Functional Volume Product Along the Fokker-Planck Heat Flow

Dylan Langharst Institute of Mathematics of Jussieu ¹

¹joint with D. Cordero-Erausquin and M. Fradelizi

 \bullet The polar of a convex body is precisely

$$
K^{\circ} := \{x \in \mathbb{R}^n : x \cdot y \leq 1 \,\forall y \in K\}.
$$

1 The polar of a convex body is precisely

$$
K^{\circ} := \{x \in \mathbb{R}^n : x \cdot y \leq 1 \,\forall y \in K\}.
$$

² We will denote by Vol*n*(*K*) - volume of *K* ⊂ **R***ⁿ* . One can verify for *K* convex body

$$
\mathsf{Vol}_n(K^\circ) < \infty \longleftrightarrow o \in \mathsf{int}(K).
$$

1 The polar of a convex body is precisely

$$
K^{\circ} := \{x \in \mathbb{R}^n : x \cdot y \leq 1 \,\forall y \in K\}.
$$

² We will denote by Vol*n*(*K*) - volume of *K* ⊂ **R***ⁿ* . One can verify for *K* convex body

$$
\text{Vol}_n(K^\circ)<\infty\longleftrightarrow o\in\text{int}(K).
$$

Santaló's inequality for symmetric convex bodies Let *K* be a symmetric convex body. Then,

 $\mathsf{Vol}_n(K) \mathsf{Vol}_n(K^{\circ}) \leq \mathsf{Vol}_n(B_2^n)^2,$

with equality if and only if *K* is a centered ellipsoid.

1 The polar of a convex body is precisely

$$
K^{\circ} := \{x \in \mathbb{R}^n : x \cdot y \leq 1 \,\forall y \in K\}.
$$

² We will denote by Vol*n*(*K*) - volume of *K* ⊂ **R***ⁿ* . One can verify for *K* convex body

$$
\text{Vol}_n(K^\circ)<\infty\longleftrightarrow o\in\text{int}(K).
$$

Santaló's inequality for symmetric convex bodies Let *K* be a symmetric convex body. Then,

$$
\text{Vol}_n(K)\text{Vol}_n(K^{\circ})\leq \text{Vol}_n(B_2^n)^2,
$$

with equality if and only if *K* is a centered ellipsoid.

Shown by Blaschke and Santaló; see the elegant proof by Meyer and Pajor.

¹ Given a nonnegative function *f*, its polar is

$$
f^{\circ}(x)=\inf_{y\in\mathbb{R}^n}\frac{e^{-x\cdot y}}{f(y)}.
$$

¹ Given a nonnegative function *f*, its polar is

$$
f^{\circ}(x) = \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)}.
$$

2 *f* ◦ is log-concave, and *f* ≤ *f* ◦◦, with equality when *f* is log-concave and upper-semi-continuous

¹ Given a nonnegative function *f*, its polar is

$$
f^{\circ}(x)=\inf_{y\in\mathbb{R}^n}\frac{e^{-x\cdot y}}{f(y)}.
$$

2 *f* ◦ is log-concave, and *f* ≤ *f* ◦◦, with equality when *f* is log-concave and upper-semi-continuous

Santaló's inequality for even functions

$$
M(f) := \int_{\mathbb{R}^n} f \int_{\mathbb{R}^n} f^\circ \leq M(e^{-|x|^2}),
$$

with equality if and only if *f* is Gaussian ($f(x) = e^{-Ax \cdot x + c}$ for A positive definite and $c \in \mathbb{R}$).

¹ Given a nonnegative function *f*, its polar is

$$
f^{\circ}(x)=\inf_{y\in\mathbb{R}^n}\frac{e^{-x\cdot y}}{f(y)}.
$$

2 *f* ◦ is log-concave, and *f* ≤ *f* ◦◦, with equality when *f* is log-concave and upper-semi-continuous

Santaló's inequality for even functions

$$
M(f) := \int_{\mathbb{R}^n} f \int_{\mathbb{R}^n} f^\circ \leq M(e^{-|x|^2}),
$$

with equality if and only if *f* is Gaussian ($f(x) = e^{-Ax \cdot x + c}$ for A positive definite and $c \in \mathbb{R}$).

Proven by Ball in his Ph.D thesis.

Approximation of Polarity

Terence Tao's Blog (paraphrasing): If *f* is log-concave, then the Laplace transform of $f^{\frac{1}{p}}(x)$ is essentially $(f^{\frac{1}{p}})^\circ(\frac{x}{p})$, ignoring lower-order contributions... in which case Klartag's formulation of Santaló's inequality begins to look quite a lot like Beckner's sharp Hausdorff-Young inequality as $p \rightarrow 0^+$.

Approximation of Polarity

Terence Tao's Blog (paraphrasing): If *f* is log-concave, then the Laplace transform of $f^{\frac{1}{p}}(x)$ is essentially $(f^{\frac{1}{p}})^\circ(\frac{x}{p})$, ignoring lower-order contributions... in which case Klartag's formulation of Santaló's inequality begins to look quite a lot like Beckner's sharp Hausdorff-Young inequality as $p \rightarrow 0^+$.

1 The Laplace transform of a nonnegative function is give by

$$
Lf(y) := \int_{\mathbb{R}^n} f(x) e^{x \cdot y} dx \qquad \forall y \in \mathbb{R}^n.
$$

Note that *Lf* is always log-convex

Approximation of Polarity

Terence Tao's Blog (paraphrasing): If *f* is log-concave, then the Laplace transform of $f^{\frac{1}{p}}(x)$ is essentially $(f^{\frac{1}{p}})^\circ(\frac{x}{p})$, ignoring lower-order contributions... in which case Klartag's formulation of Santaló's inequality begins to look quite a lot like Beckner's sharp Hausdorff-Young inequality as $p \rightarrow 0^+$.

1 The Laplace transform of a nonnegative function is give by

$$
Lf(y) := \int_{\mathbb{R}^n} f(x) e^{x \cdot y} dx \qquad \forall y \in \mathbb{R}^n.
$$

Note that *Lf* is always log-convex

2 We define, for $p \in (0,1)$, the L^p Laplace transform as

$$
\mathcal{L}_p(f)(x) := (L(f^{\frac{1}{p}}))(x)^{\frac{p}{p-1}} = \left(\int_{\mathbb{R}^n} f^{\frac{1}{p}}(y) e^{x \cdot y} dy\right)^{\frac{p}{p-1}} \quad \forall x \in \mathbb{R}^n.
$$

Note that $\mathcal{L}_p(f)$ is always log-concave.

The L^p Laplace transform converges to polarity

$$
\lim_{p\to 0^+} \mathcal{L}_p(f)(x/p) = \lim_{p\to 0^+} \left(\int_{\mathbb{R}^n} (e^{x \cdot y} f(y))^{\frac{1}{p}} dy \right)^{\frac{p}{p-1}}
$$

= $f^{\square}(x) = \operatorname{ess} \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} \ge \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} = f^{\circ}(x).$

The L^p Laplace transform converges to polarity

$$
\lim_{p\to 0^+} \mathcal{L}_p(f)(x/p) = \lim_{p\to 0^+} \left(\int_{\mathbb{R}^n} (e^{x \cdot y} f(y))^{\frac{1}{p}} dy \right)^{\frac{p}{p-1}} \n= f^{\square}(x) = \operatorname{ess} \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} \ge \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} = f^{\circ}(x).
$$

By considering $f(y) = e^{-|y|^2/2} + \delta(y)$, we see that

$$
f^{\circ}(x) = \begin{cases} \frac{1}{2}, & \text{if } |x|^2 \le 2\ln(2), \\ e^{-|x|^2/2}, & \text{otherwise.} \end{cases}
$$

But, $f^{\Box}(x) = (e^{-|y|^2/2})^{\circ}(x) = e^{-|x|^2/2}$.

The L^p Laplace transform converges to polarity

$$
\lim_{p\to 0^+} \mathcal{L}_p(f)(x/p) = \lim_{p\to 0^+} \left(\int_{\mathbb{R}^n} (e^{x \cdot y} f(y))^{\frac{1}{p}} dy \right)^{\frac{p}{p-1}}
$$

= $f^{\square}(x) = \operatorname{ess} \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} \ge \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} = f^{\circ}(x).$

Laplace-Santaló's inequality for even functions Let *f* be an even function such that $\int_{\mathbb{R}^n} f \in (0, \infty)$. Then,

$$
M_p(f) := \int_{\mathbb{R}^n} f\left(\int_{\mathbb{R}^n} \mathcal{L}_p(f)\left(\frac{x}{p}\right)\right)^{1-p} \leq M_p(e^{-|x|^2}),
$$

with equality when *f* is Gaussian.

The L^p Laplace transform converges to polarity

$$
\lim_{p\to 0^+} \mathcal{L}_p(f)(x/p) = \lim_{p\to 0^+} \left(\int_{\mathbb{R}^n} (e^{x \cdot y} f(y))^{\frac{1}{p}} dy \right)^{\frac{p}{p-1}}
$$

= $f^{\square}(x) = \operatorname{ess} \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} \ge \inf_{y \in \mathbb{R}^n} \frac{e^{-x \cdot y}}{f(y)} = f^{\circ}(x).$

Laplace-Santaló's inequality for even functions Let *f* be an even function such that $\int_{\mathbb{R}^n} f \in (0, \infty)$. Then,

$$
M_p(f) := \int_{\mathbb{R}^n} f\left(\int_{\mathbb{R}^n} \mathcal{L}_p(f)\left(\frac{x}{p}\right)\right)^{1-p} \leq M_p(e^{-|x|^2}),
$$

with equality when *f* is Gaussian.

Shown very recently by Nakamura-Tsuji. But they showed much more!

For a (nonnegative) integrable function *f* its Fokker-Planck flow is $P_0f = f$, and, for $t > 0$,

$$
P_{t}f(x) = e^{nt/2} \int_{\mathbb{R}^{n}} f(y) e^{\frac{-|e^{t/2}x - y|^{2}}{2(e^{t} - 1)}} \frac{dy}{(2\pi(e^{t} - 1))^{2}}
$$

$$
= \left(\int_{\mathbb{R}^{n}} f(y) e^{\frac{e^{t/2}}{e^{t} - 1}x \cdot y - \frac{1}{2(e^{t} - 1)}|y|^{2}} dy\right) \frac{e^{-\frac{1}{1 - e^{-t}}|x|^{2}/2}}{(2\pi(1 - e^{-t}))^{\frac{n}{2}}}.
$$

For a (nonnegative) integrable function *f* its Fokker-Planck flow is $P_0 f = f$, and, for $t > 0$,

$$
P_{t}f(x) = e^{nt/2} \int_{\mathbb{R}^{n}} f(y) e^{\frac{-|e^{t/2}x - y|^{2}}{2(e^{t} - 1)}} \frac{dy}{(2\pi(e^{t} - 1))^{\frac{n}{2}}}
$$

$$
= \left(\int_{\mathbb{R}^{n}} f(y) e^{\frac{e^{t/2}}{e^{t} - 1}x \cdot y - \frac{1}{2(e^{t} - 1)}|y|^{2}} dy\right) \frac{e^{-\frac{1}{1 - e^{-t}}|x|^{2}/2}}{(2\pi(1 - e^{-t}))^{\frac{n}{2}}}.
$$

It verifies the equation $\partial_t P_t f = \mathcal{D}^* P_t f$, where

$$
\mathcal{D}^{\star}f = \frac{1}{2} \big(\Delta f + \text{div}_X(xf) \big).
$$

For a (nonnegative) integrable function *f* its Fokker-Planck flow is $P_0 f = f$, and, for $t > 0$,

$$
P_t f(x) = e^{nt/2} \int_{\mathbb{R}^n} f(y) e^{\frac{-|e^{t/2}x - y|^2}{2(e^t - 1)}} \frac{dy}{(2\pi(e^t - 1))^{\frac{n}{2}}}
$$

$$
= \left(\int_{\mathbb{R}^n} f(y) e^{\frac{e^{t/2}}{e^t - 1}x \cdot y - \frac{1}{2(e^t - 1)} |y|^2} dy \right) \frac{e^{-\frac{1}{1 - e^{-t}} |x|^2/2}}{(2\pi(1 - e^{-t}))^{\frac{n}{2}}}.
$$

Nakamura-Tsuji's inequality for the functional volume product along the Fokker-Planck flow

Let *f* be even and integrable. Then,

$$
t\mapsto M_p(P_tf)
$$

is increasing in *t*.

For a (nonnegative) integrable function *f* its Fokker-Planck flow is $P_0 f = f$, and, for $t > 0$,

$$
P_t f(x) = e^{nt/2} \int_{\mathbb{R}^n} f(y) e^{\frac{-|e^{t/2}x - y|^2}{2(e^t - 1)}} \frac{dy}{(2\pi(e^t - 1))^{\frac{n}{2}}}
$$

$$
= \left(\int_{\mathbb{R}^n} f(y) e^{\frac{e^{t/2}}{e^t - 1}x \cdot y - \frac{1}{2(e^t - 1)} |y|^2} dy \right) \frac{e^{-\frac{1}{1 - e^{-t}} |x|^2/2}}{(2\pi(1 - e^{-t}))^{\frac{n}{2}}}.
$$

Nakamura-Tsuji's inequality for the functional volume product along the Fokker-Planck flow

Let *f* be even and integrable. Then,

$$
t\mapsto M_p(P_tf)
$$

is increasing in *t*.

Implies, by sending $p \rightarrow 0^+$, that $t \mapsto M(P_tf)$ is monotonically increasing when *f* is even, integrable and regular enough.

What about non-even functions?

Need to pick origin in a smart way. Let *K* be a convex body. If $b(K) = \frac{1}{\text{Vol}_n(K)} \int_K x dx = o$, then

 $\mathsf{Vol}_n(K) \mathsf{Vol}_n(K^{\circ}) \leq \mathsf{Vol}_n(B_2^n)^2.$

(shown by Blaschke and Petty).

Need to pick origin in a smart way. Let *K* be a convex body. If $b(K) = \frac{1}{\text{Vol}_n(K)} \int_K x dx = o$, then

 $\mathsf{Vol}_n(K) \mathsf{Vol}_n(K^{\circ}) \leq \mathsf{Vol}_n(B_2^n)^2.$

(shown by Blaschke and Petty). This can be written as, for arbitrary convex body *K*,

 $\mathsf{Vol}_n(K)\mathsf{Vol}_n((K - b(K))^{\circ}) \leq \mathsf{Vol}_n(B_2^n)^2.$

Need to pick origin in a smart way. Let *K* be a convex body. If $b(K) = \frac{1}{\text{Vol}_n(K)} \int_K x dx = o$, then

 $\mathsf{Vol}_n(K) \mathsf{Vol}_n(K^{\circ}) \leq \mathsf{Vol}_n(B_2^n)^2.$

(shown by Blaschke and Petty). This can be written as, for arbitrary convex body *K*,

$$
Vol_n(K)Vol_n((K-b(K))^{\circ}) \leq Vol_n(B_2^n)^2.
$$

By inverting the roles of K and K° , this it totally equivalent to

$$
Vol_n(K)Vol_n((K - s(K))^{\circ}) \leq Vol_n(B_2^n)^2.
$$

Here, $s(K)$, the Santaló point of K, is so that $b((K - s(K))^{\circ}) = o$.

Need to pick origin in a smart way. Let *K* be a convex body. If $b(K) = \frac{1}{\text{Vol}_n(K)} \int_K x dx = o$, then

 $\mathsf{Vol}_n(K) \mathsf{Vol}_n(K^{\circ}) \leq \mathsf{Vol}_n(B_2^n)^2.$

(shown by Blaschke and Petty). This can be written as, for arbitrary convex body *K*,

$$
Vol_n(K)Vol_n((K-b(K))^{\circ}) \leq Vol_n(B_2^n)^2.
$$

By inverting the roles of K and K° , this it totally equivalent to

$$
Vol_n(K)Vol_n((K - s(K))^{\circ}) \leq Vol_n(B_2^n)^2.
$$

Here, $s(K)$, the Santaló point of K, is so that $b((K - s(K))^{\circ}) = o$. It has the property that

$$
s(K) = argmin_{z \in \mathbb{R}^n} Vol_n((K - z)^\circ),
$$

Set $\tau_z f(x) = f(x - z)$. Then: $(\tau_z f)^\circ(x) = f^\circ(x) e^{-x \cdot z}$.

Set
$$
\tau_z f(x) = f(x - z)
$$
. Then: $(\tau_z f)^{\circ}(x) = f^{\circ}(x) e^{-x \cdot z}$.

Functional Santaló inequality

Let *f* be a nonnegative function so that $\int_{\mathbb{R}^n} f \in (0, \infty)$. Then,

$$
M(f):=\left(\int_{\mathbb{R}^n}f\right)\inf_z\left(\int_{\mathbb{R}^n}(\tau_zf)^\circ\right)\leq M(e^{-|x|^2}),
$$

Set
$$
\tau_z f(x) = f(x - z)
$$
. Then: $(\tau_z f)^\circ(x) = f^\circ(x) e^{-x \cdot z}$.

Functional Santaló inequality

Let *f* be a nonnegative function so that $\int_{\mathbb{R}^n} f \in (0, \infty)$. Then,

$$
M(f):=\left(\int_{\mathbb{R}^n}f\right)\inf_z\left(\int_{\mathbb{R}^n}(\tau_zf)^\circ\right)\leq M(e^{-|x|^2}),
$$

with equality if and only if *f* is Gaussian.

1 Shown by Artstein-Klartag-Milman.

Set
$$
\tau_z f(x) = f(x - z)
$$
. Then: $(\tau_z f)^\circ(x) = f^\circ(x) e^{-x \cdot z}$.

Functional Santaló inequality

Let *f* be a nonnegative function so that $\int_{\mathbb{R}^n} f \in (0, \infty)$. Then,

$$
M(f):=\left(\int_{\mathbb{R}^n}f\right)\inf_z\left(\int_{\mathbb{R}^n}(\tau_zf)^\circ\right)\leq M(e^{-|x|^2}),
$$

- **1** Shown by Artstein-Klartag-Milman.
- ² The infimum is obtained at a unique point, the Santaló point of *f*.

Set
$$
\tau_z f(x) = f(x - z)
$$
. Then: $(\tau_z f)^\circ(x) = f^\circ(x) e^{-x \cdot z}$.

Functional Santaló inequality

Let *f* be a nonnegative function so that $\int_{\mathbb{R}^n} f \in (0, \infty)$. Then,

$$
M(f):=\left(\int_{\mathbb{R}^n}f\right)\inf_z\left(\int_{\mathbb{R}^n}(\tau_zf)^\circ\right)\leq M(e^{-|x|^2}),
$$

- **1** Shown by Artstein-Klartag-Milman.
- ² The infimum is obtained at a unique point, the Santaló point of *f*.
- 3 In fact, the Santaló point can be replaced by the barycenter of *f*.

Set
$$
\tau_z f(x) = f(x - z)
$$
. Then: $(\tau_z f)^\circ(x) = f^\circ(x) e^{-x \cdot z}$.

Functional Santaló inequality

Let *f* be a nonnegative function so that $\int_{\mathbb{R}^n} f \in (0, \infty)$. Then,

$$
M(f):=\left(\int_{\mathbb{R}^n}f\right)\inf_z\left(\int_{\mathbb{R}^n}(\tau_zf)^\circ\right)\leq M(e^{-|x|^2}),
$$

- **1** Shown by Artstein-Klartag-Milman.
- ² The infimum is obtained at a unique point, the Santaló point of *f*.
- 3 In fact, the Santaló point can be replaced by the barycenter of *f*.
- **4** Notice that

$$
\int_{\mathbb{R}^n} (\tau_z f)^\circ = L[f^\circ](-z).
$$

Theorem (*L ^p* Santaló's inequality) *Let f be a nonnegative function, f* \neq 0*. Then,*

$$
M_p(f) := \int_{\mathbb{R}^n} f \inf_{z \in \mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z f) \left(\frac{x}{p} \right) \right)^{1-p} \leq M_p(e^{-|x|^2}),
$$

with equality for Gaussians.

Theorem (L^p Santaló's inequality)

Let f be a nonnegative function, $f \not\equiv 0$ *. Then,*

$$
M_p(f) := \int_{\mathbb{R}^n} f \inf_{z \in \mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z f) \left(\frac{x}{p} \right) \right)^{1-p} \leq M_p(e^{-|x|^2}),
$$

with equality for Gaussians. Observe that

$$
\mathcal{L}_{p}(\tau_{z}f)(x)=\mathcal{L}_{p}(f)(x)e^{\frac{p}{p-1}x\cdot z},
$$

and so the second integral is really

$$
L(\mathcal{L}_p(f))\left(-\frac{1}{1-p}z\right)^{1-p}.
$$

Theorem (*L ^p* Santaló's inequality)

Let f be a nonnegative function, $f \not\equiv 0$ *. Then,*

$$
M_p(f) := \int_{\mathbb{R}^n} f \inf_{z \in \mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z f) \left(\frac{x}{p} \right) \right)^{1-p} \leq M_p(e^{-|x|^2}),
$$

with equality for Gaussians. Observe that

$$
\mathcal{L}_p(\tau_z f)(x) = \mathcal{L}_p(f)(x) e^{\frac{p}{p-1}x \cdot z},
$$

and so the second integral is really

$$
L(\mathcal{L}_p(f))\left(-\frac{1}{1-p}z\right)^{1-p}.
$$

If the infimum is obtained, then it is obtained at a unique point, which is precisely the barycenter of $\mathcal{L}_p(f)$.

Theorem (*L ^p* Santaló's inequality) *Let f be a nonnegative function, f* \neq 0*. Then,*

$$
M_p(f) := \int_{\mathbb{R}^n} f \inf_{z \in \mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z f) \left(\frac{x}{p} \right) \right)^{1-p} \leq M_p(e^{-|x|^2}),
$$

with equality for Gaussians.

Theorem (Laplace-Santaló's inequality)

Let f be a nonnegative function, f \neq 0*. Suppose either f or* $\mathcal{L}_p(f)$ *have barycenter at the origin. Then,*

$$
\int_{\mathbb{R}^n} f\left(\int_{\mathbb{R}^n} \mathcal{L}_p(f)\left(\frac{x}{p}\right)\right)^{1-p} \leq M_p(e^{-|x|^2}),
$$

with equality for Gaussians.

New results: heat flow

Monotonicity of the functional *L ^p* Volume product under heat flow Let *f* be a nonnegative function, $f \not\equiv 0$. Then

 $t \rightarrow M_p(P_tf)$

is increasing in *t*.
New results: heat flow

Monotonicity of the functional *L ^p* Volume product under heat flow Let *f* be a nonnegative function, $f \not\equiv 0$. Then

 $t \rightarrow M_p(P_tf)$

is increasing in *t*.

Motonicity of the functional volume product

Let *f* be a nonnegative function, $f \neq 0$ with nice regularity e.g. **continuous or log-concave**. Then

$$
t\to M(P_tf)
$$

is increasing in *t*.

Important Facts Concerning the Laplace Transform

Mathematics is Consistent

Let *f* be a nonnegative function on \mathbb{R}^n and $p \in [0,1)$. Then we have

$$
\int_{\mathbb{R}^n} f = \infty \Longrightarrow \inf_z \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z f) \left(\frac{x}{p}\right) = 0.
$$

If *f* is log-concave, the converse is also true.

Important Facts Concerning the Laplace Transform

Mathematics is Consistent

Let *f* be a nonnegative function on \mathbb{R}^n and $p \in [0,1)$. Then we have

$$
\int_{\mathbb{R}^n} f = \infty \Longrightarrow \inf_z \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z f) \left(\frac{x}{p}\right) = 0.
$$

If *f* is log-concave, the converse is also true.

Domain of $L\mathcal{L}_p(f)$

Let $f : \mathbb{R}^n \to [0,\infty)$ be a nonnegative function with $f \not\equiv 0$. Let $p \in [0,1)$.

$$
\mathrm{dom}\left(\mathcal{LL}_{p}(f)\left(\frac{\cdot}{p}\right)\right)\supseteq\left(\frac{1}{1-p}\right)\mathrm{intco}\left(\mathrm{supp}(f)\right).
$$

If *f* is log-concave, there is equality in the previous assumption. Anyway, we have in particular that

$$
\text{dom}(L(\mathcal{L}_p(f)))\neq\emptyset.
$$

The infimum

Theorem (The Laplace-Santaló Point)

Let $f: \mathbb{R}^n \to \mathbb{R}^+$ *such that* $f \not\equiv 0$ *. Fix* $p \in [0,1)$ *. Then, the following assertions are equivalent:*

- **1** inf $L(L_p(f))(z) > 0$.
- 2 *o lies in the interior of the support of* $\mathcal{L}_p(f)$.
- \bullet *L*($\mathcal{L}_p(f)$) *tends to* ∞ *on the boundary of its domain.*
- $\mathcal{L}_\rho(f) \not\equiv 0$ and $\mathsf{inf}_\mathcal{Z} L\left(\mathcal{L}_\rho(f)\left(\frac{\cdot}{\rho}\right)\right)\left(\left(\frac{1}{\rho-1}\right)\mathcal{Z}\right)$ is attained at a *(unique) point z*⁰ *in the domain of L* $\left(\mathcal{L}_{p} f\left(\frac{1}{p}\right) \right)$.
- $\mathcal{L}_{\bm\rho}(f) \not\equiv 0$ and there exists $\mathbf{s}_0 \in \mathbb{R}^n$ such that $\left(\frac{1}{p-1}\right) \mathbf{s}_0$ is in the *domain of L* $\left(\mathcal{L}_{\bm{\rho}}(f) \left(\frac{\cdot}{\bar{\rho}} \right) \right)$ and

$$
\mathrm{bar}\left(\mathcal{L}_{p}\left(f\left(\frac{\cdot}{p}\right)\right)(x)e^{-\left(\frac{1}{1-p}\right)x\cdot s_{0}}\right)=0.
$$

Moreover, the points z_0 *in* (4) *and* s_0 *in* (5) *are equal (and denoted by* $s_p(f)$.

Examples $(q = \frac{p}{p-1} < 0)$

 \blacksquare If $f = 1_{[a,b]}$ on $\mathbb R$ where $a < 0 < b.$ Then we have $\mathcal{L}_p f(x) = \left(\int_a^b e^{xy} dy \right)^q = \left(\frac{e^{bx} - e^{ax}}{x} \right)^q$ $\left(\frac{e^{ax}}{x}\right)^q$, and so the support of $\mathcal{L}_p(f)$ is equal to **R**, while

$$
L(\mathcal{L}_p f)(z) = \int_{\mathbb{R}} e^{xz} \left(\frac{e^{bx} - e^{ax}}{x} \right)^q dx \in [0, \infty]
$$

has as domain $\text{dom}(L(\mathcal{L}_\rho(f)) = \big((-q) a, (-q)b\big),$ and $L\mathcal{L}_\rho(f)$ tends to ∞ at the points $-qa$ and $-qb$. In particular $L(\mathcal{L}_p(f))$ attains its minimum.

Examples $(q = \frac{p}{p-1} < 0)$

 \blacksquare If $f = 1_{[a,b]}$ on $\mathbb R$ where $a < 0 < b.$ Then we have $\mathcal{L}_p f(x) = \left(\int_a^b e^{xy} dy \right)^q = \left(\frac{e^{bx} - e^{ax}}{x} \right)^q$ $\left(\frac{e^{ax}}{x}\right)^q$, and so the support of $\mathcal{L}_p(f)$ is equal to **R**, while

$$
L(\mathcal{L}_p f)(z) = \int_{\mathbb{R}} e^{xz} \left(\frac{e^{bx} - e^{ax}}{x} \right)^q dx \in [0, \infty]
$$

has as domain $\text{dom}(L(\mathcal{L}_\rho(f)) = \big((-q) a, (-q)b\big),$ and $L\mathcal{L}_\rho(f)$ tends to ∞ at the points $-qa$ and $-qb$. In particular $L(\mathcal{L}_p(f))$ attains its minimum.

• If
$$
f = 1_{[a,\infty)}
$$
, then $\mathcal{L}_p(f)(x) = 1_{]-\infty,0]}(-x)^{-q}e^{qax}$ and

 $L(\mathcal{L}_p(f))(z) = \frac{\Gamma(1-q)}{(z+qa)^{1-q}}$ if $z > -qa$ and ∞ otherwise,

has domain (−*qa*,∞). Note that 0 is not in the interior of (the convex hull of) the support of $\mathcal{L}_p f$ and that we have that $\inf L(\mathcal{L}_p f) = 0$, by letting $z \to \infty$.

Examples
$$
(q = \frac{p}{p-1} < 0)
$$

1 If $f(x) = e^{-\alpha |x|^2}$ for some $\alpha > 0$, then $\mathcal{L}_p(f)(x) = c e^{-\beta |x|^2}$ and $L\mathcal{L}_p(f)(z) = C e^{\eta |z|^2}$ for some constants $c, C, \beta, \eta > 0$. In particular $L\mathcal{L}_p(f)$ attains its minimum at the origin.

Examples
$$
(q = \frac{p}{p-1} < 0)
$$

1 If $f(x) = e^{-\alpha |x|^2}$ for some $\alpha > 0$, then $\mathcal{L}_p(f)(x) = c e^{-\beta |x|^2}$ and $L\mathcal{L}_p(f)(z) = C e^{\eta |z|^2}$ for some constants $c, C, \beta, \eta > 0$. In particular $L\mathcal{L}_p(f)$ attains its minimum at the origin.

2 If $f(x) = \left(\frac{1}{1+x}\right)$ $\frac{1}{1+x^2}$ ² on \mathbb{R} , $\alpha > 0$, then, $\mathcal{L}_p(f)(0) = \left(\int f^{1/p}\right)^q$ and $\mathcal{L}_p(f)(x) = 0$ otherwise. Thus, $\mathcal{L}_p(f) \equiv 0$ and so $\mathcal{L}_p(f)(z) = 0$ for every *z*.

First, justify that you can take limits.

First, justify that you can take limits.

Limits of Laplace Transforms

Let $g_1, g_2, \ldots g_\infty : \mathbb{R}^n \to [0, \infty)$ be log-concave functions $\neq 0$ such for almost all $x \in \mathbb{R}^n$,

$$
g_k(x) \longrightarrow g_\infty(x).
$$

This implies that $Lg_k(z) \longrightarrow Lg_\infty(z)$ in $\mathbb{R} \cup \{\infty\}$ at every $z \in \mathbb{R}^n$. We assume the following two properties of non-degeneracy and domain monotony, respectively:

- \bullet 0 \lt inf_z *Lg*_{*k*}(*z*) $\lt \infty$ for every $k \in \mathbb{N} \cup \{\infty\},$
- \bullet either dom(*Lg*_{*k*}) ⊆ dom(*Lg*_{*k*+1}) for every *k* ∈ N or dom(Lg_{∞}) ⊆ \bigcap_{k} dom(Lg_{k}).

Then we have

$$
\inf_z Lg_k(z) \longrightarrow \inf_z Lg_\infty(z).
$$

Furthermore, for each *k*, there exists a unique point $z(g_k)$ where the infimum inf*^z Lg^k* (*z*) is attained and

$$
z(g_k)\longrightarrow z(g_\infty).
$$

Then, truncate and prove the following (as in Nakamura-Tsuji).

Then, truncate and prove the following (as in Nakamura-Tsuji).

Truncated Theorem

Let *f* be a non-negative function bounded and compactly supported with $f \not\equiv 0$. Let f_t be its evolution along the Fokker-Planck or the heat semigroup. For $p \in (0,1)$, $q = \frac{p}{p-1}$, define the function $Q(t,z)$ for $t > 0$ and $z \in \mathbb{R}^n$ by

$$
Q(t,z):=\log\int_{\mathbb{R}^n}\mathcal{L}_\rho(\tau_z(f_t))=\log\int_{\mathbb{R}^n}\mathcal{L}_\rho(f_t)(x)\,e^{qz\cdot x}\,dx=\log L\mathcal{L}_\rho(f)(qz).
$$

Then it holds that

$$
\partial_t Q + \frac{1}{2} \frac{\rho}{-q} |\nabla_z Q|^2 \ge 0 \qquad \text{on } (0, \infty) \times \mathbb{R}^n.
$$

It follows that

$$
t\mapsto \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_{s_p(f_t)}f_t)(x)dx = \inf_{z} \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z(f_t)) = \inf L\mathcal{L}_p(f_t)
$$

is monotonically increasing in *t* > 0.

Tools

 \bullet Variance of a function with respect to a measure μ :

$$
\text{Var}_{\mu} g := \int_{\mathbb{R}^n} |g|^2 d\mu(x) - \left(\int_{\mathbb{R}^n} g d\mu(x) \right)^2.
$$

Tools

1 Variance of a function with respect to a measure μ :

$$
\text{Var}_{\mu}g := \int_{\mathbb{R}^n} |g|^2 d\mu(x) - \left(\int_{\mathbb{R}^n} g d\mu(x)\right)^2.
$$

2 Brascamp-Lieb inequality: Let $h \in C^2(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$ be non-negative, and strictly log-concave. Then, for any locally Lipschitz $g \in L^2(\mathbb{R}^n, \mu)$, with $d\mu_h(x) = \frac{h(x)dx}{\int_{\mathbb{R}^n} h(x)dx}$, one has

$$
\text{Var}_{\mu_h} g \leq \int_{\mathbb{R}^n} \left(\nabla g \cdot (\nabla^2 (-\log h))^{-1} \nabla g \right) d\mu_h(x).
$$

Tools

1 Variance of a function with respect to a measure μ :

$$
\text{Var}_{\mu}g := \int_{\mathbb{R}^n} |g|^2 d\mu(x) - \left(\int_{\mathbb{R}^n} g d\mu(x)\right)^2.
$$

2 Brascamp-Lieb inequality: Let $h \in C^2(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$ be non-negative, and strictly log-concave. Then, for any locally Lipschitz $g \in L^2(\mathbb{R}^n, \mu)$, with $d\mu_h(x) = \frac{h(x)dx}{\int_{\mathbb{R}^n} h(x)dx}$, one has

$$
\text{Var}_{\mu_h} g \leq \int_{\mathbb{R}^n} \left(\nabla g \cdot (\nabla^2 (-\log h))^{-1} \nabla g \right) d\mu_h(x).
$$

³ The Cramér-Rao inequality: Let *h* be a non-negative, integrable function on **R***ⁿ* . Let *X* be a random vector distributed with respect to *µh*. Then, the following matrix inequality holds:

$$
I(X)\geq \mathrm{cov}(h)^{-1},
$$

where *I*(*X*) is the (Fisher) information matrix of *X*.

To take derivative of *Q*, you admit to yourself that Fokker-Planck is heavy to use.

To take derivative of *Q*, you admit to yourself that Fokker-Planck is heavy to use. The (Euclidean) heat-semi-group *E^t f* is given by

$$
E_t f(y) = \frac{1}{(2\pi t)^{n/2}} (f * \gamma_t)(y) = \int_{\mathbb{R}^n} f(u) e^{-|y-u|^2/(2t)} \frac{du}{(2\pi t)^{n/2}}, \quad \forall y \in \mathbb{R}^n,
$$

and, under suitable integrability assumptions, follows the heat equation

$$
\partial_t E_t f(x) = \frac{1}{2} \Delta_x E_t f(x).
$$

To take derivative of *Q*, you admit to yourself that Fokker-Planck is heavy to use. The (Euclidean) heat-semi-group *E^t f* is given by

$$
E_t f(y) = \frac{1}{(2\pi t)^{n/2}} (f * \gamma_t)(y) = \int_{\mathbb{R}^n} f(u) e^{-|y-u|^2/(2t)} \frac{du}{(2\pi t)^{n/2}}, \quad \forall y \in \mathbb{R}^n,
$$

and, under suitable integrability assumptions, follows the heat equation

$$
\partial_t E_t f(x) = \frac{1}{2} \Delta_x E_t f(x).
$$

It is related to the Fokker-Planck heat semi-group via

$$
E_t f(x) = (1+t)^{-n/2} P_{\log(1+t)} f((1+t)^{-1/2} x).
$$

This renormalization scales perfectly with respect to the definition of \mathcal{L}_{ρ} For any fixed $z \in \mathbb{R}^n$,

This renormalization scales perfectly with respect to the definition of \mathcal{L}_{ρ} For any fixed $z \in \mathbb{R}^n$,

$$
\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z(E_t f)) = \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_{(1+t)^{-1/2}z}(P_{\log(1+t)}f)).
$$

This renormalization scales perfectly with respect to the definition of \mathcal{L}_{ρ} For any fixed $z \in \mathbb{R}^n$,

$$
\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z(E_t f)) = \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_{(1+t)^{-1/2}z}(P_{\log(1+t)}f)).
$$

In particular,

$$
\inf_{\textbf{z}} \int \mathcal{L}_{\textbf{p}}(\tau_{\textbf{z}}(E_t f)) = \inf_{\textbf{z}} \int \mathcal{L}_{\textbf{p}}(\tau_{(1+t)^{-1/2}\textbf{z}}(P_{\log(1+t)} f)).
$$

This renormalization scales perfectly with respect to the definition of \mathcal{L}_{ρ} For any fixed $z \in \mathbb{R}^n$,

$$
\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z(E_t f)) = \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_{(1+t)^{-1/2}z}(P_{\log(1+t)}f)).
$$

In particular,

$$
\inf_{z} \int \mathcal{L}_{p}(\tau_{z}(\mathit{E}_{t}f)) = \inf_{z} \int \mathcal{L}_{p}(\tau_{(1+t)^{-1/2}z}(P_{log(1+t)}f)).
$$

If we define

$$
Q(t,z)=\log\int_{\mathbb{R}^n}\mathcal{L}_\rho(\tau_z(E_tf))\quad\text{and}\quad \widetilde{Q}(t,z)=\log\int_{\mathbb{R}^n}\mathcal{L}_\rho(\tau_z(P_tf)),
$$

then we have $Q(t, z) = \widetilde{Q}(\log(1 + t), (1 + t)^{-1/2}z)$ and therefore, for any constant *c*

This renormalization scales perfectly with respect to the definition of \mathcal{L}_{ρ} For any fixed $z \in \mathbb{R}^n$,

$$
\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_z(E_t f)) = \int_{\mathbb{R}^n} \mathcal{L}_p(\tau_{(1+t)^{-1/2}z}(P_{\log(1+t)}f)).
$$

In particular,

$$
\inf_{z} \int \mathcal{L}_{\rho}(\tau_z(E_tf)) = \inf_{z} \int \mathcal{L}_{\rho}(\tau_{(1+t)^{-1/2}z}(P_{log(1+t)}f)).
$$

If we define

$$
Q(t,z)=\log\int_{\mathbb{R}^n}\mathcal{L}_\rho(\tau_z(E_tf))\quad\text{and}\quad \widetilde{Q}(t,z)=\log\int_{\mathbb{R}^n}\mathcal{L}_\rho(\tau_z(P_tf)),
$$

then we have $Q(t, z) = \widetilde{Q}(\log(1 + t), (1 + t)^{-1/2}z)$ and therefore, for any constant *c*

$$
(\partial_t Q + c|\nabla Q|^2)(t, z) = \frac{1}{1+t} (\partial_t \widetilde{Q} + c|\nabla \widetilde{Q}|^2) (\log(1+t), (1+t)^{-1/2}z).
$$

Consequently, proving the truncated theorem along the Fokker-Planck or heat semi-group is totally equivalent.

To prove the (non)-truncated version, take limits.

Infimum-time relation

Let *f* be a non-negative function, $f \not\equiv 0$, and let $f_t = E_t f$ be its heat flow evolution. Then for $0 \leq s \leq t$,

$$
\mathrm{supp}(\mathcal{L}_{p}(f_{s}))\subseteq \mathrm{supp}(\mathcal{L}_{p}(f_{t})),
$$

and consequently

$$
\inf L\mathcal{L}_p(f_t)=0 \Longrightarrow \forall s \in [0,t], \ \inf L\mathcal{L}_p(f_s)=0.
$$

To prove the (non)-truncated version, take limits.

Infimum-time relation

Let *f* be a non-negative function, $f \not\equiv 0$, and let $f_t = E_t f$ be its heat flow evolution. Then for $0 \leq s \leq t$,

$$
\mathrm{supp}(\mathcal{L}_{p}(f_{s}))\subseteq \mathrm{supp}(\mathcal{L}_{p}(f_{t})),
$$

and consequently

$$
\inf L\mathcal{L}_p(f_t)=0 \Longrightarrow \forall s \in [0,t], \ \inf L\mathcal{L}_p(f_s)=0.
$$

Let *f* be a nonnegative function, $f \not\equiv 0$, and let $s \in [0,\infty)$. If $\inf L_{\mathcal{L}_p}(f_s) > 0$ then, as $k \to \infty$, we have

$$
\inf L\mathcal{L}_{p}((f^{(k)})_{s})\to \inf L\mathcal{L}_{p}(f_{s}).
$$

¹ We denote by *γ* the standard Gaussian probability measure on **R***ⁿ* .

- ¹ We denote by *γ* the standard Gaussian probability measure on **R***ⁿ* .
- ² Recall that for *f* nonnegative or in *L* 1 (*γ*) we can define the Ornstein-Uhlenbeck flow of *f* by

$$
U_t(f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}} z) d\gamma(z).
$$

- ¹ We denote by *γ* the standard Gaussian probability measure on **R***ⁿ* .
- ² Recall that for *f* nonnegative or in *L* 1 (*γ*) we can define the Ornstein-Uhlenbeck flow of *f* by

$$
U_t(f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}} z) d\gamma(z).
$$

 \bullet Under appropriate assumptions, $f_t = U_t f$ satisfies,

$$
\frac{\partial}{\partial t}f_t := \mathcal{D}f_t, \quad \text{where} \quad \mathcal{D}f := \Delta f - x \cdot \nabla f.
$$

- **1** We denote by γ the standard Gaussian probability measure on **R***ⁿ* .
- ² Recall that for *f* nonnegative or in *L* 1 (*γ*) we can define the Ornstein-Uhlenbeck flow of *f* by

$$
U_t(f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}} z) d\gamma(z).
$$

 \bullet Under appropriate assumptions, $f_t = U_t f$ satisfies,

$$
\frac{\partial}{\partial t}f_t := \mathcal{D}f_t, \quad \text{where} \quad \mathcal{D}f := \Delta f - x \cdot \nabla f.
$$

4 Nelson's hypercontractivity:

$$
||U_{S}(f)||_{L^{p_2}(\gamma)} \leq ||f||_{L^{p_1}(\gamma)},
$$

when 1 $<$ ρ_1 , ρ_2 $<$ ∞ and s $>$ 0 satisfy $\frac{\rho_2-1}{\rho_1-1}\leq e^{2s}.$

- **1** We denote by γ the standard Gaussian probability measure on **R***ⁿ* .
- ² Recall that for *f* nonnegative or in *L* 1 (*γ*) we can define the Ornstein-Uhlenbeck flow of *f* by

$$
U_t(f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}} z) d\gamma(z).
$$

 \bullet Under appropriate assumptions, $f_t = U_t f$ satisfies,

$$
\frac{\partial}{\partial t}f_t := \mathcal{D}f_t, \quad \text{where} \quad \mathcal{D}f := \Delta f - x \cdot \nabla f.
$$

4 Nelson's hypercontractivity:

$$
||U_{S}(f)||_{L^{p_2}(\gamma)} \leq ||f||_{L^{p_1}(\gamma)},
$$

when 1 $<$ ρ_1 , ρ_2 $<$ ∞ and s $>$ 0 satisfy $\frac{\rho_2-1}{\rho_1-1}\leq e^{2s}.$

⁵ Borell's reverse hypercontractivity is then the fact that the above reverses when $p_1, p_2 \in (-\infty, 1) \setminus \{0\}$ satisfy the same relation.

¹ For any nonnegative *f*, we have the point-wise equality, with $q = \frac{p}{p-1}$ and $s = -\frac{1}{2} \log(1-p)$,

$$
(U_{S}f(x))^{q} \times (2\pi p)^{\frac{nq}{2}} \gamma_{1}(x) = \mathcal{L}_{p}(f^{p}\gamma_{1})\left(\frac{x}{\sqrt{p|q|}}\right).
$$

1 For any nonnegative *f*, we have the point-wise equality, with $q = \frac{p}{p-1}$ and $s = -\frac{1}{2} \log(1-p)$,

$$
(U_{S}f(x))^{q} \times (2\pi p)^{\frac{nq}{2}} \gamma_{1}(x) = \mathcal{L}_{p}(f^{p}\gamma_{1})\left(\frac{x}{\sqrt{p|q|}}\right).
$$

2 Thus, for an explicit constant $\tilde{c}_{n,p} > 0$,

$$
\frac{\|f\|_{L^p(\gamma)}}{\|U_s f\|_{L^q(\gamma)}} = \tilde{c}_{n,p}\left(\left(\int_{\mathbb{R}^n} f^p \gamma_1\right) \left(\int_{\mathbb{R}^n} \mathcal{L}_p(f^p \gamma_1)\right)^{-p/q}\right)^{1/p}.
$$

1 For any nonnegative *f*, we have the point-wise equality, with $q = \frac{p}{p-1}$ and $s = -\frac{1}{2} \log(1-p)$,

$$
(U_{S}f(x))^{q} \times (2\pi p)^{\frac{nq}{2}} \gamma_{1}(x) = \mathcal{L}_{p}(f^{p}\gamma_{1})\left(\frac{x}{\sqrt{p|q|}}\right).
$$

2 Thus, for an explicit constant $\tilde{c}_{n,p} > 0$,

$$
\frac{\|f\|_{L^p(\gamma)}}{\|U_{\mathcal{S}}f\|_{L^q(\gamma)}}=\tilde{c}_{n,p}\left(\Big(\int_{\mathbb{R}^n}f^p\gamma_1\Big)\Big(\int_{\mathbb{R}^n}\mathcal{L}_p(f^p\gamma_1)\Big)^{-p/q}\right)^{1/p}.
$$

³ We may reformulate main result as a partial extension of Borell's reverse hypercontractivity beyond usual time:

¹ For any nonnegative *f*, we have the point-wise equality, with $q = \frac{p}{p-1}$ and $s = -\frac{1}{2} \log(1-p)$,

$$
(U_{S}f(x))^{q} \times (2\pi p)^{\frac{nq}{2}} \gamma_{1}(x) = \mathcal{L}_{p}(f^{p}\gamma_{1})\left(\frac{x}{\sqrt{p|q|}}\right).
$$

$$
\frac{\|f\|_{L^p(\gamma)}}{\|U_{s}f\|_{L^q(\gamma)}}=\tilde{c}_{n,p}\left(\Big(\int_{\mathbb{R}^n}f^p\gamma_1\Big)\Big(\int_{\mathbb{R}^n}\mathcal{L}_p(f^p\gamma_1)\Big)^{-p/q}\right)^{1/p}.
$$

³ We may reformulate main result as a partial extension of Borell's reverse hypercontractivity beyond usual time: if we define *s* via $p = 1 - e^{-2s}$ (and so $q = 1 - e^{2s}$), then, for any a nonnegative function *f*, if either $\int x f^p(x) d\gamma = 0$ or $\int x U_s(f)^q(x) d\gamma = 0$, we have

$$
||U_{S}f||_{L^{q}(\gamma)} \geq ||f||_{L^{p}(\gamma)}.
$$

There is equality when *f ^pγ*¹ is Gaussian.

1 For any nonnegative *f*, we have the point-wise equality, with $q = \frac{p}{p-1}$ and $s = -\frac{1}{2} \log(1-p)$,

$$
(U_{S}f(x))^{q} \times (2\pi p)^{\frac{nq}{2}} \gamma_{1}(x) = \mathcal{L}_{p}(f^{p}\gamma_{1})\left(\frac{x}{\sqrt{p|q|}}\right).
$$

2 Thus, for an explicit constant $\tilde{c}_{n,p} > 0$,

$$
\frac{\|f\|_{L^p(\gamma)}}{\|U_{\mathcal{S}} f\|_{L^q(\gamma)}} = \tilde{c}_{n,p}\left(\Big(\int_{\mathbb{R}^n} f^p\gamma_1\Big)\Big(\int_{\mathbb{R}^n} \mathcal{L}_p(f^p\gamma_1)\Big)^{-p/q}\right)^{1/p}.
$$

³ We may reformulate main result as a partial extension of Borell's reverse hypercontractivity beyond usual time: if we define *s* via $p = 1 - e^{-2s}$ (and so $q = 1 - e^{2s}$), then, for any a nonnegative function *f*, if either $\int x f^p(x) d\gamma = 0$ or $\int x U_s(f)^q(x) d\gamma = 0$, we have

$$
||U_{S}f||_{L^{q}(\gamma)} \geq ||f||_{L^{p}(\gamma)}.
$$

There is equality when *f ^pγ*¹ is Gaussian. From Jensen's inequality, we obtain the following.

¹ For any nonnegative *f*, we have the point-wise equality, with $q = \frac{p}{p-1}$ and $s = -\frac{1}{2} \log(1-p)$,

$$
(U_{S}f(x))^{q} \times (2\pi p)^{\frac{nq}{2}} \gamma_{1}(x) = \mathcal{L}_{p}(f^{p}\gamma_{1})\left(\frac{x}{\sqrt{p|q|}}\right).
$$

Extended hypercontractivity

Let $p \in (0,1)$, $q = p/(p-1)$. Define $s > 0$ via the relation $p = 1 - e^{-2s}$, so that $q = 1 - e^{2s}$. Suppose f is a nonnegative function such that either

$$
\int x f^p(x) d\gamma = 0 \text{ or } \int x U_s(f)^q(x) d\gamma = 0.
$$

Then, for every $p_2 > q$ and $p_1 < p$, it follows that

$$
||U_{S}f||_{L^{p_2}(\gamma)} \geq ||f||_{L^{p_1}(\gamma)}.
$$
Open Question

We proving the truncated theorem, we had

$$
\frac{d}{dt}Q(t,z) = \partial_t Q(t, s_p(f_t)) + \nabla_z Q(t, s_p(f_t)) \cdot \partial_t s_p(f_t)
$$
\n
$$
\geq \frac{p}{2q} |\nabla_z Q(t, s_p(f_t))|^2 + \nabla_z Q(t, s_p(f_t)) \cdot \partial_t s_p(f_t) = 0,
$$

Open Question

We proving the truncated theorem, we had

$$
\frac{d}{dt}Q(t,z) = \partial_t Q(t, s_p(f_t)) + \nabla_z Q(t, s_p(f_t)) \cdot \partial_t s_p(f_t) \n\geq \frac{p}{2q} |\nabla_z Q(t, s_p(f_t))|^2 + \nabla_z Q(t, s_p(f_t)) \cdot \partial_t s_p(f_t) = 0,
$$

Our choice of $z = s_p(f_t)$ yielded

$$
|\nabla_z Q(t, s_p(f_t))|^2 = 0 = \nabla_z Q(t, s_p(f_t)) \cdot \partial_t s_p(f_t).
$$

p-Santaló region along the Fokker-Planck flow

For a fixed nonnegative, smooth function *f* and a vector field $t \to u_{\rho}(t,f) \in \mathbb{R}^n$, the monotonicity of

$$
t\mapsto \log \int \mathcal{L}_\rho(\tau_{\textit{u}_\rho(t,f)}(f_t)),
$$

for $t \in (0, \infty)$ still holds if

$$
\frac{p}{2q}|\nabla_z Q(t,u_p(t,f))|^2+\nabla_z Q(t,u_p(t))\cdot \partial_t u_p(t,f)\geq 0.
$$

p-Santaló region along the Fokker-Planck flow

For a fixed nonnegative, smooth function *f* and a vector field $t \to u_{\rho}(t,f) \in \mathbb{R}^n$, the monotonicity of

$$
t\mapsto \log \int \mathcal{L}_\rho(\tau_{\textit{u}_\rho(t,f)}(f_t)),
$$

for $t \in (0, \infty)$ still holds if

$$
\frac{p}{2q}|\nabla_z Q(t,u_p(t,f))|^2+\nabla_z Q(t,u_p(t))\cdot \partial_t u_p(t,f)\geq 0.
$$

An example, besides the Santaló points $s_p(f_t)$ themselves, for which both terms are zero, would be a vector field satisfying the equation

p-Santaló region along the Fokker-Planck flow

For a fixed nonnegative, smooth function *f* and a vector field $t \to u_{\rho}(t,f) \in \mathbb{R}^n$, the monotonicity of

$$
t\mapsto \log \int \mathcal{L}_\rho(\tau_{\textit{u}_\rho(t,f)}(f_t)),
$$

for $t \in (0, \infty)$ still holds if

$$
\frac{p}{2q}|\nabla_z Q(t,u_p(t,f))|^2+\nabla_z Q(t,u_p(t))\cdot \partial_t u_p(t,f)\geq 0.
$$

An example, besides the Santaló points $s_p(f_t)$ themselves, for which both terms are zero, would be a vector field satisfying the equation

$$
\partial_t u_p(t,f) = -\frac{p}{2q} \nabla_z \mathcal{Q}(t, u_p(t,f)) = \frac{p}{2} \int_{\mathbb{R}^n} x \frac{\mathcal{L}_p(\tau_{u_p(t,f)} f_t)(x)}{\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_{u_p(t,f)} f_t)(x) dx} dx.
$$

p-Santaló region along the Fokker-Planck flow

For a fixed nonnegative, smooth function *f* and a vector field $t \to u_{\rho}(t,f) \in \mathbb{R}^n$, the monotonicity of

$$
t\mapsto \log \int \mathcal{L}_\rho(\tau_{\textit{u}_\rho(t,f)}(f_t)),
$$

for $t \in (0, \infty)$ still holds if

$$
\frac{p}{2q}|\nabla_z Q(t,u_p(t,f))|^2+\nabla_z Q(t,u_p(t))\cdot \partial_t u_p(t,f)\geq 0.
$$

An example, besides the Santaló points $s_p(f_t)$ themselves, for which both terms are zero, would be a vector field satisfying the equation

$$
\partial_t u_p(t,f) = -\frac{p}{2q} \nabla_z \mathcal{Q}(t, u_p(t,f)) = \frac{p}{2} \int_{\mathbb{R}^n} x \frac{\mathcal{L}_p(\tau_{u_p(t,f)} f_t)(x)}{\int_{\mathbb{R}^n} \mathcal{L}_p(\tau_{u_p(t,f)} f_t)(x) dx} dx.
$$

Question: does this time-dependent gradient flow equation have at least one (smooth enough) solution on \mathbb{R}^+ with lim_{*t*→∞} $u_p(t, f) = 0$?