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Gaussian Covariance ldentity

@ Let yu denote the standard Gaussian measures on R" with density
_ _1 e n
() = ZEre ¥ xR

For a unique probability measure A on R" x R", with marginals . and u, v
arbitrary smooth functions on R" with u-square integrable gradients

Covy,(u,v) = // < Vu(x), Vv(y) > dA(x,y)

e Uniqueness: Consider u(x) = e/<t>> v(y) = e/<$¥>(t,s € R")

o Marginals: Consider v(y) =>"%, v
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Characterisation of Gaussian measures

Given a probability measure i on R", suppose that

Cov,(u,v) = /n /n < Vu(x),Vv(y) > d\(x,y)

for some finite measure A on R" x R" in the class of all bounded smooth
u,v on R" with bounded partial derivatives. Then p is Gaussian with
covariance matrix ol,.

@ Proof: An application of the Darmois-Skitovitch theorem

@ Question: May such a representation exist in different spaces?
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One such derivation

@ Ledoux 1995

Cov,(u,v) = / E, < Vu,VQiv > dt
0

where Q:v(x) = [z v(e 'x + V1 — e 2ty)du(y) is the

Ornstein-Uhlenbeck semigroup associated to Lo y. = A —x-V
@ Note that for v such that E,v =0

o0 d o0
V= Qov — Quv = —/ 9 Qevdt = —/ Lo, Qevdt
o dt 0
@ Thus

Cov,(u,v) = / uvdp = / E, <Vu,VQiv > dt
n 0
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One such derivation

@ Using the integral representation of Q;, one obtains

Cov,(u,v) = /n /n < Vu(x),Vv(y) > d\(x,y)

with \ admitting a density

p(x,y) = ﬁ fol s "exp(— |X|2+|y‘22;22t<x’}/>)dt where s = /1 — t2
@ Interpolation Approach: Houdré, Pérez-Abreu 1995, H-PA-Surgailis

1998, Bobkov-H-Gotze 2001

1
Covy(f.g) = / E < VF(X), Vg(tX +sZ) > dt
0

XL1LZ~up
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Concentration in Gauss Space

@ Sobolev-type inequality:

Covyu(u, v) < IV ullo IV V] Lagu)
o Withg=1,v=e" ||ulljp <1

E#et” < etIEuu—s—g
2
= p{|lu—E,u| > h} <2e” 7
@ Using the entropy functional
E,ef < E,elVel+Eug

e Corollary: For h >0, ||ul|rip <1

B2

e 2
pflu —E,ul > h} < TE/L’“_E#”‘
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Proof of Corollary

Let v=min{(u-h)™, e}, h,e > 0 for E,u = 0. Let p denote the density
of u under p.
The representation gives

E,uT(u) <E,T'(v)

h+e oo h+e
/h x(x — h)p(x)dx + € /h+6 xp(x)dx < /h p(x)dx
Dividing by and letting ¢ — 0

V(h) = /hoo xp(x)dx < p(h) = —

Monotonicity gives

V'(h)
h

2
V(h)eT < V(0) =E,u*
Using V/(h) > hu{u > h},
®
pluzh) < S B0t
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Spherical Derivatives

e Consider S" ! = {x € R": |x| =1},n>2
@ Let o,_1 denote the uniform measure on the sphere

o w = V,f(#) at € S™ ! denotes the shortest vector such that for
eSSt -0

f(0)=f(0)+<w,0 —0>+o(|¢ —0|)
@ If f is smooth in a neighbourhood of the sphere

VF(0) = Py VF(0) = VF(0)— < 0,VF(0) > 0
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Spherical Derivatives

Define B = f//(#) is the symmetric nxn matrix with the smallest
Hilbert-Schmidt norm such that for ¢/ € S"~1 — ¢

1
F(O) = F(O)+ < VsF(60).0'~0 > +5 < B(#'~6),0/~0 > +o(|¢'~0%)

AF(0)=Trfl(0)
For smooth f,g : S"~! — R, associate functions u,v : R"\ {0} — R

u(x) = f(r7'x) = £(0), v(x) = g(r~'x) = g(0),r = |x]

One has

Vu(x) = %st(e), Vv(x) = %ng(Q)
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Construction of the spherical representation

e Note that Cov,, ,(f,g) = Cov,(u,v)

@ By applying the Gaussian covariance identity to u and v and
integrating in polar coordinates we write Cov,, ,(f,g) as

/ / < Vsf(0),Vsg(0') > V,_1(< 6,6 >)do,_1(0)do,_1(6')
gn—1 Jgn—1

\Iln_l(a) =
- 2}_( 1 gh—2 |:j‘0 fo exp |:_ r +r’272rr ta:| (rr/)n—2 dr dr’] dt.
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Study of mixing measure

@ By virtue of the rotational invariance, define
Ch—1 = / Wn_1(< 9,0, >)d0’n_1(9/)
§n—1

e By Cauchy-Bunyakovsky, ¢,—1 must be larger than ﬁ which is
optimal in the Poincaré inequality

@ By polar integration,

Pix.y) 1 1
y <E,——s = —
// IXHyI MIXP2 -2
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Spherical covariance representation

On S"™1 x S"~1 n > 3 there exists a probability measure v with marginals
On—1 Such that

Covy, ,(f,8) = cn-1 / < Vsf(0),Vsg(0) > dv(6,6)
Sn— 1 Sn— 1

Where 1 <1< .45

@ Uniquenes is not ensured. Consider S € S"~! a circle and v/ a
measure supported on the set A= {(x,y) € S x §:< x,y >=0}.
cn_1v + v will satisfy this representation.
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Spherical Concentration

By previous arguments, we have the following spherical analogues
Covy,_,(f,8) < Cn—l‘|vsf‘|LP(cr,,,1)Hvsg||Lq(an,1)

2
IEO’n—l ef S IEO'n—l ec"’_l‘vﬂ +E‘7n—1f

e Classic Deviation Inequality for ||f||jp <1,h >0

2
onr{|f —Eq,_,f] > h} < 2e" (D%

e Corollary: For h> 0, ||f|[rjp <1

h2
e 2¢p—1

h

lu’{|f_]EO'nflf‘ 2 h} S Ean71|f_}Eo'n71f|
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Heat Semigroup

e Consider the heat semigroup P; = et?s

@ The semigroup is frequently defined in the two following ways

1) Consider f =" ;- fq its decomposition into spherical harmonics,

then
P.f = Z e—d(d+n—2)tf-d
d>0

2) P.f() = E[f(Ba:)|Bo = 0] where B is brownian motion on S"~!
@ There exists a non-negative and non-decreasing K; € C* on [-1,1]

such that Pif(0) = [o,1 Ke(< 0,0 >)f(8")don_1(0")
e Pf(0) > E,, ,f,t— 00
o Pf(f) »f,t—0
o 4P f=NAPf =PAS
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Semigroup representation

@ By integration by parts on the sphere, one has the following using the
argument above for f,g smooth and n > 3

Theorem 4

Go (o) = / / < VoF(0), VsPeg(8) > don1(0)dt
0 Snfl

@ Using properties of spherical harmonics and hermite polynomials,
Theorem 4 furnishes Theorem 1!
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Extension to other semigroups

Consider U; an ergodic Markovian semigroup associated to a
probability measure p over £.

Ergodicity is ensured if yu is finite and Lf = 0 — f constant.

By the argument above

Cov,(f,g) :/ /F(f, Ueg)dudt
0 I

Example: % = %e‘v(x), HessV(x) > p >0

Cov,(f,g) = / / < VFf,VU;g > dudt
0 n
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Log-Concave case

@ Recall that the example above satisfies the CD(p, o0) condition.
= [VUig| < e "' U Vg|

@ By similar arguments as above in conjunction with reflexivity and
Jensen's inequality

1
Covu(F.g) = IV Fllioq1VElloqu)

h2p

e 2
h>0,|Iflluip < 1, p{|f — Euf| > h} < ———E,|f — E,f|
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Second Order Semigroup Argument

@ On the sphere, integrate by parts with respect to time

oo 0o )
Cove 1(f,g):/ / tAsPthsgdo,,_ldt:/ / tPfA2gdor,_qdt
n— 0 gn—l 0 gn—l

o Apply latter representation to spherical harmonics and use formula

| sdons = [ £AZF + (02 s

1
/ Fdo,y / 18" s dony
Snfl n—l Snfl

for E5, ,f =0

Recovers

IN
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Second Order Argument

Let us return to the Gaussian case

Applying the Gaussian covariance identity to the derivatives of u and v
— Covy,(u,v) =< B, Vu,E, Vv > +/w /m < u(x), v(y)" > dkn(x, y)

where 2k, is a probability measure with marginals

Similar result attainable by approach of Ledoux?

As above, let us associate u,v to functions f,g on the sphere

@ One has

u"(x) = r2Df(0) = r2(f/"(0) — 2Vf(0) ® 6)

1 ..
(a®B)y = E(aiﬁj + Biaj),1<i,j<n
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Second Order Argument

@ Assume E,Vu=E,Vv =0
Equivalently, f, g are orthogonal to linear functions

On S"1 x S"1 n > 5 there exists a probability measure v with marginals
On—1 Such that

G (o) = o s / / < DF(9), Dg(¢') > dv(6.9')
Snfl Snfl

for f,g orthogonal to linear functions where ﬁ < dp_1 < m

@ Furnishes the following sharpening for f orthogonal to affine functions

E, e < Ean_lexp< @12 + 8\vsf12))

o
(n—2)(n—4)
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