Rectifiability in Carnot groups

Daniela Di Donato (University of Pavia)

joint work with G.Antonelli, S.Don and E.Le Donne

Online Asymptotic Geometric Analysis Seminar

9 October 2024

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

9 October 2024

C¹ submanifolds and Lipschitz graphs in Carnot groups

- Carnot groups: basic definitions and properties
- 2 Rectifiable sets in \mathbb{R}^n
- Rectifiable sets in a Carnot group: C¹ and Lipschitz version
- Sequivalence between C_{H}^{1} -regular surfaces and intrinsic Lipschitz graphs
- Subscription of C_{H}^{1} -regular surfaces in terms of suitable weak solutions of PDE system

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

Definition

A Carnot group \mathbb{G} of step κ is a simply connected Lie group whose Lie algebra \mathfrak{g} , of dimension n, admits a step κ stratification, i.e. a direct sum decomposition $\mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_{\kappa}$ such that

$$\begin{cases} [V_1, V_{i-1}] = V_i & \text{if } 2 \le i \le \kappa \\ [V_1, V_\kappa] = \{0\} \end{cases}$$

where $[V_1, V_{i-1}]$ is the subspace of \mathfrak{g} generated by the commutators [X, Y] with $X \in V_1$ and $Y \in V_{i-1}$.

• V₁ generates all of g

Daniela Di Donato (University of Pavia)

Definition

A Carnot group \mathbb{G} of step κ is a simply connected Lie group whose Lie algebra \mathfrak{g} , of dimension n, admits a step κ stratification, i.e. a direct sum decomposition $\mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_{\kappa}$ such that

$$\begin{cases} [V_1, V_{i-1}] = V_i & \text{if } 2 \le i \le \kappa \\ [V_1, V_\kappa] = \{0\} \end{cases}$$

where $[V_1, V_{i-1}]$ is the subspace of \mathfrak{g} generated by the commutators [X, Y] with $X \in V_1$ and $Y \in V_{i-1}$.

V₁ generates all of g

The exponential map is a global diffeomorphism from g to G. Hence any p ∈ G can be written in a unique way as p = exp(p₁X₁ + · · · + p_nX_n) and we identify

$$m{p} \quad \longleftrightarrow \quad (p_1,\ldots,p_n)$$

and \mathbb{G} with (\mathbb{R}^n, \cdot) , where the group operation \cdot is determined by the Campbell-Hausdorff formula.

• It is useful to know that $\mathbb{G} = \mathbb{G}^1 \oplus \mathbb{G}^2 \oplus \cdots \oplus \mathbb{G}^{\kappa}$ where $\mathbb{G}^i = \exp(V_i) = \mathbb{R}^{n_i}$ is the *i*th layer of \mathbb{G} and dim $(V_i) = n_i$. We can write

$$p = (p^1, \ldots, p^\kappa)$$

with $p^i \in \mathbb{G}^i$.

The exponential map is a global diffeomorphism from g to G. Hence any p ∈ G can be written in a unique way as p = exp(p₁X₁ + · · · + p_nX_n) and we identify

$$m{p} \quad \longleftrightarrow \quad (p_1,\ldots,p_n)$$

and \mathbb{G} with (\mathbb{R}^n, \cdot) , where the group operation \cdot is determined by the Campbell-Hausdorff formula.

• It is useful to know that $\mathbb{G} = \mathbb{G}^1 \oplus \mathbb{G}^2 \oplus \cdots \oplus \mathbb{G}^{\kappa}$ where $\mathbb{G}^i = \exp(V_i) = \mathbb{R}^{n_i}$ is the *i*th layer of \mathbb{G} and dim $(V_i) = n_i$. We can write

$$p = (p^1, \ldots, p^\kappa)$$

with $p^i \in \mathbb{G}^i$.

Two important families of transformations of \mathbb{G} :

• Intrinsic left translations of \mathbb{G} : For any $p \in \mathbb{G}$ the left translation $\tau_p : \mathbb{G} \to \mathbb{G}$ is defined as

$$\boldsymbol{q}\mapsto \tau_{\boldsymbol{p}}\boldsymbol{q}:=\boldsymbol{p}\cdot\boldsymbol{q}.$$

• Intrinsic dilations of \mathbb{G} : for any $\lambda > 0$, the (non isotropic) dilation $\delta_{\lambda} : \mathbb{G} \to \mathbb{G}$ is defined as

$$\delta_{\lambda}(\boldsymbol{p}^{1},\ldots,\boldsymbol{p}^{\kappa})=(\lambda\boldsymbol{p}^{1},\ldots,\lambda^{i}\boldsymbol{p}^{i},\ldots,\lambda^{\kappa}\boldsymbol{p}^{\kappa})$$

Daniela Di Donato (University of Pavia)

Definition

A nonnegative function $p \to \|p\|$ on \mathbb{G} is said to be a homogeneous norm if

•
$$||p|| = 0$$
 if and only if $p = 0$.

•
$$\|\delta_{\lambda} p\| = \lambda \|p\|$$
 for all $p \in \mathbb{G}$ and $\lambda > 0$.

•
$$\|p \cdot q\| \le \|p\| + \|q\|$$
 for all $p, q \in \mathbb{G}$.

Given any homogeneous norm $\|\cdot\|$, it is possible to introduce a distance in \mathbb{G} given by

$$d(p,q) = \|p^{-1} \cdot q\| \quad \forall p,q \in \mathbb{G}.$$

• $d(\tau_p(q), \tau_p(q')) = d(q, q')$ $d(\delta_\lambda(q), \delta_\lambda(q')) = \lambda d(q, q').$

• For any bounded subset Ω of G there are *c*₁, *c*₂ > 0 such that

 $c_1|p-q| \leq d(p,q) \leq c_2|p-q|^{1/\kappa}$ for $p,q\in\Omega$.

The topological dimension of (G, d) is n
 The Hausdorff (or metric) dimension of (G, d) is ∑^κ_{i=1} i dim_iV_i≥n.

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

9 October 2024

6/39

Definition

A nonnegative function $p \to \|p\|$ on \mathbb{G} is said to be a homogeneous norm if

•
$$||p|| = 0$$
 if and only if $p = 0$.

•
$$\|\delta_{\lambda} p\| = \lambda \|p\|$$
 for all $p \in \mathbb{G}$ and $\lambda > 0$.

•
$$\|\boldsymbol{p} \cdot \boldsymbol{q}\| \leq \|\boldsymbol{p}\| + \|\boldsymbol{q}\|$$
 for all $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{G}$.

Given any homogeneous norm $\|\cdot\|$, it is possible to introduce a distance in \mathbb{G} given by

$$d(p,q) = \|p^{-1} \cdot q\| \quad \forall p,q \in \mathbb{G}.$$

• $d(\tau_{\rho}(q), \tau_{\rho}(q')) = d(q, q')$ $d(\delta_{\lambda}(q), \delta_{\lambda}(q')) = \lambda d(q, q').$

• For any bounded subset Ω of \mathbb{G} there are $c_1, c_2 > 0$ such that

 $c_1|p-q| \leq d(p,q) \leq c_2|p-q|^{1/\kappa}$ for $p,q \in \Omega$.

The topological dimension of (G, d) is n
The Hausdorff (or metric) dimension of (G, d) is ∑^κ_{i=1} i dim_iV_i>n.

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

9 October 2024

୬ ଏ (୯ 6/39

Definition

A nonnegative function $p \to \|p\|$ on \mathbb{G} is said to be a homogeneous norm if

•
$$||p|| = 0$$
 if and only if $p = 0$.

•
$$\|\delta_{\lambda} p\| = \lambda \|p\|$$
 for all $p \in \mathbb{G}$ and $\lambda > 0$.

•
$$\| p \cdot q \| \le \| p \| + \| q \|$$
 for all $p, q \in \mathbb{G}$.

Given any homogeneous norm $\|\cdot\|$, it is possible to introduce a distance in \mathbb{G} given by

$$d(p,q) = \|p^{-1} \cdot q\| \quad \forall p,q \in \mathbb{G}.$$

• $d(\tau_p(q), \tau_p(q')) = d(q, q')$ $d(\delta_\lambda(q), \delta_\lambda(q')) = \lambda d(q, q').$

For any bounded subset Ω of G there are c₁, c₂ > 0 such that

$$c_1|p-q| \leq d(p,q) \leq c_2|p-q|^{1/\kappa} \quad ext{for } p,q\in \Omega.$$

- The topological dimension of (G, d) is n
- The Hausdorff (or metric) dimension of (\mathbb{G}, d) is $\sum_{i=1}^{\kappa} i \dim V_i > n$.

Carnot groups: \mathbb{H}^n as model cases

Examples: Heisenberg groups \mathbb{H}^n

The n-th Heisenberg group \mathbb{H}^n , with $n \ge 1$, is the Carnot group of step 2 with Lie algebra

$$\mathfrak{h}^n := \mathbf{span}\{X_1, \dots, X_{2n}\} \oplus \mathbf{span}\{X_{2n+1}\},$$

the only nontrivial bracket relations being

$$[X_i, X_{i+n}] = X_{2n+1}, \qquad \forall i = 1, \ldots, n.$$

Carnot groups: \mathbb{H}^n as model cases

Examples: Heisenberg groups \mathbb{H}^n

The n-th Heisenberg group \mathbb{H}^n , with $n \ge 1$, is the Carnot group of step 2 with Lie algebra

$$\mathfrak{h}^n := \mathbf{span}\{X_1, \dots, X_{2n}\} \oplus \mathbf{span}\{X_{2n+1}\},$$

the only nontrivial bracket relations being

$$[X_i, X_{i+n}] = X_{2n+1}, \qquad \forall i = 1, \ldots, n.$$

- we identify $\mathbb{H}^n \equiv \mathbb{R}^{2n+1}$
- $p = (p^1, p^2) \in \mathbb{H}^n$ with $p^1 \in \mathbb{R}^{2n}$ and $p^2 \in \mathbb{R}$
- $\delta_{\lambda}(\boldsymbol{p}) = (\lambda \boldsymbol{p}^1, \lambda^2 \boldsymbol{p}^2)$
- Topological dimension of (ℍⁿ, d) is 2n + 1
- Metric dimension of (Hⁿ, d) is 2n + 2

d-dimensional rectifiable sets in \mathbb{R}^n

Definition 1: $E \subset \mathbb{R}^n$ is *d*-rectifiable if

 $\mathcal{H}^{d}(E) < \infty$ and *E* is the Lipschitz image of a subset of \mathbb{R}^{d} .

More general definitions are

Definition 2a: $E \subset \mathbb{R}^n$ is countably *d*-rectifiable if

$$\mathcal{H}^d(E\setminus \bigcup_{i\in\mathbb{N}}S_i)=0$$

where S_i are *d*-dimensional C^1 embedded submanifolds

Definition 2b: $E \subset \mathbb{R}^n$ is *countably d-rectifiable* if

$$\mathcal{H}^{d}(E \setminus \bigcup_{i \in \mathbb{N}} \operatorname{graph}(f_i)) = 0$$

where $f_i : \mathbb{R}^d \to \mathbb{R}^{n-d}$ are Lipschitz functions

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

9 October 2024

The Lipschitz definition and C^1 definition are equivalent. The proof follows from

- Rademacher's Theorem (Differentiability almost everywhere of Lipschitz functions)
- Extension of Lipschitz functions
- Whitney's Extension theorem

Rectifiable sets in G: possible definitions

Definition: $E \subset \mathbb{R}^n$ is *countably d-rectifiable* equivalently if

- $\mathcal{H}^{d}(E \setminus []S_{i}) = 0$ where S_{i} are *d*-dimensional C^{1} embedded submanifolds or
- $\mathcal{H}^{d}(E \setminus [] graph(f_i)) = 0$ where $f_i : \mathbb{R}^d \to \mathbb{R}^{n-d}$ are Lipschitz functions $i \in \mathbb{N}$

Questions

- What are *d*-dimensional, C¹ submanifolds in G?
- What are Lipschitz graphs in G?
- Which Hausdorff measure do we have to use?

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

Lipschitz graphs in a Carnot group $\mathbb G$

Question

Definition of Lipschitz graphs in a general Carnot group.

Daniela Di	Donato ((University	of Pavia)
------------	----------	-------------	-----------

Rectifiability in Carnot groups

9 October 2024

11/39

Lipschitz graphs in a Carnot group $\mathbb G$

Intrinsic Lipschitz graphs were introduced by Franchi, Serapioni, Serra Cassano.

References

- Bigolin, Caravenna, Serra Cassano (2014)
- Citti, Manfredini, Pinamonti, Serra Cassano (2014)
- Fassler, Orponen (2019)
- Monti, Vittone (2012)
- Vittone (2020)
- etc.

Daniela Di Donato	(University of	Pavia)
-------------------	----------------	--------

Intrinsic graphs in a Carnot group G

Let \mathbb{W} , \mathbb{V} be complementary homogeneous subgroups of \mathbb{G} , i.e. $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ and $\mathbb{W} \cap \mathbb{V} = \{0\}$.

Definition: S is a left intrinsic graph over \mathbb{W} in direction of \mathbb{V}

if there is $\varphi : \mathbb{W} \to \mathbb{V}$ s.t.

 $S = \operatorname{graph}(\varphi) := \{ a \cdot \varphi(a) : a \in \mathbb{W} \}$

The notion is "intrinsic"

Left translations and intrinsic dilations of graphs are graphs. In particular,

 $\boldsymbol{\rho} \cdot \operatorname{graph}(\varphi) = \operatorname{graph}(\varphi_{\boldsymbol{\rho}}),$

with $\varphi_p : \mathbb{W} \to \mathbb{V}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Intrinsic graphs in a Carnot group G

Let \mathbb{W}, \mathbb{V} be complementary homogeneous subgroups of \mathbb{G} , i.e. $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ and $\mathbb{W} \cap \mathbb{V} = \{0\}$.

Definition: S is a *left intrinsic graph* over \mathbb{W} in direction of \mathbb{V}

if there is $\varphi : \mathbb{W} \to \mathbb{V}$ s.t.

$$S = \operatorname{graph}(\varphi) := \{ \boldsymbol{a} \cdot \varphi(\boldsymbol{a}) : \boldsymbol{a} \in \mathbb{W} \}$$

The notion is "intrinsic"

Left translations and intrinsic dilations of graphs are graphs. In particular,

$$\boldsymbol{\rho} \cdot \operatorname{graph}(\varphi) = \operatorname{graph}(\varphi_{\boldsymbol{\rho}}),$$

with $\varphi_{p} : \mathbb{W} \to \mathbb{V}$.

Intrinsic Lipschitz graphs in a Carnot group G

Definition: the cone with vertex p, axis \mathbb{V} , opening s > 0 is

 $X(p, \mathbb{V}, s) := \{q \in \mathbb{G} : d(q, p) \ge s \operatorname{dist}(q, \mathbb{V})\}$

Definition: $\varphi : \mathbb{W} \to \mathbb{V}$ is intrinsic Lipschitz

if there is s > 0 such that for all $p \in \operatorname{graph}(\varphi)$

 $X(\rho, \mathbb{V}, s) \cap \operatorname{graph}(\varphi) = \{\rho\}.$

Picture by Serra Cassano on researchgate

Intrinsic Lipschitz graphs in a Carnot group \mathbb{G}

Intrinsic Lipschitz \neq Lipschitz

It is false even locally that

$$\|\varphi(\boldsymbol{a})^{-1}\cdot\varphi(\boldsymbol{a}')\|\leq L\|\boldsymbol{a}^{-1}\cdot\boldsymbol{a}'\|,$$

but it is true that φ is locally $1/\kappa$ -Hölder continuous

$$\|\varphi(a)^{-1}\cdot\varphi(a')\|\leq L\|a^{-1}\cdot a'\|^{1/\kappa}$$

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

15/39

Intrinsic Lipschitz graphs in a Carnot group G

Intrinsic Lipschitz graphs are Ahlfors regular (Franchi, Serapioni (2016))

If $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$, if $\varphi : \mathbb{W} \to \mathbb{V}$ is intrinsic Lipschitz if \mathbb{W} has metric dimension d_m then there are $0 < c_1 < c_2$ s.t.

$$c_1 r^{d_m} \leq S^{d_m} (\operatorname{graph} (\varphi) \cap B(\rho, r)) \leq c_2 r^{d_m}$$
(1)

for all $p \in \text{graph}(\varphi)$ and r > 0, $c_i = c_i(\mathbb{V}, \mathbb{W}, \text{Lipschitz const. of } \varphi)$.

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

Lipschitz rectifiable sets in $\mathbb G$

Lipschitz Definition: *E* is $(d, d_m, \mathbb{G})_L$ -rectifiable

if

- $\mathcal{S}^{d_m}(E) < \infty$,
- there are subgroups (W_i, V_i) complementary in G,
- W_i has topological dimension d and metric dimension d_m
- there are intrinsic Lipschitz functions $\varphi_i : \mathbb{W}_i \to \mathbb{V}_i$,

and

$$\mathcal{S}^{d_m}(\boldsymbol{E}\setminus \bigcup_{i\in\mathbb{N}}\operatorname{graph}(\varphi_i))=0$$

Daniela Di	Donato ((University	of Pavia)
------------	----------	-------------	-----------

C_{H}^{1} -regular surfaces in \mathbb{G}

Questions

- 1. Definition of C_H^1 -regular surfaces.
- 2. Equivalence between C_{H}^{1} -regular surfaces and intrinsic Lipschitz graphs

1. was introduced by Franchi, Serapioni, Serra Cassano and then generalized by Magnani

Daniela Di Donato	(University of Pavia)	
-------------------	-----------------------	--

$C_{\rm H}^1$ -regular surfaces in \mathbb{G}

Let X_1, \ldots, X_{n_1} be a basis of V_1 . We define, for $F : \Omega \subset \mathbb{G} \to \mathbb{R}$ for which the partial derivatives $X_i F$ exist, the horizontal gradient of F as $\nabla_H F = (X_1 F, \ldots, X_{n_1} F)$.

Definition ($C_{\rm H}^1$ function)

A continuous function $f : \Omega \subseteq \mathbb{G} \to \mathbb{R}^k$ is of class C_H^1 if the distributional derivatives $X_j f_i$ are continuous for every i = 1, ..., k, and $j = 1, ..., n_1$.

Definition ($C_{\rm H}^1$ -regular surface)

We say that $S \subset \mathbb{G}$ is a C_{H}^{1} -regular surface of codimension k if $1 \leq k \leq n_{1}$ and for any $p \in S$, there exist a neighborhood \mathcal{U} of p and a map $f \in C_{\mathrm{H}}^{1}(\mathcal{U}; \mathbb{R}^{k})$ such that

 $S \cap \mathcal{U} = \{q \in \mathcal{U} : f(q) = 0\},\$

and the $k \times n_1$ matrix $(X_j f_i(p))_{ij}$ has maximum rank, then equal to k or, equivalently, the P-differential $d_P f$ is surjective.

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

$C_{\rm H}^1$ -regular surfaces in \mathbb{G}

Let X_1, \ldots, X_{n_1} be a basis of V_1 . We define, for $F : \Omega \subset \mathbb{G} \to \mathbb{R}$ for which the partial derivatives $X_i F$ exist, the horizontal gradient of F as $\nabla_H F = (X_1 F, \ldots, X_{n_1} F)$.

Definition ($C_{\rm H}^1$ function)

A continuous function $f : \Omega \subseteq \mathbb{G} \to \mathbb{R}^k$ is of class C_H^1 if the distributional derivatives $X_j f_i$ are continuous for every i = 1, ..., k, and $j = 1, ..., n_1$.

Definition ($C_{\rm H}^1$ -regular surface)

We say that $S \subset \mathbb{G}$ is a C_{H}^{1} -regular surface of codimension k if $1 \leq k \leq n_{1}$ and for any $p \in S$, there exist a neighborhood \mathcal{U} of p and a map $f \in C_{\mathrm{H}}^{1}(\mathcal{U}; \mathbb{R}^{k})$ such that

$$S \cap \mathcal{U} = \{q \in \mathcal{U} : f(q) = 0\},\$$

and the $k \times n_1$ matrix $(X_j f_i(p))_{ij}$ has maximum rank, then equal to k or, equivalently, the P-differential $d_P f$ is surjective.

Daniela Di Donato (University of Pavia)

(日) (四) (E) (E) (E) (E)

Rectifiable sets in the model case of Carnot groups, i.e. \mathbb{H}^n

Problem in the model case, i.e. Heisenberg groups \mathbb{H}^n

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

Rectifiability in Carnot groups

9 October 2024

20/39

э

Rectifiable sets in the model case of Carnot groups, i.e. \mathbb{H}^n

In Heisenberg groups:

 C^1 Definition: *E* is (d, \mathbb{H}) -rectifiable if $S^{d_m}(E) < \infty$ and

$$\mathcal{S}^{d_m}ig(E\setminus igcup_{i\in\mathbb{N}}\mathcal{S}_iig)=0$$

where S_i are $C_{\rm H}^1$ -regular surfaces.

Lipschitz Definition: *E* is $(d, \mathbb{H})_L$ -rectifiable if $\mathcal{S}^{d_m}(E) < \infty$ and

$$\mathcal{S}^{d_m}(E\setminus \bigcup_{i\in\mathbb{N}}\Gamma_i)=0$$

where Γ_i are intrinsic Lipschitz *d*-graphs.

where S^{d_m} is the Hausdorff measure w.r.t. the distance in \mathbb{H}^n and $\begin{cases} d_m = d, & \text{for } 1 \le d \le n, \\ d_m = d + 1, & \text{for } n + 1 \le d \le 2n. \end{cases}$

Daniela Di Donato (University of Pavia)

9 October 2024 21/39

Rectifiable sets in the model case of Carnot groups, i.e. \mathbb{H}^n

Warning: in \mathbb{H}^n we have the equivalence

- E is (d, \mathbb{H}) -rectifiable $\implies E$ is $(d, \mathbb{H})_{L}$ -rectifiable
- Franchi, Serapioni, Serra Cassano (2011)

E is $(2n, \mathbb{H})$ -rectifiable $\iff E$ is $(2n, \mathbb{H})_L$ -rectifiable

Vittone (2020)

E is $(d, \mathbb{H})_L$ -rectifiable $\implies E$ is (d, \mathbb{H}) -rectifiable

Daniela Di Donato (University of Pavia)

Equivalence in $\mathbb G$

General case

Equivalence between C_{H}^{1} -regular surfaces and intrinsic Lipschitz graphs

Daniela Di D)onato (Universit	y of Pavia)
--------------	----------	-----------	-------------

Rectifiability in Carnot groups

9 October 2024

æ

Intrinsically linear functions in $\mathbb{G}=\mathbb{W}\cdot\mathbb{V}$

Definition: $\ell : \mathbb{W} \to \mathbb{V}$ is an *intrinsically linear map*

if ℓ is defined on all of $\mathbb W$ and

$$\operatorname{graph}(\ell) := \{ \boldsymbol{a} \cdot \ell(\boldsymbol{a}) : \boldsymbol{a} \in \mathbb{W} \}$$

is a homogeneous subgroup of $\mathbb{G}.$

Intrinsically linear maps are not homogeneous homomorphisms - in general

Proposition

Let \mathbb{W} and \mathbb{V} be complementary subgroups in \mathbb{G} with \mathbb{V} horizontal of dimension $1 \leq h \leq n_1$. If $\ell : \mathbb{W} \to \mathbb{V}$ is an intrinsically linear map, then there is a $h \times n_1$ matrix \mathcal{M}_ℓ s.t.

$$\ell(a) = \mathcal{M}_{\ell}a^{1},$$
 for all $a = (a^{1}, \ldots, a^{\kappa}) \in \mathbb{W}.$

Daniela Di Donato (University of Pavia)

Intrinsically linear functions in $\mathbb{G}=\mathbb{W}\cdot\mathbb{V}$

Definition: $\ell : \mathbb{W} \to \mathbb{V}$ is an *intrinsically linear map*

if ℓ is defined on all of $\mathbb W$ and

graph
$$(\ell) := \{ a \cdot \ell(a) : a \in \mathbb{W} \}$$

is a homogeneous subgroup of $\mathbb{G}.$

Intrinsically linear maps are not homogeneous homomorphisms - in general

Proposition

Let \mathbb{W} and \mathbb{V} be complementary subgroups in \mathbb{G} with \mathbb{V} horizontal of dimension $1 \leq h \leq n_1$. If $\ell : \mathbb{W} \to \mathbb{V}$ is an intrinsically linear map, then there is a $h \times n_1$ matrix \mathcal{M}_ℓ s.t.

$$\ell(a) = \mathcal{M}_{\ell}a^{1}, \quad \text{for all } a = (a^{1}, \ldots, a^{\kappa}) \in \mathbb{W}.$$

Daniela Di Donato (University of Pavia)

< - 1² →

UID functions in G

Definition: uniformly intrinsically differentiable at 0

 $\varphi : \mathbb{W} \to \mathbb{V}$ with $\varphi(\mathbf{0}) = \mathbf{0}$. φ is uniformly intrinsically differentiable at 0 (φ is UID at 0) if there is an intrinsically linear map $d\varphi_0 : \mathbb{W} \to \mathbb{V}$ s.t.

$$\lim_{r \to 0} \sup_{a,a'} \frac{\|d\varphi_0(a^{-1} \cdot a')^{-1} \cdot \varphi(a)^{-1} \cdot \varphi(a')\|}{\|a^{-1} \cdot a'\|} = 0$$

the supremum is for ||a|| < r, $0 < ||a^{-1} \cdot a'|| < r$.

Definition: UID at a₀ $\varphi : \mathbb{W} \to \mathbb{V} \text{ and } p_0 := a_0 \cdot \varphi(a_0).$ φ is UID at a_0 if and only if $\varphi_{p_0^{-1}}$ is UID at 0 where $\varphi_{p_0^{-1}} : \mathbb{W} \to \mathbb{V}$ is s.t. $p_0^{-1} \cdot \operatorname{graph}(\varphi) = \operatorname{graph}(\varphi_{p_0^{-1}})$ and $\varphi_{p_0^{-1}}(0) = 0$.

UID functions in G

Definition: uniformly intrinsically differentiable at 0

 $\varphi : \mathbb{W} \to \mathbb{V}$ with $\varphi(\mathbf{0}) = \mathbf{0}$. φ is uniformly intrinsically differentiable at 0 (φ is UID at 0) if there is an intrinsically linear map $d\varphi_0 : \mathbb{W} \to \mathbb{V}$ s.t.

$$\lim_{r \to 0} \sup_{a,a'} \frac{\|d\varphi_0(a^{-1} \cdot a')^{-1} \cdot \varphi(a)^{-1} \cdot \varphi(a')\|}{\|a^{-1} \cdot a'\|} = 0$$

the supremum is for ||a|| < r, $0 < ||a^{-1} \cdot a'|| < r$.

Definition: UID at a₀ $\varphi : \mathbb{W} \to \mathbb{V} \text{ and } p_0 := a_0 \cdot \varphi(a_0).$ φ is UID at a_0 if and only if $\varphi_{p_0^{-1}}$ is UID at 0 where $\varphi_{p_0^{-1}} : \mathbb{W} \to \mathbb{V}$ is s.t. $p_0^{-1} \cdot \operatorname{graph}(\varphi) = \operatorname{graph}(\varphi_{p_0^{-1}})$ and $\varphi_{p_0^{-1}}(0) = 0$.

On \mathbb{R}^n this is equivalent to being C^1

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○ 9 October 2024

- If dφ_a : W → V exists, it is unique and it is called the intrinsic differential of φ at a.
- When V is horizontal, we denote D^φφ(a) the matrix associated to dφ_a and we call it the intrinsic gradient of φ at a.

Theorem (DD, Potential analysis, 2021)

- \mathbb{V} , \mathbb{W} are complementary in \mathbb{G} of step κ and \mathbb{V} is horizontal, if $\varphi : \mathbb{W} \to \mathbb{V}$ is UID in \mathbb{W} , then
 - φ is, locally, intrinsic Lipschitz continuous in \mathbb{W} ;
 - 2 φ is, locally, little 1/ κ -Hölder continuous, that is $\varphi \in C(\mathbb{W})$ and for all $\mathcal{F} \Subset \mathbb{W}$

$$\lim_{r\to 0^+} \sup\left\{ \frac{\|\varphi(\boldsymbol{a}) - \varphi(\boldsymbol{a}')\|}{\|\boldsymbol{a}^{-1}\boldsymbol{a}'\|^{1/\kappa}} \right\} = 0$$

for all $a, a' \in \mathcal{F}$ with $0 < ||a^{-1}a'|| < r$;

• the function $a \mapsto d\varphi_a$ is continuous.

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a Carnot group, with \mathbb{V} horizontal and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function.

Theorem (DD, Potential analysis, 2021)

The following are equivalent

- graph(φ) is a C_H^1 regular surface
- **2** φ is UID on U.

Proof. (1) \Rightarrow (2). Implicit Function Theorem (Franchi, Serapioni, Serra Cassano (2001), Magnani (2013)) Proof. (2) \Rightarrow (1). Whitney's Extension Theorem (Franchi, Serapioni, Serra Cassano (2003))

Corollary

If graph(arphi) is a \mathcal{C}^1_H -regular surface, then arphi has continuous intrinsic gradient.

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

9 October 2024

୬ ୯.୧ 27/39

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a Carnot group, with \mathbb{V} horizontal and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function.

Theorem (DD, Potential analysis, 2021)

The following are equivalent

- **9** $graph(\varphi)$ is a C_H^1 regular surface
- **2** φ is UID on U.

Proof. (1) \Rightarrow (2). Implicit Function Theorem (Franchi, Serapioni, Serra Cassano (2001), Magnani (2013)) Proof. (2) \Rightarrow (1). Whitney's Extension Theorem (Franchi, Serapioni, Serra Cassano (2003))

Corollary

If graph(φ) is a C_{H}^{1} -regular surface, then φ has continuous intrinsic gradient.

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

9 October 2024

୬ ୯.୧ 27/39

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a Carnot group, with \mathbb{V} horizontal and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function.

Theorem (DD, Potential analysis, 2021)
The following are equivalent
• graph(φ) is a C_H^1 regular surface

2 φ is UID on U.

Proof. (1) \Rightarrow (2). Implicit Function Theorem (Franchi, Serapioni, Serra Cassano (2001), Magnani (2013)) Proof. (2) \Rightarrow (1). Whitney's Extension Theorem (Franchi, Serapioni, Serra Cassano (2003))

Corollary

If graph(φ) is a C_{H}^{1} -regular surface, then φ has continuous intrinsic gradient.

Daniela Di Donato (University of Pavia)

(a)

Surfaces in Euclidean spaces and in Carnot groups

Euclidean spaces	Carnot groups		
$egin{aligned} S &= \{p: f(p) = 0\} \subset \mathbb{R}^n \ f \in C^1(\mathbb{R}^n, \mathbb{R}^k) \ abla f ext{ has rank k} \end{aligned}$	$egin{aligned} S = \{p: f(p) = 0\} \subset \mathbb{G} \ f \in C^1_H(\mathbb{G}, \mathbb{R}^k) \ abla_H f ext{ has rank k} \end{aligned}$		

$= \{ (a, \varphi(a)) : a \in W \} \qquad \qquad = \{ a \cdot \varphi(a) : a \in \mathbb{W} \}$	
$\varphi: \boldsymbol{W} \to \boldsymbol{V} \qquad \qquad \varphi: \boldsymbol{\mathbb{W}} \to \boldsymbol{\mathbb{V}}$	
$V = \mathbb{R}^k$ and $W = \mathbb{R}^{n-k}$ \mathbb{V} and \mathbb{W} are	
V and W are complementary complementary homogeneous	มมร
linear subspaces subgroups	
φ and $\nabla \varphi$ are continuous φ and $D^{\varphi} \varphi$ are continuous	S

() < </p>

э

Characterization of C_{H}^{1} -regular surfaces

Problem

Characterize uniformly intrinsically differentiable functions in terms of existence and continuity of derivatives of φ

Daniela Di	Donato	(University	of Pavia)
------------	--------	-------------	-----------

29/39

Characterization of C_{H}^{1} -regular surfaces

The first result is given by Ambrosio, Serra Cassano, Vittone (2006)

References

- Antonelli, DD, Don, Le Donne (2022)
- Antonelli, DD, Don (2022)
- Bigolin, Serra Cassano (2010)
- Corni (2019)
- Kozhevnikov (2015)

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

Projected vector fields

Definition (Projected vector fields, Kozhevnikov (2015))

Given $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$, a continuous $\varphi : \mathbb{W} \to \mathbb{V}$ and $W \in \text{Lie}(\mathbb{W})$, we define the φ -projected vector field on \mathbb{W} along W as follows

$$D^{\varphi}_{W}(a) := (d\pi_{\mathbb{W}})_{a \cdot \varphi(a)} W_{a \cdot \varphi(a)}, \qquad \forall a \in \mathbb{W},$$

where $\pi_{\mathbb{W}}$ is the projection on \mathbb{W} given the splitting $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$.

What's the intrinsic gradient of φ ?

$$\begin{split} \mathfrak{g} &= \exp(\operatorname{span}\{X_1, \ldots, X_n\}), \\ \text{where } X_1, \ldots X_{n_1} \text{ is a basis of } V_1, \\ \mathbb{W} &:= \exp(\operatorname{span}\{X_{k+1}, \ldots, X_{n_1}, \ldots, X_n\}), \mathbb{V} := \exp(\operatorname{span}\{X_1, \ldots, X_k\}) \\ \text{The intrinsic gradient of } \varphi : \mathbb{W} \to \mathbb{V} \text{ is } \end{aligned}$$

$$D^{arphi}:=(D^{arphi}_{X_{k+1}},\ldots,D^{arphi}_{X_{n_1}})$$

Daniela Di Donato (University of Pavia)

Characterization of C_{H}^{1} -regular surfaces

Problem in \mathbb{H}^1

•
$$\mathbb{H}^1 = \mathbb{W} \cdot \mathbb{V}$$

 $\mathbb{W} := \exp(\operatorname{span}\{X_2, X_3\}), \quad \mathbb{V} := \exp(\operatorname{span}\{X_1\})$ ۲ with $[X_1, X_2] = X_3$

• we identify
$$\mathbb{H}^1 \equiv \mathbb{R}^3 = \{(x_1, x_2, x_3)\}$$

•
$$\varphi: \mathbb{W} \to \mathbb{V}$$

$$D_{X_2}^{\varphi} := \partial_{x_2} + \varphi \partial_{x_3}, \quad D_{X_3}^{\varphi} = \partial_{x_3}.$$

• Problem: $D^{\varphi}_{\chi_{0}} \varphi = \omega$ in a suitable weak sense iff φ is UID.

Intrinsic gradient $D_{X_0}^{\varphi}$ in \mathbb{H}^1 is the Burgers' operator

Daniela Di Donato (University of Pavia)

Rectifiability in Carnot groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○ 9 October 2024

32/39

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a Carnot group, with \mathbb{V} horizontal and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function.

Let $\omega : U \subseteq \mathbb{W} \to \text{Lin}(\text{Lie}(\mathbb{W}) \cap V_1; \mathbb{V})$ be a continuous function with values in the space of linear maps.

Horizontal regularity. We say that $D^{\varphi}\varphi = \omega$ in broad* sense if for every $W \in \text{Lie}(\mathbb{W}) \cap V_1$ and every point $a \in U$, there exists a C^1 integral curve of D^{φ}_{W} starting from *a* for which the Fundamental Theorem of Calculus with derivative ω holds.

Vertical regularity. φ is vertically broad* hölder: φ along the integral curves of D^{φ}_{W} for $W \in \text{Lie}(\mathbb{W}) \cap V_d$ with d > 1 is little 1/d-Hölder continuous.

Broad* and Vertically broad* hölder regularity

Example in \mathbb{H}^1

•
$$\mathbb{H}^1 = \mathbb{W} \cdot \mathbb{V}$$

• $\mathbb{W} := \exp(\operatorname{span}\{X_2, X_3\}), \quad \mathbb{V} := \exp(\operatorname{span}\{X_1\})$ with $[X_1, X_2] = X_3$

• we identify
$$\mathbb{H}^1 \equiv \mathbb{R}^3 = \{(x_1, x_2, x_3)\}$$

•
$$\varphi: \mathbb{W} \to \mathbb{V}$$

$$D_{\chi_2}^{\varphi} := \partial_{\chi_2} + \varphi \partial_{\chi_3}, \quad D_{\chi_3}^{\varphi} = \partial_{\chi_3}.$$

- Horizontal regularity: D^φ_{X2}φ = ω in the broad* sense iff locally around every point of W there exists a family of integral curves γ of D^φ_{X2} s.t. (φ ∘ γ)' = ω ∘ γ
- Vertical regularity: φ is vertically broad* hölder iff φ is locally little 1/2-Hölder continuous along x_3 .

General result

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a Carnot group of step κ , with \mathbb{V} horizontal and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function.

Theorem (Antonelli, DD, Don, Le Donne, Annales de l'Institut Fourier, 2022)

The following facts are equivalent.

- (a) graph(φ) is a C_H^1 regular surface
- (b) φ is UID on U.
- (c) φ is vertically broad* hölder on U and there exists a continuous function $\omega: U \to \text{Lin}(\text{Lie}(\mathbb{W}) \cap V_1; \mathbb{V})$ s.t. $D^{\varphi}\varphi = \omega$ in the broad* sense on U.

Question

Can we drop the vertically broad* hölder regularity in (c)?

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

・ロト ・回 ト ・ヨト ・ヨト

General result

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a Carnot group of step κ , with \mathbb{V} horizontal and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function.

Theorem (Antonelli, DD, Don, Le Donne, Annales de l'Institut Fourier, 2022)

The following facts are equivalent.

- (a) graph(φ) is a C_H^1 regular surface
- (b) φ is UID on U.
- (c) φ is vertically broad* hölder on U and there exists a continuous function $\omega: U \to \text{Lin}(\text{Lie}(\mathbb{W}) \cap V_1; \mathbb{V})$ s.t. $D^{\varphi}\varphi = \omega$ in the broad* sense on U.

Question

Can we drop the vertically broad* hölder regularity in (c)?

Daniela Di Donato	(University of Pavia)
-------------------	-----------------------

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Vertically broad* hölder regularity

On the positive side in \mathbb{H}^n :

- in ℍⁿ = W · V with V 1-dimensional (and so horizontal), vertically broad* hölder regularity can be dropped - Ambrosio, Serra Cassano, Vittone (2006), Bigolin, Serra Cassano (2010)
- in ℍⁿ = W · V with V horizontal, vertically broad* hölder regularity can be dropped - Corni (2019)

On the negative side: one cannot drop the assumption on the vertically broad* hölder regularity in arbitrary Carnot groups

In a Carnot group of step 3 with V 1-dimensional, vertically broad* hölder regularity cannot be dropped - Kozhevnikov (2015)

・ロト ・回 ト ・ヨト ・ヨト

Vertically broad* hölder regularity

On the positive side in \mathbb{H}^n :

- in ℍⁿ = W · V with V 1-dimensional (and so horizontal), vertically broad* hölder regularity can be dropped - Ambrosio, Serra Cassano, Vittone (2006), Bigolin, Serra Cassano (2010)
- in ℍⁿ = W · V with V horizontal, vertically broad* hölder regularity can be dropped - Corni (2019)

On the negative side: one cannot drop the assumption on the vertically broad* hölder regularity in arbitrary Carnot groups

In a Carnot group of step 3 with V 1-dimensional, vertically broad* hölder regularity cannot be dropped - Kozhevnikov (2015)

Result in Carnot groups of step 2

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a Carnot group of step 2, with \mathbb{V} 1-dimensional (and so horizontal) and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function.

Theorem (Antonelli, DD, Don, Le Donne, Annales de l'Institut Fourier, 2022)

The following facts are equivalent.

- (a) graph(φ) is a C_H^1 regular surface
- (b) φ is UID on U.
- (c) there exists a continuous function $\omega : U \to \text{Lin}(\text{Lie}(\mathbb{W}) \cap V_1; \mathbb{V})$ s.t. $D^{\varphi}\varphi = \omega$ in the broad* sense on U.

Daniela Di D)onato (Universit	y of Pavia)
--------------	----------	-----------	-------------

Idea of the proof in Carnot groups of step 2

Key statement

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a free Carnot group of step 2, with \mathbb{V} 1-dimensional and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function. $D^{\varphi}\varphi = \omega$ in the broad* sense $\Rightarrow \varphi$ is vertically broad* hölder

Idea of the proof in Carnot groups of step 2

Key statement

Let $\mathbb{G} = \mathbb{W} \cdot \mathbb{V}$ be a free Carnot group of step 2, with \mathbb{V} 1-dimensional and $\varphi \colon U \subseteq \mathbb{W} \to \mathbb{V}$ be a continuous function. $D^{\varphi}\varphi = \omega$ in the broad* sense $\Rightarrow \varphi$ is vertically broad* hölder

Broad* solution on G ↓ Broad* solution on free Carnot groups of step 2 ↓ Vertically broad* hölder regularity on free Carnot groups of step 2 ↓ Vertically broad* hölder regularity on G

(a)

Thank you for the attention !!!

Daniela Di Donato	(Universit	y of Pavia)	
-------------------	------------	-------------	--

・ロト ・回 ト ・ヨト ・ヨト

臣