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@ We will denote by Vol,(K) - volume of K C R". One can verify
for K convex body

Volp(K?) < 00 <— 0 €int(K).
Santald’s inequality for symmetric convex bodies
Let K be a symmetric convex body. Then,
Vol (K)Voln(K®) < Voln(B5)2,

with equality if and only if K is a centered ellipsoid.

Shown by Blaschke and Santalé; see the elegant proof by Meyer and
Pajor.
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Functional Polarity

@ Given a nonnegative function f, its polar is
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R S0

@ f° islog-concave, and f < f°°, with equality when f is
log-concave and upper-semi-continuous

Santalé’s inequality for even functions

M(f) = /Rnf [ o< M(e~ %),

with equality if and only if f is Gaussian (f(x) = e A**¢ for A
positive definite and ¢ € R).
Proven by Ball in his Ph.D thesis.
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Approximation of Polarity

Terence Tao’s Blog (paraphrasing): If f is log-concave, then the

1 1
Laplace transform of 7 (x) is essentially (fﬁ)o(%), ignoring
lower-order contributions... in which case Klartag’s formulation of

Santalé’s inequality begins to look quite a lot like Beckner’s sharp
Hausdorff-Young inequality as p — 0.

@ The Laplace transform of a nonnegative function is give by
L(y) ::/ f(x)eYdx  VyeR"
]Rn

Note that Lf is always log-convex
@ We define, for p € (0,1), the LP Laplace transform as

1 P

Lo(N)(x):= (L) )PT = ([ o(y)eVay)™"  vxeR".

Note that L, (f) is always log-concave.
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Laplace Transform Polarity
The LP Laplace transform converges to polarity
T
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9(x) it &0 > inf £ _fo(x)
= X)=ess INl ———— inf —— = X).
yern f(y) ~ yern f(y)
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By considering f(y) = e~ /2 1 5(y), we see that

£} 5 if [x|2 < 2In(2),
(x) = e IXP/2  otherwise.

But, fI(x) = (e~ WF/2)°(x) = e~ Ix*/2,
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The LP Laplace transform converges to polarity
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Laplace-Santald’s inequality for even functions
Let f be an even function such that [, f € (0,00). Then,

woth)i= [ 1 ([, ol (;))1p < Mp(e~P),

with equality when f is Gaussian.

Shown very recently by Nakamura-Tsuji. But they showed much
more!
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Fokker-Planck Heat Flow

For a (nonnegative) integrable function f its Fokker-Planck flow is
Pyf =1, and, for t > 0,

_let/2x_y[2
Pf(x) :e’"/‘?/ fly)e 26l 1) Lﬂ
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It verifies the equation 9;P;f = D*P;f, where

D= U (AF 1 divy(x).
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Fokker-Planck Heat Flow

For a (nonnegative) integrable function f its Fokker-Planck flow is
Pyf = f, and, for t > 0,
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Nakamura-Tsuji’'s inequality for the functional volume
product along the Fokker-Planck flow
Let f be even and integrable. Then,

t = Mp(Pyf)

is increasing in t.
Implies, by sending p — 0, that t — M(P;f) is monotonically
increasing when f is even, integrable and regular enough.



What about non-even
functions?
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Convex Setting

Need to plck origin in a smart way. Let K be a convex body. If

b(K) = V0| fK xdx = o, then

Vol (K)Vol,(K®) < Voln(B3)2.

(shown by Blaschke and Petty). This can be written as, for arbitrary
convex body K,

Vol (K)Voln((K — b(K))°) < Voln(B5)2.
By inverting the roles of K and K°, this it totally equivalent to
Voln(K)Voln((K — s(K))°) < Voln(B3)2.

Here, s(K), the Santalé point of K, is so that b((K — s(K))°) =o. It
has the property that

s(K) = argmin,cgnVoln((K — 2)°),
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Functional Setting

Set 1,f(x) = f(x — z). Then: (t:f)°(x) = f°(x)e *"%.

Functional Santalé inequality
Let f be a nonnegative function so that [, f € (0,0). Then,

M(f) := </IR” f) inf </1Rn(rzf)°> < M(e Py,

with equality if and only if f is Gaussian.

@ Shown by Artstein-Klartag-Milman.
@ The infimum is obtained at a unique point, the Santalé point of .
@ In fact, the Santal6 point can be replaced by the barycenter of f.
© Notice that

Joo(320)° = LIFI(=2).
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New results: inequalities
Theorem (LP Santal6’s inequality)
Let f be a nonnegative function, f 0. Then,

Mp(f):= | f inf (/Rncp(rzf) <;)>1p§Mp(e_lx2),

R" zeR"

with equality for Gaussians.
Observe that )
Lp(T21)(X) = Lp(F)(x) €777,
and so the second integral is really
1 1=p

L) (~5257) -
If the infimum is obtained, then it is obtained at a unique point, which
is precisely the barycenter of L(f).



New results: inequalities

Theorem (LP Santalé’s inequality)
Let f be a nonnegative function, f £ 0. Then,

1-p
X 2
Mp(f) := f'f/ f (X < Mp(e™P),

(1) R" zlen]R”< Rn[ﬁp(rz )<p)> < Mp(e )
with equality for Gaussians.

Theorem (Laplace-Santald’s inequality)

Let f be a nonnegative function, f # 0. Suppose either f or L(f)
have barycenter at the origin. Then,

/IR" f </]Rn Lp(f) (;))1[) < Mp(ef\x|2),

with equality for Gaussians.



New results: heat flow

Monotonicity of the functional LP Volume product under

heat flow
Let f be a nonnegative function, f # 0. Then

t — Mp(P:f)

is increasing in t.



New results: heat flow

Monotonicity of the functional LP Volume product under

heat flow
Let f be a nonnegative function, f # 0. Then

t — Mp(P:f)
is increasing in t.

Motonicity of the functional volume product

Let f be a nonnegative function, f # 0 with nice regularity e.g.
continuous or log-concave. Then

t — M(P,f)

is increasing in t.
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Important Facts Concerning the Laplace Transform

Mathematics is Consistent
Let f be a nonnegative function on R" and p € [0,1). Then we have

X
f= :>inf/ Lo(rf) (2) =o0.
R 2 [k p(Z)<P)
If f is log-concave, the converse is also true.

Domain of LLy(f)
Let f:R"” — [0,00) be a nonnegative function with f #0. Let p € [0, 1).

dom (Lﬁp(f) <p>) ) (11p> intco (supp(f)).

If f is log-concave, there is equality in the previous assumption.
Anyway, we have in particular that

dom(L(L,(1))) # .



The infimum

Theorem (The Laplace-Santal6 Point)

Letf:R" — R such that f #0. Fixp € [0,1). Then, the following
assertions are equivalent:

Q@ infL(Lp(F)(2) > 0.

@ o lies in the interior of the support of Lp(f).

Q L(Lp(f)) tends to co on the boundary of its domain.

Q Ly(f)#0andinf, L (Lp(f) (5)) ((,;1?1) z) is attained at a

(unique) point zy in the domain of L (Epf (5))

@ L,(f) #£0 and there exists sy € R" such that (;j) Sp is in the

domain of L (ﬁp(f) (5» and

w13 65 =

Moreover, the points zy in (4) and sy in (5) are equal (and denoted
by sp(f)).
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QIfif= 1[ab] on R where a < 0 < b. Then we have
Lpf(x (f eV dy) = (@)q, and so the support of
Lp(f) is equal to R, while

q

L(Lpf)(2) = /]R e (ebx;eax> dx € [0, 00)

has as domain dom(L(Lp(f)) = ((—q)a, (—q)b), and LLy(f)
tends to oo at the points —qa and —gb. In particular L(L(f))
attains its minimum.
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Examples (g = >0 <0)
@ Iff=1,, on R where a<0 < b. Then we have
Lpf(x) = (f eV dy) = (@)q, and so the support of
Lp(f) is equal to R, while

q

L(Lpf)(2) = /]R e (ebx;eax> dx € [0, 00)

has as domain dom(L(Lp(f)) = ((—q)a, (—q)b), and LLy(f)
tends to oo at the points —qa and —gb. In particular L(L(f))
attains its minimum.

Q I f =1 [50), then Lp(f)(X) = 1) _,0/(—x) "9 and

Ir'(1—aq)

L(Ep(f))(z)zm

ifz>—qga and oo otherwise,
has domain (—qa, o). Note that 0 is not in the interior of (the
convex hull of) the support of £,f and that we have that
infL(Lpf) =0, by letting z — .
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Q If f(x) = e ¥ for some a > 0, then L, (f)(x) = ce X and
LLp(f)(z) = C ez for some constants c, C,B,7>0.1In
particular LL,(f) attains its minimum at the origin.



—£-20)

Examples (g = ;5

Q If f(x) = e ¥ for some a > 0, then L, (f)(x) = ce X and
LLp(f)(z) = C ez for some constants c, C,B,7>0.1In
particular LL,(f) attains its minimum at the origin.

Q@ I f(x) = (152)" o R, a > 0, then, £,(1)(0) = ([ /)" and

Lp(f)(x) =0 otherwise. Thus, L,(f) =0and so LLy(f)(z) =0
for every z.
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Proof Strategy |
First, justify that you can take limits.
Limits of Laplace Transforms
Let 91,02,...9 : R” — [0,00) be log-concave functions # 0 such for
almost all x € R”,
Gk (X) — Geo(X).

This implies that Lgk(zZ) — Lge(z) inRU {oo} at every z € R". We
assume the following two properties of non-degeneracy and domain
monotony, respectively:

@ 0<inf;Lgk(z) < oo forevery k € N U {co},

@ either dom(Lgk) C dom(Lgk. 1) for every k € N or

dom(Lgs) C Nk dom(Lgg).
Then we have
igf Logk(z) — irZ1ngoo(z).

Furthermore, for each k, there exists a unique point z(gx) where the
infimum inf, Lgk(z) is attained and

2(9k) — 2(geo)-
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Then, truncate and prove the following (as in Nakamura-Tsuiji).

Truncated Theorem

Let f be a non-negative function bounded and compactly supported
with f £ 0. Let f; be its evolution along the Fokker-Planck or the heat
semigroup. For p€ (0,1), g = ;)%1’ define the function Q(t, z) for
t>0and zecR" by

Q(t, z) :=log /R Lp(t(f)) =log /R Lp(f)(x) €% dx =log LLy(f)(q2).
Then it holds that
9:Q + %_iqwzor“ >0  on(0,00) x R".
It follows that
ts /]R Lp(Tay iy fe) (X)dx = igf/]Rn Lo(T2(F)) = infLLp(f)

is monotonically increasing in ¢ > 0.
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Tools
@ Variance of a function with respect to a measure y:

Var,g:= / g2 du(x (/ gdu(x ) :

@ Brascamp-Lieb inequality: Let h € C?(R") N L' (R") be
non-negative, and strictly log-concave. Then, for any locally
Lipschitz g € L2(R", u), with djun(x) = 1. S?dx one has

Vary,g < [ (Vg-(V*(~logh))~Vg) dun(x).

© The Cramér-Rao inequality: Let h be a non-negative, integrable
function on R”. Let X be a random vector distributed with
respect to up. Then, the following matrix inequality holds:

I(X) >cov(h)~ 1,

where /(X) is the (Fisher) information matrix of X.
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Proof Strategy Il

To take derivative of Q, you admit to yourself that Fokker-Planck is
heavy to use. The (Euclidean) heat-semi-group E;f is given by

au

Etf(y)_W(f*yt)(y)_Anf(u) e_|}’—u\2/(2t)W,

Vy eR",

and, under suitable integrability assumptions, follows the heat
equation

1
E)tEtf(x) = EAXEtf(X)

It is related to the Fokker-Planck heat semi-group via

Etf(x) = (14 8)""2Pognf((1+1)2x).



Proof Strategy IlI
This renormalization scales perfectly with respect to the definition of
Ly For any fixed z € R",



Proof Strategy IlI
This renormalization scales perfectly with respect to the definition of
Ly For any fixed z € R",

/]Rnﬁp('fz(Etf)) :/]RnﬁP(T(1+t)*1/2z(Plog(1+t)f))'



Proof Strategy IlI
This renormalization scales perfectly with respect to the definition of
Ly For any fixed z € R",

Jen o)) = [ Lp(Tra-1vz2(Prog(r+):

In particular,

inf [ Lo(ta(EiN) = inf [ Lo(t(r41)-1/22(Pog(r+):



Proof Strategy Il
This renormalization scales perfectly with respect to the definition of
Ly For any fixed z € R",

Jen o)) = [ Lp(Tra-1vz2(Prog(r+):
In particular,
igf/ﬁp(TZ(Etf)) = igf/£p(r(1+,)71/22(ﬂog(1+,) ).
If we define
Qt,z) :|Og/]RnEp(Tz(Etf)) and Q(t,2) :Iog/]Rnﬁp(Tz(Ptf)),

then we have Q(t,z) = Q(log(1 + t), (1 + t)~/2z) and therefore, for
any constant ¢



Proof Strategy Il
This renormalization scales perfectly with respect to the definition of
Ly For any fixed z € R",

/]Rnﬁp(Tz(Etf)) :/]Rnﬁp(T(1+t)f1/2z(Plog(1+t)f))'

In particular,

inf [ Lo(ta(EiN) = inf [ Lo(t(r41)-1/22(Pog(r+):

If we define
Q(t.z) =log [ Lo(rz(Eif) and Q(t.2)=log [ Lo(:(Pi)).

then we have Q(t,z) = Q(log(1 + t), (1 + t)~/2z) and therefore, for
any constant ¢
(3:Q+¢c|VQ?)(t,z) =

14t

Consequently, proving the truncated theorem along the
Fokker-Planck or heat semi-group is totally equivalent.

(3:Q+c|VQ?)(log(1+1),(1+1)"1/22).



Proof Strategy IV

To prove the (non)-truncated version, take limits.

Infimum-time relation
Let f be a non-negative function, f # 0, and let f; = E;f be its heat
flow evolution. Then for 0 < s < f,

supp(Lp(fs))  supp(Lp(f)),
and consequently

infLLp(f) =0=>Vs € [0,t], infLLy(fs) = 0.



Proof Strategy IV

To prove the (non)-truncated version, take limits.

Infimum-time relation
Let f be a non-negative function, f # 0, and let f; = E;f be its heat
flow evolution. Then for 0 < s < f,

supp(Lp(fs))  supp(Lp(f)),
and consequently

infLLp(f) =0=>Vs € [0,t], infLLy(fs) = 0.

Let f be a nonnegative function, f # 0, and let s € [0, c0). If
infLLp(fs) > 0 then, as k — oo, we have

infLLp((F9))s) — infLLp(fs).
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Application to Hypercontractivity |
@ We denote by v the standard Gaussian probability measure on
R,
@ Recall that for f nonnegative or in L' (v) we can define the
Ornstein-Uhlenbeck flow of f by

Ur(f) (x) = /]R fle~tx + V1 — e 2t 2)dy(2).

© Under appropriate assumptions, f; = U;f satisfies,

a%f’ :=Df;, where Df:=Af—x-VF.

@ Nelson’s hypercontractivity:
[Us(F)l p2(1) < IFllp1 ()

when 1 < py,ps < co and s > 0 satisfy g'f—:] < e%s.

@ Borell's reverse hypercontractivity is then the fact that the above
reverses when py,po € (—o0,1) \ {0} satisfy the same relation.
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@ For any nonnegative f, we have the point-wise equality, with

q= 557 and s = —}log(1 - p),
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@ Thus, for an explicit constant &, > 0,

i1 N o\ 1/P
OslLacy =0p ( (oo ™11) (fonot10) ™)
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@ For any nonnegative f, we have the point-wise equality, with

q= 5y and s = —Flog(1 - p),
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@ For any nonnegative f, we have the point-wise equality, with

q= 2y ands= —%log(1 — p),

)

(Usf(x))7 x (27tp) Z 71 (x) = Lp(P71) (

@ Thus, for an explicit constant &, > 0,

Il i : -p/
||Ust|pL(Z<)w) o <(/1R" ) (/Rn LoltP1n) q)

© We may reformulate main result as a partial extension of Borell’s
reverse hypercontractivity beyond usual time: if we define s via
p=1—e2%(and so g =1 — &25), then, for any a nonnegative
function f, if either [ xfP(x)dy =0or [xUs(f)9(x)dy =0, we
have

1/p

| Usflcagyy = Il ogy)-
There is equality when P4 is Gaussian.



Application to Hypercontractivity Il
@ For any nonnegative f, we have the point-wise equality, with
q= 557 and s = —3log(1 - p),

)

(Usf(x)) x (27tp) 2 71(x) = Lp(fP71) (

@ Thus, for an explicit constant &, > 0,

|I£]] 3 -p/
||Ust|pL(:()y) =Cnp <(/]Rn fp’)’1> (/Rnﬁp(fp’h)) g q)

© We may reformulate main result as a partial extension of Borell’s
reverse hypercontractivity beyond usual time: if we define s via
p=1—e2%(and so g=1— &25), then, for any a nonnegative
function f, if either [ xfP(x)dy =0or [xUs(f)9(x)dy =0, we
have

1/p

| Usfllcagyy = Il ogy)-

There is equality when P-4 is Gaussian.
From Jensen’s inequality, we obtain the following.



Application to Hypercontractivity |l

@ For any nonnegative f, we have the point-wise equality, with
q= 2y ands= —%log(1 - p),

X

(Usf(x))9 x (27‘(/))%’)’1 (x) = Lp(fPyq) (\/ﬁ) .

Extended hypercontractivity

Letpe (0,1),g=p/(p—1). Define s > 0 via the relation
p=1—e25 sothat g=1— €°5. Suppose f is a nonnegative
function such that either

/xfp(x) dy=0or /xUs(f)q(x) dy=0.
Then, for every p» > g and p; < p, it follows that

| Usfll ez () = [1Fll et (-



Open Question

We proving the truncated theorem, we had

d
aQ(t,Z)

atQ(z‘, Sp(ft)) + VZQ(t, Sp(f[)) . atSp(f[)

v

ngou, Sp(f))I2 + V2Q(t, 8p(f)) - 3r8p(fr) =0,



Open Question

We proving the truncated theorem, we had

%Q(t, 2) = 3Qtsp(f)) + V20O(t,5p(1)) - e (f)

> %WZO(L Sp(F)) |2 + V., Q(t,55(1)) - 9ysp(f) = O,
Our choice of z = sp(f;) yielded

V2Q(t,sp(f))[? = 0= V:Q(t, 8p(f)) - 95p(fy).
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p-Santalo region along the Fokker-Planck flow

For a fixed nonnegative, smooth function f and a vector field
t — up(t,f) € R”, the monotonicity of

ts |Og/£p(Tup(t,f)(ff))’

for t € (0,00) still holds if

2'£q|VzQ(t, Up(,£)[2 + V2Q(t, Up(t)) - drup(t, f) = 0.
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An example, besides the Santalé points s,(f;) themselves, for which
both terms are zero, would be a vector field satisfying the equation
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Open Question Il

p-Santalo region along the Fokker-Planck flow

For a fixed nonnegative, smooth function f and a vector field
t — up(t,f) € R”, the monotonicity of

t>log [ Lo(ry,(u (1),
for t € (0,00) still holds if

2'£q|VzQ(t, Up(,£)[2 + V2Q(t, Up(t)) - drup(t, f) = 0.

An example, besides the Santalé points s,(f;) themselves, for which
both terms are zero, would be a vector field satisfying the equation

Lp(Tyy(,n)fr) (X)
n Lp(Tyy (1, fr) (X)dx

Question: does this time-dependent gradient flow equation have at
least one (smooth enough) solution on R* with lim;_, Up(t, f) = 0?

diup(t,f) = quzO(t up(t,)) p/Rn 7
R



