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Correlation Inequalities

Q

® Consider a family of functions F over some domain €2, and a
distribution D over €. Informally, a correlation inequality is a

statement of the form
Ep[f 9] —Ep[f]-Eplg] > 0

forall f,g e F.

® Ubiquitous in probabilistic combinatorics and statistical physics.



Example 1: Harris—Kleitman Inequality (1966)

Recall f:{0,1}" — {0, 1} is monotone
ife <y = flo) < fy)

{0,1}" x; < y; forall i

Theorem: For f,g:{0,1}™ — {0,1} monotone, we have

E[f-g] - E[f] - E[g] >0

where expectations are with respect to the uniform distribution on
{0,1}™.



Example 2: Royen's Inequality (2014)

K

® Also called the Gaussian Correlation
Inequality (GClI).

© Open for over 40 years. K CR" is symmetric if z € K
implies —z € K.

Theorem: Let K,L C R" be symmetric, convex sets, identified with
their 0/1 indicator functions. Then
E[K - L] - E[K]-E[L] >0

where the expectations are with respect to N'(0,1)™.



Example 2: Royen's Inequality (2014)

KnNnL K

Equivalently: If 4,,(-) is the n-dimensional, standard Gaussian measure,

then for convex, symmetric K, L C R"

Yn(KNL) > v (K) - ya(L).



And Many More. . .

D Correlation Inequality
Monotone f,g: {0,1}" — {0,1} Uniform Harris—Kleitman
Symmetric, convex K, L C R" N0, 1)" Royen's Inequality
Convex f,g: R™ - R N(@O,1)" Hu's Inequality
Montone f,g:[0,1] = R Uniform Chebyshev's Inequality

Monotone f,g: {0, ...

,m—1}"—>R

log-supermodular

FKG Inequality




And Many More. . .

D Correlation Inequality

Monotone f,g: {0,1}" — {0,1} Uniform Harris—Kleitman

Symmetric, convex K, L C R" N0, 1)" Royen's Inequality




Towards Quantitative Inequalities

® All inequalities so far are qualitative in nature:

Given f,g € F C L*(Q, D), we have

Ep(f - 9] — Ep[f] - Eplg] > 0.

® Can we hope to get a better lower bound?

T

Perhaps in terms of some property of f and g themselves?



Revisiting Harris—Kleitman

Theorem: Given f,g:{0,1}" — {0,1} monotone, we have

E[f-g] - E[f]-E[g] >0

where expectations w.r.t. uniform distribution.



Revisiting Harris—Kleitman

Theorem: Given f,g:{0,1}" — {0,1} monotone, we have
E[f-g] - E[f]-E[g] 2 0
where expectations w.r.t. uniform distribution.
* Define fo:{0,1}""! — {0,1} as

fO(xlw-wxn—l) = f(xlw-wxn—lao)'

So fo is a restriction of f with last bit fixed to 0

® Define gg similarly, as well as f; and g;.



Revisiting Harris—Kleitman

Easy to check that

E[fg] - Blf] Elg = (E[fo o0 = Bl ~E[go}>

" (E[fl o1~ Bl -E[91]>

(e[5) =[52)
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Revisiting Harris—Kleitman

Easy to check that

E[fg] - Blf] Elg = (E[fo o0 = Bl ~E[go}>

N (E[fl - g1 *2]3[.)”1] : E[!Jl])

(0] e )
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Revisiting Harris—Kleitman

Easy to check that

E[fg] - Blf] Elg = (E[fo o0 = Bl ~E[go}>

" (E[fl o1~ Bl ~E[91]>

" <E Bl ;QOD

Pause and verify: If f is monotone, then this quantity is

Pro o3 [f(®) # f(x®")]

where 2% 1= (z1,..., 21,1 — 1,).



Influences of Variables on Boolean Functions

Definition: Given a Boolean function f : {0,1}"™ — {0,1}, we
define the influence of coordinate i € [n] on f as

Inf;[f] := Pryqo1y» | f(z) # f(x®)

where 2% := (z1,..., 21,1 — T4, Tit1,- -, Tn).

Kahn—Kalai-Linial, Talagrand, Friedgut, Friedgut—Kalai,

Benjamini—-Kalai-Schramm, Russo—Margulis, and friends. ..



Robustifying Harris—Kleitman

E[f-g] -

E[fo - 9] [90}>

= (
(Efl 91] [91])
)

® Can check that E[f - g] — E[f] - E[g] = 0 if and only if

+

_|_

Vi € [n] : Inf,;[f] = 0 or Inf;[g] = 0.



Robustifying Harris—Kleitman

E[f-g] —

E[fo - 9o [00}>

l
(E fi-91] [91])
(et

® Can check that E[f - g] — E[f] - E[g] = 0 if and only if

+

+

Vi € [n] : Inf,;[f] = 0 or Inf;[g] = 0.

* Hope: A better lower bound in terms of > Inf;[f] - Inf;[g].



Talagrand’s Correlation Inequality

Theorem: Let f,g:{0,1}"™ — {0,1} be monotone. Then

E[f 9] - Elf]-E ZInf |- Inf,[g]

where C'is a universal constant and ¥(z) := Toate7a) -

® Key lemma is a decoupled level-2 inequality.

® Several applications of Talagrand’s lemma in additive combinatorics,

analysis of Boolean functions, etc.



Qualitative Correlation Inequalities

Monotone f,¢g: {0,1}" — {0,1} Symmetric, convex K, L C R"
Uniform distribution N(0,1)"

H-K: E[f - g] - E[f] - E[g] 2 0 Royen: E[K - L] — E[K] - E[L] >0
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Quantitative Correlation Inequalities

Monotone f,g:{0,1}" — {0,1} Symmetric, convex K, L C R"
Uniform distribution N(0,1)"

Talagrand: E[f - g] — E[f] - E[g]

> é v (Z Infi[f} . Infi[Q])

i=1

where ¥(z) := m



Our Contributions

Theorem: Let K, L C R™ be symmetric, convex sets, identified
with their indicator functions. Then

1 S
E[K -] - E[K] E[[] > 5 - @ > K(a)L(e)

a€N™:|la|l1=2
where C is a constant and ®(z) := W'

® Term inside ®(-) is always non-negative when L and K are
symmetric and convex.

® Correlation gap in terms of the inner product of degree-2 part of the
Hermite expansion of K and L.



Our Contributions

Theorem: Let K, L C R™ be symmetric, convex sets, identified

with their indicator functions. Then
n
1
E(K -I] - E[K]-E[L] > — - ®| ) Inf;[K] - Inf,[L]
¢ i=1
where C' is a constant and ®(z) := m.
® New notion of influence for symmetric, convex sets.

® Strategy generalizes to other domains easily—e.g. essentially

recovers Talagrand’s result over {0,1}".
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Proof Strategy

For symmetric, convex K, L. C R", consider
E[K - L] - E[K] - E[L]

where expectations are w.r.t. A'(0,1)".

® Interpolate between E[K] - E[L] and E[K - L]
Ornstein-Uhlenbeck noise operator U,

® Express as power series
Hermite basis

® Monotonicity of interpolation
Royen'’s proof
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Harmonic Analysis over Gaussian Space

e Consider L? (R”,N(O, 1)") as an inner-product space endowed with

the inner product
(£,9) = Barnoyn [f(@) - g(2)].

* Define ||f]| := /{F. f).



Harmonic Analysis over Gaussian Space

e Consider L? (R”,N(O, 1)") as an inner-product space endowed with

the inner product
(£,9) = Barnoyn [f(@) - g(2)].

* Define ||f]| := /{F. f).

Fact: The Hermite polynomials (h;),en form a complete, orthonor-
mal basis for L*(R,N(0,1)).
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The Hermite Basis

Hermite polynomials (h;)jen

Tensorize

|

For a € N : ho(z) := T[]0 ha, (@)

Fact: (ha)acn is complete, orthonor-
mal system for L?(R", N/(0,1)")



The Hermite Basis

Hermite polynomials (h;)jen

Given a function
f e L?(R",N(0,1)"), we can write

Tensorize ~
/= Z f(a)ha
aeNn
For a € N : ho(z) := T[]0 ha, (@)
Fact: (ha)aen is complete, orthonor- The Hermite expansion of f

mal system for L?(R", N/(0,1)")



The Hermite Basis

Hermite polynomials (h;)jen

Given a function
feL?(R",N(0,1)"), we can write

Tensorize

l /= Z f(ﬂ)ha

aeNn

For a € N : ho(z) := T[]0 ha, (@)

Fact: (ha)acn is complete, orthonor- The Hermite coefficients of f

mal system for L?(R", N/(0,1)") Hermite spectrum



Parseval's Formula

Fact: Let f,g € L*(R", N(0,1)"), with Hermite expansions
f= Z f(a)ha and 9= Z g()ha.
aeNn aENn

Then

(f:9) = Earnoay [f(@)-9(@)] = D fl@)i(a).

aeN”?

As a special case, note that

1P =3 fle?

aeNn



The Ornstein—Uhlenbeck Noise Operator

Definition: Given a function f € LQ(R”,N(O,l)”), define the
Ornstein-Uhlenbeck noise operator U, as

Upf (@) :=Egn0,1)» [f (pw‘ +V1- pgg)} :

* Analogous to the Bonami—Beckner operator T, over {0,1}".

® Note: p=1 = U,f(z) = f(z), and p=0 = U, f(z) = E[f].



Hermite Expansion under the OU Operator

Definition: For o € N™, the degree or level of o (and f(«)) is

n
la| == Z ;.
i=1



Hermite Expansion under the OU Operator

Definition: For az € N™, the degree or level of « (and f(a)) is
la| == Z ;.
i=1

The Ornstein—Uhlenbeck operator diagonalizes the Hermite basis:

Fact: Let f € L*(R",N(0,1)") with Hermite expansion

f= Z f(a)hoc-

aeNn



Hermite Expansion under the OU Operator

Definition: For az € N™, the degree or level of « (and f(a)) is
la| == Z ;.
i=1

The Ornstein—Uhlenbeck operator diagonalizes the Hermite basis:

Fact: Let f € L*(R",N(0,1)") with Hermite expansion

f= Z f(a)ha.
aeNn
Then the Hermite expansion of U, f is given by

U,f = Z plalf(a)ha.

aeN"™



Quick Recap
Let f,g € L*(R",N(0,1)"). Then

1. Hermite expansion: f =3 _n» f(@)ha.

2. Parseval's formula: (f,g) = > cnn fl@)g(c).

3. Noise operator: U, f(x) := Egunr(0,1)n {f (psc +V1- p2g):| which

acts on Hermite expansion as follows:

Upf = > ol fa)ha

acNn

where |a| = > | ;.

Reference: O'Donnell’s Analysis of Boolean Functions
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Royen's Inequality (2014)

K

® Also called the Gaussian Correlation
Inequality (GClI).

© Open for over 40 years. K CR" is symmetric if z € K
implies —z € K.

Theorem: Let K,L C R" be symmetric, convex sets, identified with
their 0/1 indicator functions. Then
E[K - L] - E[K]-E[L] >0

where the expectations are with respect to N'(0,1)™.



Royen's Inequality (2014)

o Note that (U1K, L) = B[K - L] and (UoK, L) = E[K] - E[L).

Recall (f,g) = B[f - g] and U, f(z) i= E [f (po+ V1= ng)}



Royen's Inequality (2014)

o Note that (U1K, L) = B[K - L] and (UoK, L) = E[K] - E[L).

Royen's Inequality: (U1K, L) > (UgK, L).



Royen'’s Proof

Given K, L C R™ convex, symmetric, <UpK,L> is increasing in p.

(UK, LY

,<U0K7 L)

Recall (f,g) = E[f - g] and Uy f(z) := E {f(pfr +/1 - pQg)}



Royen'’s Proof

® Let K,L:R"™ — {0,1} be the indicator functions of two symmetric,

convex sets.

o Note that (U1K, L) = B[K - L] and (UoK, L) = E[K] - E[L).

Royen’s Theorem: dip<UpK,L> > 0.

i

Corollary: E[K - L] — E[K]-E[L] > 0.

Recall (/,9) = BIf 5] and U (2) i= B [ (pz + /T~ 77|
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A Quantitative GClI

* We have K, L C R™ symmetric, convex.

® Want a quantitative lower bound on

E[K - L] - E[K]-E[L] = (U K, L) — (UK, L).



Proof Sketch

UK=Y pK(@h, and L= > L(a)h,
aeNn aeNn



Proof Sketch

UK=Y plE(@he  and L= L(a)h,
aeNn aeN™

Parseval's formula: (f, g) = ZaeNn fla)g(a)

|



Proof Sketch

UK=Y pK(@)ha and L= L@)ha
aeN” achn

Parseval's formula: (f,g) = ZaeNn f(G)Q(Q)

|

(UK, L)y =Y pl'K(a)L(a)
aeNn

Recall |af =31 | ay.



Proof Sketch

(U K, L) — (UK, L) = 3 p* K (a)L(a)
|a|>0

Recall |of = >0 oy.



Proof Sketch

(U K, L) — (UK, L) = 3 p* K (a)L(a)
|a|>0

oo

E %
= az’P

i=1

where a; =37, _; K(a)L(e).

Recall o] = >0 oy.



Proof Sketch

(UK, L) — (UK, L) = 3 R (a)(a)
|| >0

oo
— i
= E aip
i=1

where a; =37, _; K(a)L(c).
* Cauchy-Schwarz + Parseval = Y77, |a;| < 1.

Recall |o] = >0 | «;.



Proof Sketch

(UK, L) — (UK, L) = 3 R (a)(a)
|| >0

oo
_ i
= E aip
i=1

where a; =37, _; K(a)L(a).

* Cauchy-Schwarz + Parseval = Y77, |a;| < 1.
° K,L symmetric = K(a) = L(a) = 0 when |a] odd.

Recall |o] = >0 | «;.

Fact: hq is even if || is even, and odd otherwise.



Proof Sketch

(U,K,L) — (UgK, L)= Zaw

where a; := Zlal:if((a)z(a), Yoo la <1



Proof Sketch

(U,K,L) — (UgK, L)

oo
a2q ;
=as | T+ —t

=:p(t)

where a; := Zlal:il?(a)Z(a), Sooe i lail <1, and t = p?.



Proof Sketch

(U,K,L) — (UgK, L)

where a; := Zlal:il?(a)Z(a), Sooe i lail <1, and t = p?.



Proof Sketch

(U,K,L) — (UgK, L)

oo
a2q ;
=as | T+ —t

=:p(t)

where a; := Zlal:il?(a)Z(a), Sooe i lail <1, and t = p?.

Question: How large must sup,¢(o 1) p(t) be?



Let's analyze this question in more generality. ..



An Extremal Bound for Complex Power Series

SUD¢e[0,1] Ip(t)]|

g

p(t) =t +cot? +estd + ...



An Extremal Bound for Complex Power Series

Question: Let p(t) = > oo, ¢;t* where ¢; € C, and
— ¢ =1; and

— >, leil < M where M > 3/2.

How large must sup,c(o 1) [p(t)| be?
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Question: Let p(t) = > oo, ¢;t* where ¢; € C, and
— ¢ =1; and

— 32 lei] < M where M > 3/2.
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An Extremal Bound for Complex Power Series

Question: Let p(t) = > oo, ¢;t* where ¢; € C, and
— ¢ =1; and

— >, leil < M where M > 3/2.
How large must sup,c(o 1) [p(t)| be?

Answer: SUP;e(0,1] Ip(t)| > ®<W)'

® Proof uses Hadamard's Three Circles Theorem.

® This bound is tight: construction using Chebyshev polynomials.



Proof

Given p(t) =t + cat® + c3t® + ...
where 14+ Y77, |¢;| < M for M > 3/2.

Want: Lower bound on sup;cpo 1) [p(t)]-

Note that p(0) = 0, so must move away from 0.

Write p(t) :=t - q(t), where
q(t) =1+ cot +cst* + ...

and optimize ¢(t) over [J, 1) for some § that we will fix later.






° Given p(t) =t + cat® + cst® + ... with 1+ |eo| 4+ ... < M.
* We defined ¢(t) := @, i.e.

q(t) =1+ cot +cst? + .. ..

® We will be interested in ¢ := qo h.



° Let a(r) == sup, |, [¥(2)|.

® Then Hadamard's three circles theorem implies that

a(l + @(ﬁ))log " < a(1)log <+O(”)> a(4)log (w)(ﬁ)>

Recall q(t) := p(t)/t and ¥ (2) := q(h(2)).



° Let a(r) == sup, |, [¥(2)|.

® Then Hadamard's three circles theorem implies that

) 1 (7)(\*\“)
log (T‘) log <\ «—»4\7‘ ) log < > >
a<1+®(x/3)) < a(1) V) ) a(a)

Recall q(t) := p(t)/t and ¥ (2) := q(h(2)).



° Let a(r) :=sup, -, [¢(z)].

® Then Hadamard's three circles theorem implies that

(o))
1<a) VO g0

Recall q(t) := p(t)/t and ¥ (2) := q(h(2)).




h :

So we have
og [ — 2 oz 1+c—>1(\/3)
1< (lguflwzn)l (st <|§u34w<z>|)l (=)

Recall q(t) := p(t)/t and ¥ (z) := q(h(2)).






It follows that

o(1) o(V5s)
1< (sup |w(z>> <|SU_1? |w(z)|>

z|l= z
[z]=1 [=4



It follows that

o) o(ve)
1< <|51|1_p1 |w(z)> <SUP |¢(z)|>

|2l=4

Recall q(t) := p(t)/t and ¥ (2) := q(h(2)).



Recall q(t) := p(t)/t.



sup [q(t)]
teh(z)
Jzl=4

® Recall ¢(t) = 1+ cot + c3t? + ... where 1 + |ca| + |e3| + ... < M.
® Consequently, if |z| <1 then |¢(z)| < M.



We can rearrange and use ¢(t) := p(t)/t to get

MO0 < sup [q(t)] = sup oM O(YD) < sup [p(t)].
te[s,1) 6€[0,1] t€[0,1]




We can rearrange and use ¢(t) := p(t)/t to get

Mm—e(v3) < sup |q(t)] = sup oM o(v?) < sup |p(t)].
te([s,1) 6€[0,1] te[0,1]

Taking § = F;% gives

sup [p(t)] > o)

AN
t€[0,1] ~ log®(M)



Returning to the Quantitative GCI...



Proof Sketch

(U,K,L) — (UgK,L) = ay (t + Z ‘fiti)
2

i=2
=p(t)

where a; := z|a|:if((a)i(a), Sooeylail <1, and t = p2.

Question: How large must sup,c(o 1) p(t) be?



Proof Sketch

(UK, L) = (UgK, Ly =ap [t + %ti
i—2 2

=p(t)

where a; := z|a|:if((a)i(a), Sooeylail <1, and t = p2.

Question: How large must sup,c(o 1) p(t) be?

Answer: sup,c(o ] P(t) > @(71%2(11/&2)).



Proof Sketch

ag
sup (U,K,L)— (UgK,L) >0
pe[o,1]< P > 10g2(1/02)



Proof Sketch

a2
sup (UK, Ly — (UgK,L) > 0| ———
pe[o,1]< P > logz(l/@)

Royen: <UpK,L> increasing in p.

|



Proof Sketch

ag
sup (UK, Ly — (UgK,L) > 0| ———
pe[o,1]< P > 10g2(1/02)

Royen: <UpK,L> increasing in p.

|

1
log 1/a2> c (a2)

where C'is a constant and ®(z) :=

(U1K, L) — (UgK,L) > ©

log? (1/9:)

Recall az := Z\a\:z

K(a)L(c).
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Given K, L C R™ symmetric, convex we defined
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Looking at as More Closely. ..

Given K, L C R™ symmetric, convex we defined

0 i#j
® Lete; e N" bee; :=(0,...,0,1,0,...,0), i.e. (e); = 7&].
1 i=j
° If || = 2, then either
- a=e¢;+e;fori+#j.
— a = 2e; for some i € [n].



Looking at as More Closely. ..

Given K, L C R™ symmetric, convex we defined

0 i#j
® Lete; e N" bee; :=(0,...,0,1,0,...,0), i.e. (e;); 1= 7&].
1 i=j
° If |a| = 2, then either
- a=e¢;+e;fori+#j.
- a = 2e; for some i € [n].

* There exists suitable rotation such that K (e; + ej) =0 forall ¢ # j.
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Looking at as More Closely. ..

After suitable rotation, we have ag := 27 | K (2¢;)L(2¢;).

Definition: Given symmetric, convex K C R", define

i

So we have ap = Y. | Inf;[K] - Inf;[L].



A Quantitative GClI

Theorem: Let K, L C R™ be symmetric, convex sets, identified
with their indicator functions. Then

1 n
E[K L] -E[K] E[[] > 5 - @ ;Infi[K] -Inf;[L]
where C is a constant and ®(z) :

= log?(1/z)"

Recall Inf; (K] := —K(2¢;) = E {K(w) . g
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Generalizing to Other Domains

Probability space (€2, D), consider
E[f - g] — E[f] - E[g]

for f,g € F C L*(Q, D).

* Interpolate between E[f] - E[g] and E[f - g]
Markov semigroups

® Express as power series
Eigenfunctions of Markov semigroups
® Monotonicity of interpolation

Implies qualitative correlation inequalities
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A new notion of influences

For a symmetric convex set K and direction v,

Inf,[K] := E [K(gc) : %]

Questions:
¢ |s Inf,[K] always non-negative?
® Suppose Inf,[K] = 0. Does it mean v is irrelevant?

® Other properties of Inf,[K]?
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Non-negativity of influences

Proposition: For a symmetric convex set K and direction v, Inf,[K] > 0.

An alternate characterization of Inf,[K]: For A € R},

A-K:= {(A1$1,...,An$n) : (1‘1,...,.13”) EK}

Let v = e;. Define A =(1-4,1,...,1). Then,

PYn(K> _'Yn(A ) K)
\/§5ﬁ0 é
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Non-negativity of influences

Proposition: For a symmetric convex set K and direction v, Inf,[K] > 0.

Let v = e;. Define A =(1-4,1,...,1). Then,

]- . nK_nA'K
Infel[K]:ml%w) (A K)

It is not hard to prove that v, (A - K) < v, (K). Thus, Infe;[K] > 0.
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Characterization of zero influence

Proposition: If Inf., [K] = 0, then K = e; x K_., where K_., is in

span(ez, ..., en).

Proof: Let K; = {x e R""!: (t,2) € K}.

If Inf., [K] =0, then 7,,_1(K%) is independent of ¢ (not difficult to

show).
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Characterization of zero influence

Proposition: If Inf. [K] = 0, then K = e; x K_., where K_., is in

span(ez, ..., en).

Proof (contd.): Thus, v,—1(K}) = vn—1(Kp) (for all ¢).

However, w C Ky (by convexity). Ehrhard-Borell implies that

B Gea (K0) 2 @71 (s (ST ) ) 2 07 a6,



Characterization of zero influence

Proposition: If Inf., [K] = 0, then K = e; x K_., where K_., is in

span(ez, ..., en).



Characterization of zero influence

Proposition: If Inf., [K] = 0, then K = e; x K_., where K_., is in

span(ez, ..., en).

Proof (contd.): Thus, Ehrhard-Borell holds with equality. [Shenfeld-van
Handel, 2018] show that this implies K; = Kj. O



Open question: Small influence = almost cylinder?

Conjecture:  Suppose Inf.,[K] < e.  Then, there exists K' C
span(es, ..., en) and & such that v, (KA(e1 X K')) < § (where § = §(e) — 0
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Open question: Small influence = almost cylinder?

Conjecture:  Suppose Inf.,[K] < e.  Then, there exists K' C
span(es, ..., en) and & such that v, (KA(e1 X K')) < § (where § = §(e) — 0
as ¢ — 0).

Current status: § = poly(n,¢) is also unknown. Main issue: Stability of
Ehrhard-Borell inequality is completely open.
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Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = (1),
there is some direction v such that Inf,[K] = Q(v/logn/n).

Proof: For any orthonormal basis {v1,...,v,},
. 1 W(K) =1 (A - K
Zlnfv,.[K]:—-hmM )= (A K)
P ' V2 60 1)

where A == (1—4,...,1—=19).

Note that Y ., Inf,,[K] is independent of the choice of basis.
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KKL-type inequality: For any convex symmetric set K with Var[K] = (1),
there is some direction v such that Inf,[K] = Q(y/logn/n).

Proof: Proof based on case analysis of w;, — in-radius of K.

Small wi,: There is a direction v such that Inf,[K] > Q(exp(—w?)).

Proof based on hyperplane separation theorem + some calculation.



Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = (1),
there is some direction v such that Inf,[K] = Q(v/logn/n).

Proof: Proof based on case analysis of w;, — in-radius of K.



Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = (1),
there is some direction v such that Inf,[K] = Q(v/logn/n).

Proof: Proof based on case analysis of w;, — in-radius of K.

Large wi,: Use Gaussian isoperimetry to conclude that v, (A - K) is

noticeably smaller than K.



Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = (1),
there is some direction v such that Inf,[K] = Q(v/logn/n).

Proof: Proof based on case analysis of w;, — in-radius of K.

Large wi,: Use Gaussian isoperimetry to conclude that v, (A - K) is

noticeably smaller than K.

;Infvi (K] = Neh lim 5 = Q(win - Var[K]).




Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = (1),
there is some direction v such that Inf,[K] = Q(y/Iogn/n).

Proof: Proof based on case analysis of w;, — in-radius of K.



Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = (1),
there is some direction v such that Inf,[K] = Q(y/Iogn/n).

Proof: Proof based on case analysis of w;, — in-radius of K.

Large wi,: Thus, there is one direction v such that

Inf,[K] = Q(wVar[K])

n



Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = Q(1),
there is some direction v such that Inf,[K] = Q(y/logn/n).

Proof: Thus, wj, is the in-radius of K, then

Wiy - Var[K]
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Proof of KKL-type inequality

KKL-type inequality: For any convex symmetric set K with Var[K] = Q(1),
there is some direction v such that Inf,[K] = Q(y/logn/n).

Proof: Thus, wj, is the in-radius of K, then

in - Var[K
max Inf, [K] > max{war[]

7exp(—w?n)}-

Balancing wi,, we obtain max, Inf,[K] = Q(+/logn/n).



Other contributions

Weak form of Friedgut's junta theorem.

Sharp threshold results — a la Friedgut-Kalai (ours is quantitatively
stronger).

Kruskal-Katona type result for convex sets (improvement 3 la
O'Donnell-Wimmer).



Summary

® Bootstrapping qualitative correlation inequalities to obtain
quantitative correlation inequalities:

1. Interpolation via noise operators.

2. Extremal bound for power series of bounded length.

® Influences for symmetric, convex sets over Gaussian space.



Thanks!




