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Polarity and the even Santaló inequality
1 The polar of a convex body is precisely

K ◦ := {x ∈Rn : x · y ≤ 1∀y ∈ K} .

2 We will denote by Voln(K ) - volume of K ⊂Rn. One can verify
for K convex body

Voln(K ◦) < ∞←→ o ∈ int(K ).

Santaló’s inequality for symmetric convex bodies
Let K be a symmetric convex body. Then,

Voln(K )Voln(K ◦) ≤ Voln(Bn
2)

2,

with equality if and only if K is a centered ellipsoid.
Shown by Blaschke and Santaló; see the elegant proof by Meyer and
Pajor.
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Functional Polarity

1 Given a nonnegative function f , its polar is

f ◦(x) = inf
y∈Rn

e−x ·y

f (y)
.

2 f ◦ is log-concave, and f ≤ f ◦◦, with equality when f is
log-concave and upper-semi-continuous

Santaló’s inequality for even functions

M(f ) :=
∫

Rn
f
∫

Rn
f ◦ ≤M(e−|x |

2
),

with equality if and only if f is Gaussian (f (x) = e−Ax ·x+c for A
positive definite and c ∈R).
Proven by Ball in his Ph.D thesis.
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Approximation of Polarity

Terence Tao’s Blog (paraphrasing): If f is log-concave, then the
Laplace transform of f

1
p (x) is essentially (f

1
p )◦( x

p ), ignoring
lower-order contributions... in which case Klartag’s formulation of
Santaló’s inequality begins to look quite a lot like Beckner’s sharp
Hausdorff-Young inequality as p→ 0+.

1 The Laplace transform of a nonnegative function is give by

Lf (y) :=
∫

Rn
f (x)ex ·y dx ∀y ∈Rn.

Note that Lf is always log-convex
2 We define, for p ∈ (0,1), the Lp Laplace transform as

Lp(f )(x) := (L(f
1
p ))(x)

p
p−1 =

(∫
Rn

f
1
p (y)ex ·y dy

) p
p−1 ∀x ∈Rn.

Note that Lp(f ) is always log-concave.
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Laplace Transform Polarity
The Lp Laplace transform converges to polarity

lim
p→0+

Lp(f )(x/p) = lim
p→0+

(∫
Rn

(ex ·y f (y))
1
p dy

) p
p−1

= f□(x) = ess inf
y∈Rn

e−x ·y

f (y)
≥ inf

y∈Rn

e−x ·y

f (y)
= f ◦(x).

Laplace-Santaló’s inequality for even functions
Let f be an even function such that

∫
Rn f ∈ (0,∞). Then,

Mp(f ) :=
∫

Rn
f
(∫

Rn
Lp(f )

(
x
p

))1−p
≤Mp(e−|x |

2
),

with equality when f is Gaussian.
Shown very recently by Nakamura-Tsuji. But they showed much
more!
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By considering f (y) = e−|y |
2/2 + δ(y), we see that

f ◦(x) =

{
1
2 , if |x |2 ≤ 2ln(2),
e−|x |

2/2, otherwise.

But, f□(x) = (e−|y |
2/2)◦(x) = e−|x |

2/2.
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Fokker-Planck Heat Flow
For a (nonnegative) integrable function f its Fokker-Planck flow is
P0f = f , and, for t > 0,

Pt f (x) = ent/2
∫

Rn
f (y)e

−|et/2x−y |2
2(et−1)

dy

(2π(et − 1))
n
2

=

(∫
Rn

f (y)e
et/2

et−1
x ·y− 1

2(et−1)
|y |2

dy

)
e−

1
1−e−t |x |2/2

(2π(1− e−t ))
n
2

.

Nakamura-Tsuji’s inequality for the functional volume
product along the Fokker-Planck flow
Let f be even and integrable. Then,

t 7→Mp(Pt f )

is increasing in t .
Implies, by sending p→ 0+, that t 7→M(Pt f ) is monotonically
increasing when f is even, integrable and regular enough.
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1
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)
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What about non-even
functions?



Convex Setting
Need to pick origin in a smart way. Let K be a convex body. If
b(K ) = 1

Voln(K )

∫
K xdx = o, then

Voln(K )Voln(K ◦) ≤ Voln(Bn
2)

2.

(shown by Blaschke and Petty).

This can be written as, for arbitrary
convex body K ,

Voln(K )Voln((K − b(K ))◦) ≤ Voln(Bn
2)

2.

By inverting the roles of K and K ◦, this it totally equivalent to

Voln(K )Voln((K − s(K ))◦) ≤ Voln(Bn
2)

2.

Here, s(K ), the Santaló point of K , is so that b((K − s(K ))◦) = o. It
has the property that

s(K ) = argminz∈RnVoln((K − z)◦),
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Functional Setting

Set τz f (x) = f (x − z). Then: (τz f )◦(x) = f ◦(x)e−x ·z .

Functional Santaló inequality
Let f be a nonnegative function so that

∫
Rn f ∈ (0,∞). Then,

M(f ) :=
(∫

Rn
f
)

inf
z

(∫
Rn

(τz f )◦
)
≤M(e−|x |

2
),

with equality if and only if f is Gaussian.

1 Shown by Artstein-Klartag-Milman.
2 The infimum is obtained at a unique point, the Santaló point of f .
3 In fact, the Santaló point can be replaced by the barycenter of f .
4 Notice that ∫

Rn
(τz f )◦ = L[f ◦](−z).
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New results: inequalities

Theorem (Lp Santaló’s inequality)
Let f be a nonnegative function, f ̸≡ 0. Then,

Mp(f ) :=
∫

Rn
f inf

z∈Rn

(∫
Rn
Lp(τz f )

(
x
p

))1−p
≤Mp(e−|x |

2
),

with equality for Gaussians.

Theorem (Laplace-Santaló’s inequality)
Let f be a nonnegative function, f ̸≡ 0. Suppose either f or Lp(f )
have barycenter at the origin. Then,

∫
Rn

f
(∫

Rn
Lp(f )

(
x
p

))1−p
≤Mp(e−|x |

2
),

with equality for Gaussians.
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New results: heat flow

Monotonicity of the functional Lp Volume product under
heat flow
Let f be a nonnegative function, f ̸≡ 0. Then

t →Mp(Pt f )

is increasing in t .

Motonicity of the functional volume product
Let f be a nonnegative function, f ̸≡ 0 with nice regularity e.g.
continuous or log-concave. Then

t →M(Pt f )

is increasing in t .
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Important Facts Concerning the Laplace Transform
Mathematics is Consistent
Let f be a nonnegative function on Rn and p ∈ [0,1). Then we have∫

Rn
f = ∞ =⇒ inf

z

∫
Rn
Lp(τz f )

(
x
p

)
= 0.

If f is log-concave, the converse is also true.

Domain of LLp(f )
Let f : Rn→ [0,∞) be a nonnegative function with f ̸≡ 0. Let p ∈ [0,1).

dom
(

LLp(f )
(
·
p

))
⊇
(

1
1− p

)
intco (supp(f )).

If f is log-concave, there is equality in the previous assumption.
Anyway, we have in particular that

dom(L(Lp(f ))) ̸= ∅.
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The infimum
Theorem (The Laplace-Santaló Point)
Let f : Rn→R+ such that f ̸≡ 0. Fix p ∈ [0,1). Then, the following
assertions are equivalent:

1 inf
z

L(Lp(f ))(z) > 0.

2 o lies in the interior of the support of Lp(f ).
3 L(Lp(f )) tends to ∞ on the boundary of its domain.

4 Lp(f ) ̸≡ 0 and infz L
(
Lp(f )

(
·
p

))((
1

p−1

)
z
)

is attained at a

(unique) point z0 in the domain of L
(
Lpf

(
·
p

))
.

5 Lp(f ) ̸≡ 0 and there exists s0 ∈Rn such that
(

1
p−1

)
s0 is in the

domain of L
(
Lp(f )

(
·
p

))
and

bar
(
Lp

(
f
(
·
p

))
(x)e−

(
1

1−p

)
x ·s0

)
= 0.

Moreover, the points z0 in (4) and s0 in (5) are equal (and denoted
by sp(f )).



Examples (q = p
p−1 < 0)

1 If f = 1[a,b] on R where a < 0 < b. Then we have

Lpf (x) =
(∫ b

a ex y dy
)q

=
(

ebx−eax

x

)q
, and so the support of

Lp(f ) is equal to R, while

L(Lpf )(z) =
∫

R
exz

(
ebx − eax

x

)q

dx ∈ [0,∞]

has as domain dom(L(Lp(f )) =
(
(−q)a , (−q)b

)
, and LLp(f )

tends to ∞ at the points −qa and −qb. In particular L(Lp(f ))
attains its minimum.

2 If f = 1[a,∞), then Lp(f )(x) = 1]−∞,0](−x)−qeqax and

L(Lp(f ))(z) =
Γ(1− q)

(z + qa)1−q if z >−qa and ∞ otherwise,

has domain (−qa,∞). Note that 0 is not in the interior of (the
convex hull of) the support of Lpf and that we have that
infL(Lpf ) = 0, by letting z→∞.
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Examples (q = p
p−1 < 0)

1 If f (x) = e−α|x |2 for some α > 0, then Lp(f )(x) = c e−β|x |2 and
LLp(f )(z) = C eη|z|2 for some constants c,C, β,η > 0. In
particular LLp(f ) attains its minimum at the origin.

2 If f (x) =
( 1

1+x2

)α on R, α > 0, then, Lp(f )(0) =
(∫

f 1/p
)q

and

Lp(f )(x) = 0 otherwise. Thus, Lp(f ) ≡ 0 and so LLp(f )(z) = 0
for every z.
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Proof Strategy I
First, justify that you can take limits.

Limits of Laplace Transforms
Let g1,g2, . . .g∞ : Rn→ [0,∞) be log-concave functions ̸≡ 0 such for
almost all x ∈Rn,

gk (x) −→ g∞(x).

This implies that Lgk (z) −→ Lg∞(z) in R∪ {∞} at every z ∈Rn. We
assume the following two properties of non-degeneracy and domain
monotony, respectively:

0 < infz Lgk (z) < ∞ for every k ∈N∪ {∞},
either dom(Lgk ) ⊆ dom(Lgk+1) for every k ∈N or
dom(Lg∞) ⊆ ⋂k dom(Lgk ).

Then we have
inf
z

Lgk (z) −→ inf
z

Lg∞(z).

Furthermore, for each k , there exists a unique point z(gk ) where the
infimum infz Lgk (z) is attained and

z(gk ) −→ z(g∞).
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Proof Strategy II
Then, truncate and prove the following (as in Nakamura-Tsuji).

Truncated Theorem
Let f be a non-negative function bounded and compactly supported
with f ̸≡ 0. Let ft be its evolution along the Fokker-Planck or the heat
semigroup. For p ∈ (0,1), q = p

p−1 , define the function Q(t ,z) for
t > 0 and z ∈Rn by

Q(t ,z) := log
∫

Rn
Lp(τz(ft )) = log

∫
Rn
Lp(ft )(x)eqz·x dx = logLLp(f )(qz).

Then it holds that

∂tQ +
1
2

p
−q
|∇zQ|2 ≥ 0 on (0,∞)×Rn.

It follows that

t 7→
∫

Rn
Lp(τsp(ft )ft )(x)dx = inf

z

∫
Rn
Lp(τz(ft )) = infLLp(ft )

is monotonically increasing in t > 0.
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Tools
1 Variance of a function with respect to a measure µ:

Varµg :=
∫

Rn
|g|2dµ(x)−

(∫
Rn

gdµ(x)
)2

.

2 Brascamp-Lieb inequality: Let h ∈ C2(Rn) ∩ L1(Rn) be
non-negative, and strictly log-concave. Then, for any locally
Lipschitz g ∈ L2(Rn,µ), with dµh(x) =

h(x)dx∫
Rn h(x)dx , one has

Varµhg ≤
∫

Rn

(
∇g · (∇2(− logh))−1∇g

)
dµh(x).

3 The Cramér-Rao inequality: Let h be a non-negative, integrable
function on Rn. Let X be a random vector distributed with
respect to µh. Then, the following matrix inequality holds:

I(X ) ≥ cov(h)−1,

where I(X ) is the (Fisher) information matrix of X .
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Proof Strategy III

To take derivative of Q, you admit to yourself that Fokker-Planck is
heavy to use.

The (Euclidean) heat-semi-group Et f is given by

Et f (y) =
1

(2πt)n/2 (f ∗γt )(y) =
∫

Rn
f (u)e−|y−u|2/(2t) du

(2πt)n/2 , ∀y ∈Rn,

and, under suitable integrability assumptions, follows the heat
equation

∂tEt f (x) =
1
2

∆xEt f (x).

It is related to the Fokker-Planck heat semi-group via

Et f (x) = (1 + t)−n/2Plog(1+t)f
(
(1 + t)−1/2x

)
.
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Proof Strategy III
This renormalization scales perfectly with respect to the definition of
Lp For any fixed z ∈Rn,

∫
Rn
Lp(τz(Et f )) =

∫
Rn
Lp(τ(1+t)−1/2z(Plog(1+t)f )).

In particular,

inf
z

∫
Lp(τz(Et f )) = inf

z

∫
Lp(τ(1+t)−1/2z(Plog(1+t)f )).

If we define

Q(t ,z) = log
∫

Rn
Lp(τz(Et f )) and Q̃(t ,z) = log

∫
Rn
Lp(τz(Pt f )),

then we have Q(t ,z) = Q̃(log(1 + t), (1 + t)−1/2z) and therefore, for
any constant c

(∂tQ + c|∇Q|2)(t ,z) = 1
1 + t

(∂t Q̃ + c|∇Q̃|2)(log(1+ t), (1+ t)−1/2z).

Consequently, proving the truncated theorem along the
Fokker-Planck or heat semi-group is totally equivalent.
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Proof Strategy IV

To prove the (non)-truncated version, take limits.

Infimum-time relation
Let f be a non-negative function, f ̸≡ 0, and let ft = Et f be its heat
flow evolution. Then for 0≤ s ≤ t ,

supp(Lp(fs)) ⊆ supp(Lp(ft )),

and consequently

infLLp(ft ) = 0 =⇒ ∀s ∈ [0, t ], infLLp(fs) = 0.

Let f be a nonnegative function, f ̸≡ 0, and let s ∈ [0,∞). If
infLLp(fs) > 0 then, as k →∞, we have

infLLp((f (k))s)→ infLLp(fs).
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Application to Hypercontractivity I
1 We denote by γ the standard Gaussian probability measure on

Rn.

2 Recall that for f nonnegative or in L1(γ) we can define the
Ornstein-Uhlenbeck flow of f by

Ut (f )(x) =
∫

Rn
f (e−tx +

√
1− e−2t z)dγ(z).

3 Under appropriate assumptions, ft = Ut f satisfies,

∂

∂t
ft := Dft , where Df := ∆f − x · ∇f .

4 Nelson’s hypercontractivity:

∥Us(f )∥Lp2 (γ) ≤ ∥f∥Lp1 (γ),

when 1 < p1,p2 < ∞ and s > 0 satisfy p2−1
p1−1 ≤ e2s.

5 Borell’s reverse hypercontractivity is then the fact that the above
reverses when p1,p2 ∈ (−∞,1) \ {0} satisfy the same relation.
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when 1 < p1,p2 < ∞ and s > 0 satisfy p2−1
p1−1 ≤ e2s.

5 Borell’s reverse hypercontractivity is then the fact that the above
reverses when p1,p2 ∈ (−∞,1) \ {0} satisfy the same relation.
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Application to Hypercontractivity II

1 For any nonnegative f , we have the point-wise equality, with
q = p

p−1 and s = − 1
2 log(1− p),

(Usf (x))q × (2πp)
nq
2 γ1(x) = Lp(f pγ1)

(
x√
p|q|

)
.
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There is equality when f pγ1 is Gaussian.
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1 For any nonnegative f , we have the point-wise equality, with

q = p
p−1 and s = − 1

2 log(1− p),

(Usf (x))q × (2πp)
nq
2 γ1(x) = Lp(f pγ1)

(
x√
p|q|

)
.

Extended hypercontractivity
Let p ∈ (0,1),q = p/(p− 1). Define s > 0 via the relation
p = 1− e−2s, so that q = 1− e2s. Suppose f is a nonnegative
function such that either∫

x f p(x)dγ = 0 or
∫

x Us(f )q(x)dγ = 0.

Then, for every p2 ≥ q and p1 ≤ p, it follows that

∥Usf∥Lp2 (γ) ≥ ∥f∥Lp1 (γ).



Open Question

We proving the truncated theorem, we had

d
dt

Q(t ,z) = ∂tQ(t ,sp(ft )) +∇zQ(t ,sp(ft )) · ∂tsp(ft )

≥ p
2q
|∇zQ(t ,sp(ft ))|2 +∇zQ(t ,sp(ft )) · ∂tsp(ft ) = 0,

Our choice of z = sp(ft ) yielded

|∇zQ(t ,sp(ft ))|2 = 0 =∇zQ(t ,sp(ft )) · ∂tsp(ft ).
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Open Question II
p-Santaló region along the Fokker-Planck flow
For a fixed nonnegative, smooth function f and a vector field
t → up(t , f ) ∈Rn, the monotonicity of

t 7→ log
∫
Lp(τup(t ,f )(ft )),

for t ∈ (0,∞) still holds if

p
2q
|∇zQ(t ,up(t , f ))|2 +∇zQ(t ,up(t)) · ∂tup(t , f ) ≥ 0.

An example, besides the Santaló points sp(ft ) themselves, for which
both terms are zero, would be a vector field satisfying the equation

∂tup(t , f ) = −
p

2q
∇zQ(t ,up(t , f )) =

p
2

∫
Rn

x
Lp(τup(t ,f )ft )(x)∫

Rn Lp(τup(t ,f )ft )(x)dx
dx .

Question: does this time-dependent gradient flow equation have at
least one (smooth enough) solution on R+ with limt→∞ up(t , f ) = 0?
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