derivation of the Brascamp–Lieb Inequality from the Generalized Log-Sobolev inequality
	Going back to Poincaré inequalities: Payne-Weinberger and Poincaré on the circle
	Colesanti's inequality via Brascamp-Lieb (Cordero-Erasquin's approach)
	Dimensional extensions of Generalized Log-Sobolev and Brascamp-Lieb inequalities
	Home work

	The Blaschke-Santaló inequality and friends
	The formulation of the Blaschke-Santaló inequality
	Hanner polytopes
	About Bourgain-Milman's theorem
	Volume product of non-symmetric convex bodies and related questions and results
	A connection with the slicing problem
	Proof of the symmetric Blaschke-Santalo inequality, and an interesting open problem
	A fun inequality on the circle
	Functional version of the Blaschke-Santalo inequality
	Linearizing Theorem 4.29.
	A brief excursion into mass transport
	Restricting the symmetric Gaussian Poincaré inequality onto a symmetric convex set
	The B-conjecture
	The B-theorem for the Gaussian measure due to Cordero-Erasquin, Fradelizi, Maurey
	Some more history on the B-conjecture
	B-conjecture in the unconditional case
	About Log-Brunn-Minkowski conjecture
	Reverse Log-Sobolev inequality
	Fathi's symmetrized Transport-Entropy Inequality
	Home work

	Concentration of Measure Phenomenon: the soft approach
	Introduction to the basic concepts related to concentration of measure
	Levy's concentration function and types of estimates
	Concentration of measure for Lipschitz functions
	Log-Concave Measure, Borell's Lemma and the Reverse Hölder inequality
	Paouris's inequality (statement)
	Sub-exponential concentration of linear functions for Log-Concave measures, and of other semi-norms
	The Thin Shell Conjecture and the KLS conjecture
	Klartag's bound on the thin shell in the unconditional case
	Exponential concentration via Poincare Inequality
	Marton's argument: almost-optimal concentration for the Gaussian via Fathi
	Concentration and Laplace Functional
	The Herbst Argument
	Small ball estimates for norms on the sphere by Klartag and Vershynin
	Home work

	Gaussian Measure and its special properties
	A general discussion
	The isoperimetric profile
	The Ehrard Inequality
	Gaussian isoperimetric inequality
	Gaussian concentration inequality and Borell's noise stability
	Isoperimetry on the cube
	Gaussian symmetrization and the proof of the Ehrhard inequality
	The Latała's Functional Ehrhard inequality
	Generalized Bobkov's inequality via linearizing functional Ehrhard's inequality
	An Ehrhard-Brascamp-Lieb type inequality
	Minimizing centered in-radius of a convex set of fixed Gaussian measure
	Gaussian barycenter inequality and some extensions
	Gaussian measure of dilates of convex sets in a direction, and an improved Gaussian Poincare inequality for linear functions on convex sets
	Gaussian measure of dilates of convex sets
	Gaussian measure of dilates of symmetric convex sets: the S-inequality of R. Latała, K. Oleszkiewicz LatOl
	Home work

	Hörmander's L2 method
	The Bochner formula and its extension
	Sobolev Spaces
	Density of the image of L in W{̂1,2}(mu)
	Review of dual norms
	The H{̂-1}-norm
	The Hörmander Duality Lemma
	Klartag's H-1 inequality
	The L2 proof of the Brascamp-Lieb inequality, which gives another proof of the Prekopa-Leindler and the Brunn-Minkowski inequality
	The L2 proof of the symmetric Gaussian Poincaré inequality restricted to a symmetric convex set
	Connections to the B-conjecture.
	B-conjecture for Rotation-Invariant Measures.
	Klartag's improvement of Lichnerowicz's inequality
	The Dimensional Brunn-Minkowski Conjecture
	Home work


