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Correlation Inequalities

• Consider a family of functions F over some domain Ω, and a
distribution D over Ω. Informally, a correlation inequality is a
statement of the form

ED [f · g]−ED[f ] ·ED[g] ≥ 0

for all f, g ∈ F .
• Ubiquitous in probabilistic combinatorics and statistical physics.



Example 1: Harris–Kleitman Inequality (1966)

{0, 1}n

Recall f : {0, 1}n → {0, 1} is monotone
if x 4 y =⇒ f(x) ≤ f(y).

xi ≤ yi for all i

Theorem: For f, g : {0, 1}n → {0, 1} monotone, we have

E[f · g]−E[f ] ·E[g] ≥ 0

where expectations are with respect to the uniform distribution on
{0, 1}n.



Example 2: Royen’s Inequality (2014)

• Also called the Gaussian Correlation
Inequality (GCI).

• Open for over 40 years. K ⊆ Rn is symmetric if x ∈ K
implies −x ∈ K.

Theorem: Let K,L ⊆ Rn be symmetric, convex sets, identified with
their 0/1 indicator functions. Then

E[K · L]−E[K] ·E[L] ≥ 0

where the expectations are with respect to N (0, 1)n.



Example 2: Royen’s Inequality (2014)

Equivalently: If γn(·) is the n-dimensional, standard Gaussian measure,
then for convex, symmetric K,L ⊆ Rn

γn(K ∩ L) ≥ γn(K) · γn(L).



And Many More. . .

D Correlation Inequality

Monotone f, g : {0, 1}n → {0, 1} Uniform Harris–Kleitman

Symmetric, convex K,L ⊆ Rn N (0, 1)n Royen’s Inequality

Convex f, g : Rn → R N (0, 1)n Hu’s Inequality

Montone f, g : [0, 1]→ R Uniform Chebyshev’s Inequality

Monotone f, g : {0, . . . ,m− 1}n → R log-supermodular FKG Inequality



And Many More. . .

D Correlation Inequality

Monotone f, g : {0, 1}n → {0, 1} Uniform Harris–Kleitman

Symmetric, convex K,L ⊆ Rn N (0, 1)n Royen’s Inequality

Convex f, g : Rn → R N (0, 1)n Hu’s Inequality

Montone f, g : [0, 1]→ R Uniform Chebyshev’s Inequality

Monotone f, g : {0, . . . ,m− 1}n → R log-supermodular FKG Inequality



Towards Quantitative Inequalities

• All inequalities so far are qualitative in nature:

Given f, g ∈ F ⊆ L2(Ω,D), we have

ED[f · g]−ED[f ] ·ED[g] ≥ 0.

• Can we hope to get a better lower bound?

Perhaps in terms of some property of f and g themselves?



Revisiting Harris–Kleitman

Theorem: Given f, g : {0, 1}n → {0, 1} monotone, we have

E[f · g]−E[f ] ·E[g] ≥ 0

where expectations w.r.t. uniform distribution.

• Define f0 : {0, 1}n−1 → {0, 1} as

f0(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0).

So f0 is a restriction of f with last bit fixed to 0

• Define g0 similarly, as well as f1 and g1.
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Revisiting Harris–Kleitman

Easy to check that

E[f · g]−E[f ] ·E[g] =

(
E[f0 · g0]−E[f0] ·E[g0]

2

)
+

(
E[f1 · g1]−E[f1] ·E[g1]

2

)
+

(
E

[
f1 − f0

2

]
·E
[
g1 − g0

2

])

Pause and verify: If f is monotone, then this quantity is

Prx∼{0,1}n
[
f(x) 6= f(x⊕n)

]
where x⊕n := (x1, . . . , xn−1, 1− xn).
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Influences of Variables on Boolean Functions

Definition: Given a Boolean function f : {0, 1}n → {0, 1}, we
define the influence of coordinate i ∈ [n] on f as

Inf i[f ] := Prx∼{0,1}n
[
f(x) 6= f(x⊕i)

]
where x⊕i := (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn).

Kahn–Kalai–Linial, Talagrand, Friedgut, Friedgut–Kalai,

Benjamini–Kalai–Schramm, Russo–Margulis, and friends. . .



Robustifying Harris–Kleitman

E[f · g]−E[f ] ·E[g] =

(
E[f0 · g0]−E[f0] ·E[g0]

2

)
+

(
E[f1 · g1]−E[f1] ·E[g1]

2

)
+

(
E

[
f1 − f0

2

]
·E
[
g1 − g0

2

])

• Can check that E[f · g]−E[f ] ·E[g] = 0 if and only if

∀ i ∈ [n] : Inf i[f ] = 0 or Inf i[g] = 0.

• Hope: A better lower bound in terms of
∑n
i=1 Inf i[f ] · Inf i[g].
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Talagrand’s Correlation Inequality

Theorem: Let f, g : {0, 1}n → {0, 1} be monotone. Then

E[f · g]−E[f ] ·E[g] ≥ 1

C
·Ψ

 n∑
i=1

Inf i[f ] · Inf i[g]


where C is a universal constant and Ψ(x) := x

log(e/x) .

• Key lemma is a decoupled level-2 inequality.

• Several applications of Talagrand’s lemma in additive combinatorics,
analysis of Boolean functions, etc.



Qualitative Correlation Inequalities

Monotone f, g : {0, 1}n → {0, 1}
Uniform distribution

Symmetric, convex K,L ⊆ Rn

N (0, 1)n

H-K: E[f · g]−E[f ] ·E[g] ≥ 0 Royen: E[K · L]−E[K] ·E[L] ≥ 0
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Our Contributions

Theorem: Let K,L ⊆ Rn be symmetric, convex sets, identified
with their indicator functions. Then

E[K · L]−E[K] ·E[L] ≥ 1

C
· Φ

 ∑
α∈Nn:‖α‖1=2

K̂(α)L̂(α)


where C is a constant and Φ(x) := x

log2(1/x)
.

• Term inside Φ(·) is always non-negative when L and K are
symmetric and convex.

• Correlation gap in terms of the inner product of degree-2 part of the
Hermite expansion of K and L.



Our Contributions

Theorem: Let K,L ⊆ Rn be symmetric, convex sets, identified
with their indicator functions. Then

E[K · L]−E[K] ·E[L] ≥ 1

C
· Φ

 n∑
i=1

Inf i[K] · Inf i[L]


where C is a constant and Φ(x) := x

log2(1/x)
.

• New notion of influence for symmetric, convex sets.

• Strategy generalizes to other domains easily—e.g. essentially
recovers Talagrand’s result over {0, 1}n.



Proof Strategy

For symmetric, convex K,L ⊆ Rn, consider

E[K · L]−E[K] ·E[L]

where expectations are w.r.t. N (0, 1)n.

• Interpolate between E[K] ·E[L] and E[K · L]

Ornstein–Uhlenbeck noise operator Uρ

• Express as power series + complex-analytic lemma
Hermite basis

• Monotonicity of interpolation
Royen’s proof
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Outline

1. Harmonic Analysis Hermite basis, Ornstein–Uhlenbeck operator

2. Royen’s Proof Monotonicity

3. Quantitative GCI Influences for convex sets
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Harmonic Analysis over Gaussian Space

• Consider L2
(
Rn,N (0, 1)n

)
as an inner-product space endowed with

the inner product

〈f, g〉 := Ex∼N (0,1)n
[
f(x) · g(x)

]
.

• Define ‖f‖ :=
√
〈f, f〉.

Fact: The Hermite polynomials (hj)j∈N form a complete, orthonor-
mal basis for L2

(
R,N (0, 1)

)
.

h0(x) = 1, h1(x) = x, h2(x) = x2−1√
2
, h3(x) = x3−3x√

6
, . . .
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The Hermite Basis

Hermite polynomials (hj)j∈N

Tensorize

For α ∈ Nn : hα(x) :=
∏n
i=1 hαi(xi)

Fact: (hα)α∈N is complete, orthonor-
mal system for L2

(
Rn,N (0, 1)n

)

Given a function
f ∈ L2

(
Rn,N (0, 1)n

)
, we can write

f =
∑
α∈Nn

f̃(α)hα
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The Hermite Basis

Hermite polynomials (hj)j∈N

Tensorize

For α ∈ Nn : hα(x) :=
∏n
i=1 hαi(xi)

Fact: (hα)α∈N is complete, orthonor-
mal system for L2

(
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)

Given a function
f ∈ L2

(
Rn,N (0, 1)n

)
, we can write

f =
∑
α∈Nn

f̃(α)hα

The Hermite coefficients of f
Hermite spectrum



Parseval’s Formula

Fact: Let f, g ∈ L2
(
Rn,N (0, 1)n

)
, with Hermite expansions

f =
∑
α∈Nn

f̃(α)hα and g =
∑
α∈Nn

g̃(α)hα.

Then

〈f, g〉 = Ex∼N (0,1)n
[
f(x) · g(x)

]
=
∑
α∈Nn

f̃(α)g̃(α).

As a special case, note that

‖f‖2 =
∑
α∈Nn

f̃(α)2



The Ornstein–Uhlenbeck Noise Operator

Definition: Given a function f ∈ L2
(
Rn,N (0, 1)n

)
, define the

Ornstein–Uhlenbeck noise operator Uρ as

Uρf(x) := Eg∼N (0,1)n

[
f
(
ρx+

√
1− ρ2g

)]
.

• Analogous to the Bonami–Beckner operator Tρ over {0, 1}n.
• Note: ρ = 1 =⇒ Uρf(x) = f(x), and ρ = 0 =⇒ Uρf(x) = E[f ].



Hermite Expansion under the OU Operator
Definition: For α ∈ Nn, the degree or level of α (and f̃(α)) is

|α| :=
n∑
i=1

αi.

The Ornstein–Uhlenbeck operator diagonalizes the Hermite basis:

Fact: Let f ∈ L2
(
Rn,N (0, 1)n

)
with Hermite expansion

f =
∑
α∈Nn

f̃(α)hα.

Then the Hermite expansion of Uρf is given by

Uρf =
∑
α∈Nn

ρ|α|f̃(α)hα.
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Quick Recap

Let f, g ∈ L2
(
Rn,N (0, 1)n

)
. Then

1. Hermite expansion: f =
∑
α∈Nn f̃(α)hα.

2. Parseval’s formula: 〈f, g〉 =
∑
α∈Nn f̃(α)g̃(α).

3. Noise operator: Uρf(x) := Eg∼N (0,1)n

[
f
(
ρx+

√
1− ρ2g

)]
which

acts on Hermite expansion as follows:

Uρf =
∑
α∈Nn

ρ|α|f̃(α)hα

where |α| =
∑n
i=1 αi.

Reference: O’Donnell’s Analysis of Boolean Functions
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Royen’s Inequality (2014)
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Royen’s Proof

Given K,L ⊆ Rn convex, symmetric,
〈
UρK,L

〉
is increasing in ρ.

Recall 〈f, g〉 = E[f · g] and Uρf(x) := E

[
f
(
ρx+

√
1− ρ2g

)]



Royen’s Proof

• Let K,L : Rn → {0, 1} be the indicator functions of two symmetric,
convex sets.

• Note that 〈U1K,L〉 = E[K · L] and 〈U0K,L〉 = E[K] ·E[L].

Royen’s Theorem: d
dρ

〈
UρK,L

〉
≥ 0.

Corollary: E[K · L]−E[K] ·E[L] ≥ 0.

Recall 〈f, g〉 = E[f · g] and Uρf(x) := E

[
f
(
ρx+

√
1− ρ2g

)]
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A Quantitative GCI

• We have K,L ⊆ Rn symmetric, convex.

• Want a quantitative lower bound on

E[K · L]−E[K] ·E[L] = 〈U1K,L〉 − 〈U0K,L〉.



Proof Sketch

UρK =
∑
α∈Nn

ρ|α|K̃(α)hα and L =
∑
α∈Nn

L̃(α)hα

Parseval’s formula: 〈f, g〉 =
∑
α∈Nn f̃(α)g̃(α)

〈
UρK,L

〉
=
∑
α∈Nn

ρ|α|K̃(α)L̃(α)

Recall |α| =
∑n
i=1 αi.
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〈
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− 〈U0K,L〉 =

∑
|α|>0

ρ|α|K̃(α)L̃(α)

=

∞∑
i=1

aiρ
i

where ai :=
∑
|α|=i K̃(α)L̃(α).

• Cauchy-Schwarz + Parseval =⇒
∑∞
i=1 |ai| ≤ 1.

• K,L symmetric =⇒ K̃(α) = L̃(α) = 0 when |α| odd.

Recall |α| =
∑n
i=1 αi.

Fact: hα is even if |α| is even, and odd otherwise.
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i=2
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a2
ti


︸ ︷︷ ︸

=:p(t)

where ai :=
∑
|α|=i K̃(α)L̃(α),

∑∞
i=1 |ai| ≤ 1

Question: How large must supt∈[0,1] p(t) be?
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Let’s analyze this question in more generality. . .



An Extremal Bound for Complex Power Series

p(t) = t+ c2t
2 + c3t

3 + . . .



An Extremal Bound for Complex Power Series

Question: Let p(t) =
∑∞
i=1 cit

i where ci ∈ C, and

– c1 = 1; and

–
∑∞
i=1 |ci| ≤M where M ≥ 3/2.

How large must supt∈[0,1] |p(t)| be?

Answer: supt∈[0,1] |p(t)| ≥ Θ
(

1
log2(M)

)
.

• Proof uses Hadamard’s Three Circles Theorem.

• This bound is tight: construction using Chebyshev polynomials.
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Proof

Given p(t) = t+ c2t
2 + c3t

3 + . . .

where 1 +
∑∞
i=2 |ci| ≤M for M ≥ 3/2.

Want: Lower bound on supt∈[0,1] |p(t)|.

• Note that p(0) = 0, so must move away from 0.

• Write p(t) := t · q(t), where

q(t) := 1 + c2t+ c3t
2 + . . .

and optimize q(t) over [δ, 1) for some δ that we will fix later.



We define h : C→ C (see above) as

h(z) = A

(
z +

1

z

)
+B



• Given p(t) = t+ c2t
2 + c3t

3 + . . . with 1 + |c2|+ . . . ≤M .

• We defined q(t) := p(t)
t , i.e.

q(t) = 1 + c2t+ c3t
2 + . . . .

• We will be interested in ψ := q ◦ h.



• Let α(r) := sup|z|=r |ψ(z)|.
• Then Hadamard’s three circles theorem implies that

α

(
1 + Θ

(√
δ
))log ( 4

1 )
≤ α(1)

log

 4

1+Θ(
√
δ)


α(4)

log

 1+Θ(
√
δ)

1



Recall q(t) := p(t)/t and ψ(z) := q(h(z)).
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• Let α(r) := sup|z|=r |ψ(z)|.
• Then Hadamard’s three circles theorem implies that

1 ≤ α(1)
log

 4

1+Θ(
√
δ)


α(4)

log

 1+Θ(
√
δ)

1



Recall q(t) := p(t)/t and ψ(z) := q(h(z)).



So we have

1 ≤

(
sup
|z|=1

|ψ(z)|

)log

 4

1+Θ(
√
δ)

(
sup
|z|=4

|ψ(z)|

)log

 1+Θ(
√
δ)

1



Recall q(t) := p(t)/t and ψ(z) := q(h(z)).



So we have

1 ≤

(
sup
|z|=1

|ψ(z)|

)log

 4

1+Θ(
√
δ)

(
sup
|z|=4

|ψ(z)|

)log

 1+Θ(
√
δ)

1



= Θ(1) ≈ Θ
(√

δ
)



It follows that

1 ≤

(
sup
|z|=1

|ψ(z)|

)Θ(1)(
sup
|z|=4

|ψ(z)|

)Θ(
√
δ)



It follows that

1 ≤

(
sup
|z|=1

|ψ(z)|

)Θ(1)(
sup
|z|=4

|ψ(z)|

)Θ(
√
δ)

Recall q(t) := p(t)/t and ψ(z) := q(h(z)).



1 ≤

(
sup
t∈[δ,1)

|q(t)|

)Θ(1)

 sup
t∈h(z)
|z|=4

|q(t)|


Θ(
√
δ)

Recall q(t) := p(t)/t.



1 ≤

(
sup
t∈[δ,1)

|q(t)|

)Θ(1)

 sup
t∈h(z)
|z|=4

|q(t)|


Θ(
√
δ)

• Recall q(t) = 1 + c2t+ c3t
2 + . . . where 1 + |c2|+ |c3|+ . . . ≤M .

• Consequently, if |z| ≤ 1 then |q(z)| ≤M .



We can rearrange and use q(t) := p(t)/t to get

M−Θ(
√
δ) ≤ sup

t∈[δ,1)

|q(t)| =⇒ sup
δ∈[0,1]

δM−Θ(
√
δ) ≤ sup

t∈[0,1]

|p(t)|.



We can rearrange and use q(t) := p(t)/t to get

M−Θ(
√
δ) ≤ sup

t∈[δ,1)

|q(t)| =⇒ sup
δ∈[0,1]

δM−Θ(
√
δ) ≤ sup

t∈[0,1]

|p(t)|.

Taking δ = Θ(1)
log2(M)

gives

sup
t∈[0,1]

|p(t)| ≥ Θ(1)

log2(M)
.



Returning to the Quantitative GCI. . .
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Proof Sketch

sup
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〈
UρK,L

〉
− 〈U0K,L〉 ≥ Θ

(
a2

log2(1/a2)
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Royen:
〈
UρK,L

〉
increasing in ρ.

〈U1K,L〉 − 〈U0K,L〉 ≥ Θ

(
a2

log2(1/a2)

)
=

1

C
· Φ(a2)

where C is a constant and Φ(x) := x
log2(1/x)

.

Recall a2 :=
∑
|α|=2 K̃(α)L̃(α).
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Looking at a2 More Closely. . .

Given K,L ⊆ Rn symmetric, convex we defined

a2 :=
∑
|α|=2

K̃(α)L̃(α).

• Let ei ∈ Nn be ei := (0, . . . , 0, 1, 0, . . . , 0), i.e. (ei)j :=

0 i 6= j

1 i = j.
.

• If |α| = 2, then either
– α = ei + ej for i 6= j.
– α = 2ei for some i ∈ [n].

• There exists suitable rotation such that K̃(ei + ej) = 0 for all i 6= j.
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Looking at a2 More Closely. . .

After suitable rotation, we have a2 :=
∑n
i=1 K̃(2ei)L̃(2ei).

Definition: Given symmetric, convex K ⊆ Rn, define

Inf i[K] = −K̃(2ei).

So we have a2 =
∑n
i=1 Inf i[K] · Inf i[L].
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After suitable rotation, we have a2 :=
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Definition: Given symmetric, convex K ⊆ Rn, define

Inf i[K] = −K̃(2ei).

So we have a2 =
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i=1 Inf i[K] · Inf i[L].



A Quantitative GCI

Theorem: Let K,L ⊆ Rn be symmetric, convex sets, identified
with their indicator functions. Then

E[K · L]−E[K] ·E[L] ≥ 1

C
· Φ

 n∑
i=1

Inf i[K] · Inf i[L]


where C is a constant and Φ(x) := x

log2(1/x)
.

Recall Inf i[K] := −K̃(2ei) = E

[
K(x) · (1−x2

i )√
2

]
.



Generalizing to Other Domains

Probability space (Ω,D), consider

E[f · g]−E[f ] ·E[g]

for f, g ∈ F ⊆ L2(Ω,D).

• Interpolate between E[f ] ·E[g] and E[f · g]

Markov semigroups

• Express as power series + complex-analytic lemma
Eigenfunctions of Markov semigroups

• Monotonicity of interpolation
Implies qualitative correlation inequalities
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A new notion of influences

For a symmetric convex set K and direction v,
Infv[K] := E

[
K(x) · (1−〈x,v〉2)√

2

]

Questions:

• Is Infv[K] always non-negative?

• Suppose Infv[K] = 0. Does it mean v is irrelevant?

• Other properties of Infv[K]?
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Non-negativity of influences

Proposition: For a symmetric convex set K and direction v, Infv[K] ≥ 0.

An alternate characterization of Infv[K] : For Λ ∈ R+
n ,

Λ ·K := {(Λ1x1, . . . ,Λnxn) : (x1, . . . , xn) ∈ K}.

Let v = e1. Define ∆ = (1− δ, 1, . . . , 1). Then,

Infe1[K] =
1√
2

lim
δ→0

γn(K)− γn(∆ ·K)

δ
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It is not hard to prove that γn(∆ ·K) ≤ γn(K). Thus, Infe1[K] ≥ 0.
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Other contributions

• Weak form of Friedgut’s junta theorem.

• Sharp threshold results – à la Friedgut-Kalai (ours is quantitatively
stronger).

• Kruskal-Katona type result for convex sets (improvement à la
O’Donnell-Wimmer).



Summary

• Bootstrapping qualitative correlation inequalities to obtain
quantitative correlation inequalities:
1. Interpolation via noise operators.

2. Extremal bound for power series of bounded length.

• Influences for symmetric, convex sets over Gaussian space.



Thanks!


