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Introduction

In 1975, L. Gross obtained the following Logarithmic Sobolev inequality:
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where V is the standard gradient on R” and du =

Gaussian measure.



Euclidean space: R™ Carnot group: G

Euclidean gradient: V. Subgradient: V= (X3, ..., X;,)

Gaussian measure More general probability measures
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In 1975, L. Gross obtained the following Logarithmic Sobolev inequality
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d: Carnot-Carathéodory distance

du = d.

W. Hebisch and B. Zegarlinski (2009): g —LSI for U(d) = dP, for p the finite index
conjugate of q.

EBD (2021): g —LSI for U(d), where U"”" < BU' and U < yU'Y,
on {d(x) = 1}

Applications:

LSI = Hypercontractivity

LS| — Talagrand inequality




du = Z

e—UN)

dA.

N: a homogeneous norm

No LSI
(W. Hebisch, B. Zegarlinski-2010)

Force LSI by introducing a
singularity through an
additive or multiplicative
term.

e_U(|x|rN)
du 7 dA

(EBD, B. Zegarlinski-2021)

(EBD, B. Zegarlinski-2021)

1
Heisenberg: N = (|x|* + 16|z|?)%, solution to AN?~? = 0 on G\{0}.

1
Step-2: N = (|x|* + a|z|?)+
Anisotropic Heisenberg: Compute N s.t. AN?~? = 0 on G\{0}.

Prove ¢ —LSI and q —Poincaré

(EBD, B. Zegarlinski-2021)

/

Extend Poincaré and LSI to
higher order.

(EBD, Y. Wang, B. Zegarlinski-2022)

U-Bound + Weak Poincaré

Extend Poincaré inequality to
infinite dimensional Gibbs measures
with unbounded interaction
potentials.

(EBD, Y. Qiu, B. Zegarlinski, M. Zhang-2022)




Introduction

L.Gross showed that (1) can be extended to infinite dimensions.
He proved that if £ is the non-positive self-adjoint operator on L2 (1)

such that

(—LF, )2 = . vf|2du,

then (1) is equivalent to the fact that the semigroup P; = e'* generated

by £ is hypercontractive.



Introduction

In 1985, D. Bakry and M. Emery extended the Logarithmic Sobolev
inequality for a larger class of probability measures defined on

Riemaniann manifolds under the Curvature-Dimension condition.



Introduction

The g-Logarithmic Sobolev inequality, in the setting of a metric measure

space, was obtained by S. Bobkov and M. Ledoux in 2000, in the form:

£q
F91 du < vi|9d
| Folog pogrdn < e [ 19F1%a.

where g € (1,2].In 2005, S. Bobkov and B. Zegarlinski showed that the
q-LSl is better than g = 2 i in the sense that one gets a stronger decay of

tail estimates i.e. if u satisfies the Logarithmic Sobolev inequality for
g € (1,2], then for every bounded locally Lipschitz function f such that
V| <M pu— a.e. for M € (0,0), we have

cM9
(g—1)

n(ef) < exp{ o t9+tu(f)} VYVt >0.



Introduction

In addition, when the space is finite, and under weak conditions, S.
Bobkov and B. Zegarlinski proved that the corresponding semigroup P; is

ultracontractive i.e.

I Pef floo <[l £ [,

forall t > 0 and p € [1,00).



Introduction

A Lie group on RN | G =(R",0) is a Carnot group if:
(C.1) RN can be split as RV = RV2 x ... x RN, and the dilation 6, : RV — RN

Sx(x) = 0x(x1), ..., x(D) = (Ax®) | A2x(2) | Arx(n), x) e RN,

is an automorphism of the group G for every A\ > 0.
(C.2) If Ny is as above, let Xy, ..., Xy, be the left invariant vector fields on G such

that X;(0) = 9/0x;|o for j=1,...,Ny. Then

rank(Lie{X1, ..., Xn, }(x)) =N  Vx € RV,

The vector valued operator V := (X1, X2, ..., X}y, ) is called the sub-gradient on G, and
Ny

A = ZX,-2 is called the sub-Laplacian on G.
i=1



Introduction

In the setting of Carnot groups, D. Bakry and M. Emery's
Curvature-Dimension condition will no longer hold true. In 2010, W. Hebisch
and B. Zegarlinski developed a method of studying coercive inequalities on
general metric spaces that does not require a bound on the curvature of space

was developed.

their method is based on U-bounds,

/fqu(d) dy < C/|vf|"du+D/f"dp,

—U(d)

Z
having a suitable growth at infinity.

© d\ is a probability measure, U(d) and U (d) are functions

where du =



[ fiU(d)dp < C [ |VFl9du+ D | fidu; du = E—dX

Z

U(d) »

"in all directions"

U(d) =U(d) + |[VU(d)|

Hebsich-Zegarlinski
(2009)

Hebsich-Zegarlinski
(2009)
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d: Carnot-Carathéodory distance

du = d.

W. Hebisch and B. Zegarlinski (2009): g —LSI for U(d) = dP, for p the finite index
conjugate of q.

EBD (2021): g —LSI for U(d), where U"" < BU' and U < yU'Y,
on {d(x) = 1}

Applications:

LSI = Hypercontractivity

LS| — Talagrand inequality




Carnot-Carathéodory distance

We say that «y is horizontal if there exist measurable functions a3, ..., an; : [0,1] — R such

Ny

that v’ (t) = Z a; (t) Xi (v (t))for almost all t € [0, 1]. For such a horizontal curve ~, we
i=1

define the length of v to be

= [ Lam] e

The Carnot-Carathéodory distance or the control distance between two points x and y is

defined by
d(x,y) = inf {t|y:[0,t] = G, v (0) = x,v(t) =y |7/ (s)| < 1 Vs € [0,¢]},

where ~ : [0,1] — G is an absolutely continuous horizontal path on [0, 1].



U-Bound; dp = £—dA

Theorem (EBD, 2021 )

Assume that outside the open unit ball B = {d (x) < 1}, the metric d satisfies the following:
|Vd| is bounded, say |Vd| < 1, and there exist finite positive constants K and co such that

Ad < K + U’ (d) (|vd|2 _ co) . (2)

/
(i) If U” < BU for some positive constant [3, outside B, then for any g € (1, c0), there exist
constants C4, Dy, independent of f, such that

J #1107 @) [Ydpu < € [ 1971%duu + Dy [ 1F1°duo.

(ii) If, in addition, U < ~vU’? for some positive constant v and some q > 1, outside B, then

/|f|qU(d)dUU S Cq/|Vf|qd,UU+Dq/|f|qdluu.

Take U(d) =|U’ (d) |9, by Hebisch-Zegarlinski Theorem 1, (i)—q—Poincaré. To apply
Theorem 2, we need U(d) = U(d) + |VU(d)|? = U(d) + |U'(d)vd|? < U(d) + |U’(d)|?. Using
(i) and (ii), we get g—LSI.



Examples of Logarithmic Sobolev inequality

Example (EBD, 2021)

The g—Poincaré and a g—Logarithmic Sobolev inequality are satisfied for

the measure
e—(d—l—l)plog(d—i—l)

duy = d\
Hu 7

for g > B, where 3 is the finite index conjugate to p.

Example (EBD, 2021)

The g—Poincaré and a g—Logarithmic Sobolev inequality are satisfied for

the measure
y e—sinh(d) "
Hu = 7

for all g > 1.



Talagrand Inequality

In 2000, F. Otto and C. Villani showed that in the setting of manifolds under D. Bakry

and M. Emery’s Curvature-Dimension condition, the LS| implies Talagrand’s inequality:

Tuluv) <2 [ log(f)dn, (4)
where 1 is a measure on RV absolutely continuous wrt the Gaussian measure v,
N
dp
= wixy) =S (6 — yi)?, and
dv —

Tw(p,v) = inf / w(x,y)dr(x,y),
776“(.“’7”) RN xRN

where M(u, v) is the set of probability measures on RV x RV with pu the first marginal

and v the second marginal.



Talagrand Inequality

We would like to apply the g—Logarithmic Sobolev inequality to get hypercontractivity
and to obtain the p—Talagrand inequality on (X, d, i) with a constant K :

1 dv
W, (1 v)P < —Ent, (£ 6
(o) < Bt () Q

with p finite index conjugate of g, where

Wp(p,v)P = inf / d(x, y)Pdm(x,y),
7T€|_|(,u,l/) XXX

dv dv dv
Ent, | — | = [ —log | — | dpu.
du du du

and



Talagrand Inequality

For the quadratic case p = g = 2, J. Lott and C. Villani (2007) and for p > 2, Z.
Balogh, A. Engulatov, L. Hunzinker, and O, Maasalo (2011) used the Hamilton-Jacobi
infimum convolution operator under the assumption where the space (X, d, i)

supports local Poincaré inequality and the measure 1 is a doubling measure.

In our setting, we show hypercontractivity and the p—Talagrand inequality using the
Hamilton-Jacobi equation in the setting of Carnot groups done by F. Dragoni in 2007 .
The advantage of doing so is that the restriction to have i a doubling measure is no

longer required.



Talagrand Inequality and Hypercontractivity

Theorem (EBD, 2021 )

e : 1 1
Let 1 < g <2, and p > 2 be its finite index conjugate, so that — + — = 1.

p q
If (G, d, i) satisfies the g-Logarithmic Sobolev inequality with constant
g—1
c=(qg—1) (%) for some constant K > 0, then it also satisfies the

p-Talagrand inequality with the same constant K.

Theorem (EBD, 2021 )

Assume we have the following 2-Logarithmic Sobolev inequality with the
—U(d)
e

measure du = d\, and in the setting of the Carnot group: then, for

every bounded measurable function f on G, every t > 0, and every a € R,

Q:f f
e latpe < €7 ]]a-



du

e_U(N)

VA

dA.

N: a homogeneous norm

No LSI

(W. Hebisch, B. Zegarlinski-2010)

Force LSI by introducing a
singularity through an
additive or multiplicative

term.
d e_U(lxl'N)
=77

(EBD, B. Zegarlinski-2021)

1
Heisenberg: N = (|x|* + 16]z|?)%, solution to AN?~9 = 0 on G\{0}.

1
Step-2: N = (|x|* + a|z|?)=
Anisotropic Heisenberg: Compute N s.t. AN?~? = 0 on G\{0}.

(EBD, B. Zegarliniski-2021)

U-Bound
——dA

Prove ¢ —LSI and q —Poincaré
(EBD, B. Zegarlinski-2021)

/

Extend Poincaré and LSI to
higher order.

(EBD, Y. Wang, B. Zegarlinski-2022)

U-Bound + Weak Poincaré

Extend Poincaré inequality to
infinite dimensional Gibbs measures
with unbounded interaction
potentials.

(EBD, Y. Qiu, B. Zegarlinski, M. Zhang-2022)




Setup

We define the step-two Carnot group G, i.e. a group isomorphic to R"™™ with

the group law

1 .
(x,z) o (x’,z/) = (x,- +xi, zj+ 2z + 5 < /\(J)X,X/ >)
i=1,..,n;j=1,...,m

’°

for x,x’ € R",z,z' € R™, where < .,. > stands for the inner product on R”,
Y Y Y Y

and:

1) The matrices AY) are n x n skew-symmetric

2) The matrices are linearly independent
We are in the setting of Heisenberg group, if in addition:

1) AY) are orthogonal
2) AWAU) 4 ADAK) = 0 Wk £ .



Setup; dp = £5—dA\

Heisenberg:
N = (|x|* +16|z|?)* is the Kaplan norm. In other words, N>~ is the

unique fundamental solution of the sub-Laplacian A = ZX,-z,where X;
i=1

is the Jacobian basis of g, the Lie algebra of G =2 R™™, and Q = n+2m

is the homogeneous dimension.

Step-two:

We consider N = (|x|* + 3\2\2)% ,where (x,z) € G and a € (0, ).



. Inglis (2010)

Our Setting

Heisenberg-type group

1
N = (Ix|* + 16]z|*)*

No U-Bound

Step-two Carnot groups

e—U(N)

dp = ——dA

1
N = (|x|* + a|z|?)* where a € (0, )

U-Bound



Theorem (EBD and B. Zegarlinski, 2021)

Let N = (]x|* + a\z|2)% with a € (0, 00) be as above and

g :[0,00) — [0,00) be a differentiable increasing function such that
—&(N)

g"(N) < g'(N)3N3 on {N > 1}. Let dju = ———dX be a probability

measure, and Z the normalization constant. Then, for all locally

Lipschitz functions f,

"(N
[ & ifvau < ¢ [19f19du+ D [ 1f17a 2)

holds outside the unit ball {N < 1} with C and D positive constants and
q=>2.

g (N

By Hebisch-Zegarlinski Theorem 1, we choose U(N) = NE

qg—Poincaré inequality.

, to obtain



Examples of Poincaré Inequality

EBD and B. Zegarlinski, 2021)

The Poincaré inequality for g > 2 holds for the measure
exp (—cosh (Nk))

V4
the setting of the step-two Carnot group.

Example (J. Inglis, 2010

exp (—N*
p (Z ) ax,
where )\ is the Lebesgue measure, and k > 4 in the setting of the step-two

d\, where )\ is the Lebesgue measure, and kK > 1 in

du =

The Poincaré inequality for g > 2 holds for the measure du =

Carnot group.

Example (EBD and B. Zegarlinski, 2021)

The Poincaré inequality for g > 2 holds for the measure

—N*log (N + 1
du = exp( ;g( il )> d\, where X is the Lebesgue measure, and kK > 3

in the setting of the step-two Carnot group.
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U(d) > oo

"in all directions"

Ud)=U@+|VU@I|?T | U@d) =oUd) + VU]

Hebsich-Zegarlinski Hebsich-Zegarlinski

(2009) (2009) EBD-Zegarlinski (2021)

q —Poincaré q —Logarithmic Sobolev —Logarithmic Sobolev




¢—Logarithmic Sobolev Inequality

Theorem (EBD and B. Zegarlinski, 2021)

Let U be a locally lipschitz function on RN which is bounded below such that
—u

Z=[eYd\ < oo, and dpu = e7d)\. Let ¢ : [0,00) — R be a
non-negative, non-decreasing, concave function such that ¢(0) > 0, and

¢'(0) > 0. Assume the following classical Sobolev inequality is satisfied:

+e€ qqu
/mq )" < a/|vf|qd)\+b/\f\qd)\

for some a, b € [0,00), and € > 0. Moreover, if for some A, B € [0,00), we

have:
p (17 (o(U) + [VU[T)) < AulVF|? + Bulf|?, (3)

Then, there exists constants C, D € [0, c0) such that:

i

for all locally Lipschitz functions f.

|19
p|fla

log

)) < CulF|7 + Dulfl°




Higher order LSI

Choose ¢(x) = (1 + x)P, for 8 € (0,1). Then, ¢ satisfies the conditions of the

theorem above and we have:

u(lfl"

]9
plfla

log

1)) < culvrie+ Dure.

Theorem (EBD, Y. Wang, and B. Zegarlinski, 2022)

Given the following Logarithmic-Sobolev inequality

Al

for 8 € (0, 1]. Then, for all m € N,
Iis

£]? /0g<
/ plf|?

n
where VOf = (X[ X52...X5"f) such that |a| = Zoz,-, and C,D € (0, c0).
i=1

12 \|” 2
log L2 dp < CulVf|s, (4)
v

Bm

du<D > [ vt (5)

|a|=0
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What is a polarizable Carnot group?

The Carnot group G is said to be polarizable if N, where N°~@ is the
fundamental solution to the sub-Laplacian, is co—harmonic in G\{0}, i.e.
for v ::(Xi)lgign;

AN = % <V (VNP),YN>=0 in G\{0}. (6)

The concept of polarizable Carnot groups was first introduced by Z.
Balogh and J. Tyson in 2002, where they used the co—harmonicity of N
to create a procedure to construct polar coordinates. Moreover, they
showed in that the fundamental solution of the p—sub-Laplacian can be
expressed as the fundamental solution N2>~ @ of the sub-Laplacian, proved
capacity formulas, and produced sharp constants for the Moser-Trudinger

inequality.



Higher-Dimensional Anisotropic Heisenberg Group

For the time being, there is no classification of polarizable Carnot groups

and the only examples till now are Euclidean spaces and Heisenberg-type
groups. Consider the generators of the Lie algebra:

X =% +2y 5
<Y:a%—%)x-%
Z:%—QW-%
\W:%—Qz-%,

Heisenberg: a = 1.

Anisotropic Heisenberg: a =

N | —




Heisenberg

Step-2 Carnot
Rn+m

Anisotropic
Heisenberg

1
o N = (|x|* + 16]z|?)*

x x|3
e— .VN=—
x| N3

1
N = (|x|* + alz|*)

2 2
1) A% < VNP < ¢ 20

|x|?

|3

-3)— N ===

ea,AB,C € (0,0)

(Bz+t2)4n(AB+t2+Ax/Bz+t2)2 i

oN =
(B+\/Bz+t2)7
where on
2 2
_ X_1 + xn+1 + l XZ
2 2 2 L J
Jj=2,j#¥n+1
and o
2 2
X{ Xy 1 2
B=—4+——4- X
4 4 2 £
j=2,j#n+1
x|2 2n+1)2|x|?
8n2N2
7 nN2

e [AN| = (Q — 1)|VN|? =
Cn+ 1) 'x'

|x|?

* ﬁ VN 2 4nN

this term could be negative, and so
we need the dimensionn > 5.

. Problem:
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——dA
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/
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U-Bound + Weak Poincaré
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Gibbs measures

So far, the passage to infinite dimensions in the setting of Nilpotent Lie
groups required the condition |V /| > ¢ outside the unit ball

which is not true for homogeneous norms introduced.

For Kaplan norm in Heisenberg group: N = (|x|2 + 16/z|?)3, and

|
VN| = —.
| =
Choose |x| = 0 and |z| large.

Then, |VN| does not satisfy |V/N| > ¢ outside the unit ball

(N(x,z) < 1}.



Gibbs measures:

@ | @ o | o
o—— oo
IR R YN YO |
g ® N
3 5 :
*——0 ®
s Il gl
_—
x-axis

d
We have a Carnot group G, and we give it a d-dimensional integer lattice structure: G* .For
any compact A C Z, denote the potential Uy by

UY () = oba)+ D> BV(ix)+ > BV(xi,w),

ren IJEN,invj TENJEN,in]

where ¢ € C*(G,R) is the phase and V € C*(G x G, R) is the interaction with strength 3 > 0.

_— W - L]
Let EY = ﬁe Un dxp be the local Gibbs measure and v be the associated global measure
A

satisfying vEY = v for all compact A C Z. Denote |VAf|? = Z |vif|? and |Vf|? = |V f]|3.
ien



Gibbs measures: Hypothesis

Consider the following two hypotheses:
(H1) For any i € Z, the (U-bound —) weak U-Bound

> (v V(xi, %)) < A <yv,-f|" + |7+ ngv{ilm,i—kl—km}ﬂq)

Jievi m=0

holds for some constants A > 0 and Cg € [0,1) such that A3 and Cg vanish as
8 — 0.

(H2) For any i € Z, the weak g-Poincaré inequality

vE?|f —E/f|? < Bsg (Vv,ﬂq + Z Cg'V|V{,-1m,,-+1+m}fq>

m=0
holds for some constants Bsg > 0 and the same Cs € [0, 1) such that A5 and
BsgB — 0 as 8 — 0.



Gibbs measures: Theorem

Theorem (EBD, Y. Qiu, B. Zegarlinski, and M. Zhang, 2022)

Suppose (H1) and (H2) are satisfied, then there exists 5 > 0 such that
for all 5 € [0, 3) the global Poincaré inequality

v|f —vf|9 < csgr|VFl9

holds for some constant csc > 0.



du = Z

e_U(N)

N: a homogeneous norm

dA.

No LSI
(W. Hebisch, B. Zegarlinski-2010)

Force LSI by introducing a
singularity through an
additive or multiplicative
term.

e_U(lxl'N)
du = Z dA

(EBD, B. Zegarlinski-2021)

(EBD, B. Zegarliniski-2021)

1
Heisenberg: N = (|x|* + 16]z|?)%, solution to AN?~9 = 0 on G\{0}.

1
Step-2: N = (|x|* + a|z|?)=
Anisotropic Heisenberg: Compute N s.t. AN?~? = 0 on G\{0}.

Prove ¢ —LSI and g —Poincaré

(EBD, B. Zegarlinski-2021)

/

Extend Poincaré and LSI to
higher order.

(EBD, Y. Wang, B. Zegarlinski-2022)

U-Bound + Weak Poincaré

Extend Poincaré inequality to
infinite dimensional Gibbs measures
with unbounded interaction
potentials.

(EBD, Y. Qiu, B. Zegarlinski, M. Zhang-2022)




Proof idea of U-Bound Inequality

Theorem (EBD and B. Zegarlinski, 2021)

Let N = (|x|* + a]z\z)% with a € (0,00) be as above and

g : [0,00) — [0, 0) be a differentiable increasing function such that
—g(N)

g"(N) < g'(N3N3 on {N >1}. Let du = © d)\ be a probability

measure, and Z the normalization constant. Then, for all locally

Lipschitz functions f,

"(N
[ Exifvau < ¢ [19f1tdu+ D [ If17a (7)

holds outside the unit ball {N < 1} with C and D positive constants and
q > 2.

/
N
Here, U :g/\(/2 ) First Question: How to choose U7



Heisenberg
Rn+m

1
o N = (IxI* + 16]z]2)?

2
* |VNJ? = 55

* |AN| = (Q—l)IVNI2
(n+2m — 1)le

. I3
ﬁ VN = N7

We need a technical lemma first:

Step-2 Carnot
]Rn+m

1
e N = (Ix|* + alz|*)2

2
1),4"‘| <|VN2<c B
N

|

IXI

-3)— N = ==

ea,AB,C € (0,00)
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this term could be negative, and so
we need the dimensionn > 5.

. Problem:



How to choose U7

For g = 2,using integration by parts:
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First candidate for U = ’I)\</‘2 g (N).We need U — oo “in all directions” to apply

Hebisch-Zegarlinski Theorem 1 (2009). Recall that N = (|x|* + a|z|2)%. For
x| = 0, we can have |z|* — oo, but U =0. So, the problem is around the

Z—axis.
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Where the last two inequalities use the calculation of VN - x, from 3) and the

upper bound on |VN| from 1).



Trial 1: Use Hardy's Inequality
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For f € C§°(R""™), we want to use Hardy's inequality:
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This last term cannot be absorbed in the left-hand side of our U—Bound inequality,
and Trial 1 fails.




Trial 2: Use Hardy's Inequality with (Br x By)

Using Hardy's inequality on the bad term:
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Where the last line is true since we can bound e~ 8(N) from below on Bg x Bj.

Regarding the complement:

(Br X B1) = Bp x Bf UBR x By UBg x Bj.

1 1

On B x By and By X By, we have < ,50 we avoid the singularity. However,
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on Br x Bf,we face the same problem as Trial 1.



Trial 3: Introduce F = {(x,z) € R™™ : |x|\/g'(N) < 1}
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z) e R"™™™ : |x|\/g'(N) < r}, where 1 < r < 2.

Final trial: Hardy's inequality on F,
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Where we have used Integration by parts in the first line, Cauchy’s inequality in the last line
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Recover the full measure using the Coarea formula

—g(/V) 2

|fe / /
d)\dr d\dr
/ / /\/2|X|2 (n—2)2 Fy

/ / f2e —g(N) ’7 Xj < )glpveuc (|X| V g/(N)) >
OF, N2|X|2 j:1 ’veuc (|X| \V/ g,(N))‘

To recover the full measure in the boundary term, we use the Coarea formula:
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The remainder of the proof is to use the condition of the theorem, the technical lemma, the

domain of integrations, and the given fields X;,to find a suitable €, which turns out to be
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Thanks for your attention!



