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Introduction

In 1975, L. Gross obtained the following Logarithmic Sobolev inequality:

Z

Rn

f 2log

✓
f 2

R
Rn f 2dµ

◆
dµ  2

Z

Rn

|Of |2dµ, (1)

where O is the standard gradient on Rn
and dµ =

e�
|x|2
2

Z
d� is the

Gaussian measure.
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Introduction

In 1975, L. Gross obtained the following Logarithmic Sobolev inequality
([33]): Z

Rn

f 2log

✓
f 2

R
Rn f 2dµ

◆
dµ  2

Z

Rn

|Of |2dµ, (1)

where O is the standard gradient on Rn and dµ =
e�

|x|2
2

Z
d� is the

Gaussian measure.
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Introduction

L.Gross showed that (1) can be extended to infinite dimensions.

He proved that if L is the non-positive self-adjoint operator on L2 (µ)

such that

(�Lf , f )
L2(µ) =

Z

Rn

|Of |2dµ,

then (1) is equivalent to the fact that the semigroup Pt = etL generated

by L is hypercontractive.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction

In 1985, D. Bakry and M. Emery extended the Logarithmic Sobolev

inequality for a larger class of probability measures defined on

Riemaniann manifolds under the Curvature-Dimension condition.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction

The q-Logarithmic Sobolev inequality, in the setting of a metric measure

space, was obtained by S. Bobkov and M. Ledoux in 2000, in the form:

Z
f q log

f qR
f qdµ

dµ  c

Z
|Of |qdµ,

where q 2 (1, 2].In 2005, S. Bobkov and B. Zegarliński showed that the

q-LSI is better than q = 2 i in the sense that one gets a stronger decay of

tail estimates i.e. if µ satisfies the Logarithmic Sobolev inequality for

q 2 (1, 2], then for every bounded locally Lipschitz function f such that

|Of |  M µ� a.e. for M 2 (0,1), we have

µ(etf )  exp{ cMq

qq(q � 1)
tq + tµ(f )} 8t > 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction

In addition, when the space is finite, and under weak conditions, S.

Bobkov and B. Zegarliński proved that the corresponding semigroup Pt is

ultracontractive i.e.

k Pt f k1k f kp

for all t � 0 and p 2 [1,1) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction

Definition

A Lie group on RN , G =(RN , �) is a Carnot group if:
(C.1) RN can be split as RN = RN1 ⇥ ...⇥ RNr , and the dilation �� : RN ! RN

��(x) = ��(x
(1), ..., x(r)) = (�x(1),�2

x
(2), ...,�r

x
(r)), x

(i) 2 RNi ,

is an automorphism of the group G for every � > 0.
(C.2) If N1 is as above, let X1, ...,XN1 be the left invariant vector fields on G such
that Xj (0) = @/@xj |0 for j = 1, ...,N1. Then

rank(Lie{X1, ...,XN1}(x)) = N 8x 2 RN .

Definition

The vector valued operator O := (X1,X2, ...,XN1 ) is called the sub-gradient on G, and

4 =
N1X

i=1
X

2
i

is called the sub-Laplacian on G.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction

In the setting of Carnot groups, D. Bakry and M. Emery’s

Curvature-Dimension condition will no longer hold true. In 2010, W. Hebisch

and B. Zegarliński developed a method of studying coercive inequalities on

general metric spaces that does not require a bound on the curvature of space

was developed. Working on a general metric space equipped with

non-commuting vector fields {X1, . . . ,Xn},their method is based on U-bounds,

which are inequalities of the form:

Z
f qU (d) dµ  C

Z
|Of |qdµ+ D

Z
f qdµ

where dµ =
e�U(d)

Z
d� is a probability measure, U(d) and U (d) are functions

having a suitable growth at infinity.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SIN

I 2



R
f qU (d) dµ  C

R
|Of |qdµ+ D

R
f qdµ; dµ = e�U(d)

Z d�
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Carnot-Carathéodory distance

Definition
We say that � is horizontal if there exist measurable functions a1, . . . , aN1 : [0, 1] ! R such

that �0 (t) =

N1X

i=1
ai (t)Xi (� (t))for almost all t 2 [0, 1]. For such a horizontal curve �, we

define the length of � to be

|�| =
Z 1

0

0

@
N1X

i=1
a
2
i
(t)

1

A

1
2

dt.

Definition
The Carnot-Carathéodory distance or the control distance between two points x and y is

defined by

d (x, y) = inf
�
t|� : [0, t] ! G , � (0) = x, � (t) = y |�0 (s) |  1 8s 2 [0, t]

 
,

where � : [0, 1] ! G is an absolutely continuous horizontal path on [0, 1] .



U-Bound; dµ = e�U(d)

Z d�

Theorem (EBD, 2021 )

Assume that outside the open unit ball B = {d (x) < 1} , the metric d satisfies the following:
|Od| is bounded, say |Od|  1, and there exist finite positive constants K and c0 such that

�d  K + U
0 (d)

⇣
|Od|2 � c0

⌘
. (2)

(i) If U00  �U
0

for some positive constant �, outside B, then for any q 2 (1,1) , there exist
constants Cq,Dq, independent of f , such that

Z
|f |q|U0 (d) |qdµU  Cq

Z
|Of |qdµU + Dq

Z
|f |qdµU .

(ii) If, in addition, U  �U0q for some positive constant � and some q > 1, outside B, then

Z
|f |qU (d)dµU  Cq

Z
|Of |qdµU + Dq

Z
|f |qdµU .

Take U(d) =|U0 (d) |q, by Hebisch-Zegarlinski Theorem 1, (i)!q�Poincaré. To apply

Theorem 2, we need U(d) = U(d) + |OU(d)|q = U(d) + |U0(d)Od|q  U(d) + |U0(d)|q. Using

(i) and (ii), we get q�LSI.



Examples of Logarithmic Sobolev inequality

Example (EBD, 2021)

The q�Poincaré and a q�Logarithmic Sobolev inequality are satisfied for
the measure

dµU =
e�(d+1)p log(d+1)

Z
d�

for q � �, where � is the finite index conjugate to p.

Example (EBD, 2021)

The q�Poincaré and a q�Logarithmic Sobolev inequality are satisfied for
the measure

dµU =
e�sinh(d)

Z
d�

for all q � 1.



Talagrand Inequality

In 2000, F. Otto and C. Villani showed that in the setting of manifolds under D. Bakry
and M. Emery’s Curvature-Dimension condition, the LSI implies Talagrand’s inequality:

Tw (µ, ⌫)  2
Z

log(f )dµ, (4)

where µ is a measure on RN absolutely continuous wrt the Gaussian measure ⌫,

f =
dµ

d⌫
, w(x , y) =

NX

i=1
(xi � yi )

2, and

Tw (µ, ⌫) = inf
⇡2⇧(µ,⌫)

Z

RN⇥RN

w(x , y)d⇡(x , y),

where ⇧(µ, ⌫) is the set of probability measures on RN ⇥ RN with µ the first marginal
and ⌫ the second marginal.



Talagrand Inequality

We would like to apply the q�Logarithmic Sobolev inequality to get hypercontractivity
and to obtain the p�Talagrand inequality on (X , d , µ) with a constant K :

Wp(µ, ⌫)
p 

1
K

Entµ
✓
d⌫

dµ

◆
, (6)

with p finite index conjugate of q, where

Wp(µ, ⌫)
p = inf

⇡2⇧(µ,⌫)

Z

X⇥X

d(x , y)pd⇡(x , y),

and

Entµ
✓
d⌫

dµ

◆
=

Z
d⌫

dµ
log

✓
d⌫

dµ

◆
dµ.



Talagrand Inequality

For the quadratic case p = q = 2, J. Lott and C. Villani (2007) and for p � 2, Z.

Balogh, A. Engulatov, L. Hunzinker, and O, Maasalo (2011) used the Hamilton-Jacobi

infimum convolution operator under the assumption where the space (X , d , µ)

supports local Poincaré inequality and the measure µ is a doubling measure.

In our setting, we show hypercontractivity and the p�Talagrand inequality using the
Hamilton-Jacobi equation in the setting of Carnot groups done by F. Dragoni in 2007 .
The advantage of doing so is that the restriction to have µ a doubling measure is no
longer required.



Talagrand Inequality and Hypercontractivity

Theorem (EBD, 2021 LSI!Talagrand)

Let 1 < q  2, and p � 2 be its finite index conjugate, so that
1

p
+

1

q
= 1.

If (G , d , µ) satisfies the q-Logarithmic Sobolev inequality with constant

c = (q � 1)
⇣ q
K

⌘
q�1

for some constant K > 0, then it also satisfies the
p-Talagrand inequality with the same constant K .

Theorem (EBD, 2021 LSI!Hypercontractivity)

Assume we have the following 2-Logarithmic Sobolev inequality with the

measure dµ =
e�U(d)

Z
d�, and in the setting of the Carnot group: then, for

every bounded measurable function f on G, every t � 0, and every a 2 R,

||eQt f ||a+⇢t  ||e f ||a.



 

 

 

 



Setup

We define the step-two Carnot group G, i.e. a group isomorphic to Rn+m
with

the group law

(x , z) �
�
x 0, z 0

�
=

✓
xi + x 0

i , zj + z 0j +
1

2
< ⇤(j)x , x 0 >

◆

i=1,..,n;j=1,..,m

for x , x 0 2 Rn, z , z 0 2 Rm
, where < ., . > stands for the inner product on Rn

,

and:

1 1) The matrices ⇤(j)
are n ⇥ n skew-symmetric

2 2) The matrices are linearly independent

We are in the setting of Heisenberg group, if in addition:

1 1) ⇤(j)
are orthogonal

2 2) ⇤(k)⇤(j) + ⇤(j)⇤(k) = 0, 8k 6= j .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Setup; dµ = e�U(N)

Z d�

Heisenberg:

N ⌘
�
|x |4 + 16|z |2

� 1
4

is the Kaplan norm. In other words, N2�Q
is the

unique fundamental solution of the sub-Laplacian 4 :=
nX

i=1

X 2
i
,where Xi

is the Jacobian basis of g, the Lie algebra of G ⇠= Rn+m
, and Q = n+ 2m

is the homogeneous dimension.

Step-two:

We consider N ⌘
�
|x |4 + a|z |2

� 1
4 ,where (x , z) 2 G and a 2 (0,1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Goal
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



U-Bound

Theorem (EBD and B. Zegarliński, 2021 [?])

Let N =
�
|x |4 + a|z |2

� 1
4 with a 2 (0,1) be as above and

g : [0,1) ! [0,1) be a differentiable increasing function such that

g 00(N)  g 0(N)3N3 on {N � 1}. Let dµ =
e�g(N)

Z
d� be a probability

measure, and Z the normalization constant. Then, for all locally
Lipschitz functions f ,

Z
g 0 (N)

N2 |f |qdµ  C

Z
|Of |qdµ+ D

Z
|f |qdµ (2)

holds outside the unit ball {N < 1} with C and D positive constants and
q � 2.

By Hebisch-Zegarlinski Theorem 1, we choose U(N) =
g 0 (N)

N2 , to obtain

q�Poincaré inequality.
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Examples of Poincaré Inequality

Example (EBD and B. Zegarliński, 2021 [?])

The Poincaré inequality for q � 2 holds for the measure

dµ =
exp

�
�cosh

�
Nk
��

Z
d�, where � is the Lebesgue measure, and k � 1 in

the setting of the step-two Carnot group.

Example (J. Inglis, 2010 [?])

The Poincaré inequality for q � 2 holds for the measure dµ =
exp

�
�Nk

�

Z
d�,

where � is the Lebesgue measure, and k � 4 in the setting of the step-two

Carnot group.

Example (EBD and B. Zegarliński, 2021 [?])

The Poincaré inequality for q � 2 holds for the measure

dµ =
exp

�
�Nk log (N + 1)

�

Z
d�, where � is the Lebesgue measure, and k � 3

in the setting of the step-two Carnot group.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



��Logarithmic Sobolev Inequality

Theorem (EBD and B. Zegarliński, 2021 [?])

Let U be a locally lipschitz function on RNwhich is bounded below such that

Z =
R
e�Ud� < 1, and dµ =

e�U

Z
d�. Let � : [0,1) ! R+ be a

non-negative, non-decreasing, concave function such that �(0) > 0, and
�0(0) > 0. Assume the following classical Sobolev inequality is satisfied:

✓Z
|f |q+✏d�

◆ q

q+✏

 a

Z
|Of |qd�+ b

Z
|f |qd�

for some a, b 2 [0,1), and ✏ > 0. Moreover, if for some A, B 2 [0,1), we
have:

µ (|f |q(�(U) + |OU|q))  Aµ|Of |q + Bµ|f |q, (3)

Then, there exists constants C , D 2 [0,1) such that:

µ

✓
|f |q�

✓����log
|f |q

µ|f |q

����

◆◆
 Cµ|Of |q + Dµ|f |q,

for all locally Lipschitz functions f .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Higher order LSI

Choose �(x) = (1 + x)� , for � 2 (0, 1). Then, � satisfies the conditions of the
theorem above and we have:

µ

 
|f |q

����log
|f |q

µ|f |q

����
�
!

 µ

✓
|f |q�

✓����log
|f |q

µ|f |q

����

◆◆
 Cµ|Of |q + Dµ|f |q .

Theorem (EBD, Y. Wang, and B. Zegarliński, 2021)

Given the following Logarithmic-Sobolev inequality

Z
|f |2

����log
✓

|f |2

µ|f |2

◆����
�

dµ  Cµ|Of |2, (4)

for � 2 (0, 1]. Then, for all m 2 N,
Z

|f |2
����log

✓
|f |2

µ|f |2

◆����
�m

dµ  D

mX

|↵|=0

Z
|O↵

f |2dµ, (5)

where O
↵
f = (X↵1

1 X
↵2
2 ...X↵n

n f ) such that |↵| =
nX

i=1
↵i , and C ,D 2 (0,1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



What is a polarizable Carnot group?

The Carnot group G is said to be polarizable if N, where N2�Q
is the

fundamental solution to the sub-Laplacian, is 1�harmonic in G\{0}, i.e.

for O :=(Xi )1in,

41N :=
1

2
< O

�
|ON|2

�
,ON >= 0 in G\{0}. (6)

The concept of polarizable Carnot groups was first introduced by Z.

Balogh and J. Tyson in 2002, where they used the 1�harmonicity of N

to create a procedure to construct polar coordinates. Moreover, they

showed in that the fundamental solution of the p�sub-Laplacian can be

expressed as the fundamental solution N2�Q
of the sub-Laplacian, proved

capacity formulas, and produced sharp constants for the Moser-Trudinger

inequality.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Higher-Dimensional Anisotropic Heisenberg Group

For the time being, there is no classification of polarizable Carnot groups

and the only examples till now are Euclidean spaces and Heisenberg-type

groups. Consider the generators of the Lie algebra:

8
>>>>>><

>>>>>>:

X = @
@x + 2ay · @

@t

Y = @
@y � 2ax · @

@t

Z = @
@z � 2w · @

@t

W = @
@w � 2z · @

@t ,

Heisenberg: a = 1.

Anisotropic Heisenberg: a =
1

2
.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



Gibbs measures

So far, the passage to infinite dimensions in the setting of Nilpotent Lie

groups required the condition |ON| � c outside the unit ball ([?, ?]),

which is not true for homogeneous norms introduced.

For Kaplan norm in Heisenberg group: N = (|x |2 + 16|z |2) 1
4 , and

|ON| = |x |
N

.

Choose |x | = 0 and |z | large.

Then, |ON| does not satisfy |ON| � c outside the unit ball

{N(x , z) < 1}.
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Gibbs measures: Setup

We have a Carnot group G, and we give it a d-dimensional integer lattice structure: GZd .For
any compact ⇤ ⇢ Z, denote the potential Uw

⇤ by

U
w

⇤ (x⇤) :=
X

i2⇤

�(xi ) +
X

i,j2⇤,i⇠j

�V (xi , xj ) +
X

i2⇤,j /2⇤,i⇠j

�V (xi ,wj ),

where � 2 C
1(G,R) is the phase and V 2 C

1(G⇥G,R) is the interaction with strength � � 0.

Let Ew

⇤ :=
1
Zw

⇤

e
�U

w

⇤ dx⇤ be the local Gibbs measure and ⌫ be the associated global measure

satisfying ⌫Ew

⇤ = ⌫ for all compact ⇤ ⇢ Z. Denote |O⇤f |2 =
X

i2⇤

|Oi f |2 and |Of |2 = |OZf |2.
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Gibbs measures: Hypothesis

Consider the following two hypotheses:

(H1) For any i 2 Z, the (U-bound !) weak U-Bound

X

j :j⇠i

⌫(f q|OjV (xi , xj)|q)  A

 
⌫|Oi f |q + ⌫|f |q +

1X

m=0

Cm

� ⌫|O{i�1�m,i+1+m}f |q
!

holds for some constants A > 0 and C� 2 [0, 1) such that A� and C� vanish as

� ! 0.

(H2) For any i 2 Z, the weak q-Poincaré inequality

⌫Ew

i |f � Ew

i f |q  BSG

 
⌫|Oi f |q +

1X

m=0

Cm

� ⌫|O{i�1�m,i+1+m}f |q
!

holds for some constants BSG > 0 and the same C� 2 [0, 1) such that A� and

BSG� ! 0 as � ! 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gibbs measures: Theorem

Theorem (EBD, Y. Qiu, B. Zegarliński, and M. Zhang, 2021)

Suppose (H1) and (H2) are satisfied, then there exists �̃ > 0 such that
for all � 2 [0, �̃) the global Poincaré inequality

⌫|f � ⌫f |q  cSG⌫|Of |q

holds for some constant cSG > 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



Proof idea of U-Bound Inequality

Theorem (EBD and B. Zegarliński, 2021 [?])

Let N =
�
|x |4 + a|z |2

� 1
4 with a 2 (0,1) be as above and

g : [0,1) ! [0,1) be a differentiable increasing function such that

g 00(N)  g 0(N)3N3 on {N � 1}. Let dµ =
e�g(N)

Z
d� be a probability

measure, and Z the normalization constant. Then, for all locally
Lipschitz functions f ,

Z
g 0 (N)

N2 |f |qdµ  C

Z
|Of |qdµ+ D

Z
|f |qdµ (7)

holds outside the unit ball {N < 1} with C and D positive constants and
q � 2.

Here, U =
g 0 (N)

N2 . First Question: How to choose U?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



We need a technical lemma first:
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



How to choose U?

For q = 2,using integration by parts:

Z
(ON) · (Of ) e�g(N)d� = �

Z
O

⇣
ONe�g(N)

⌘
fd�

= �
Z

�Nfe�g(N)d�+

Z
|ON|2fg

0
(N) e�g(N)d�.

Netx, using 1) and 2),

A

Z
|x |2

N2 f g
0
(N)e�g(N)d�� B

Z
|x |2

N3 fe�g(N)d� 
Z

(ON) · (Of ) e�g(N)d�.

First candidate for U =
|x |2

N2 g
0
(N) .We need U ! 1 “in all directions” to apply

Hebisch-Zegarlinski Theorem 1 (2009). Recall that N = (|x |2 + a|z |2) 1
4 . For

|x | = 0, we can have |z |2 ! 1, but U =0. So, the problem is around the

z�axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Idea: Replace f by
f 2

|x |2 :

Now we have the good candidate U =
g 0(N)
N2 :

Z
f 2
✓
Ag 0(N)
N2 � B

N3

◆
e�g(N)d� 

Z
(ON) ·

✓
O

✓
f 2

|x |2

◆◆
e�g(N)d�

=

Z
(ON) ·


2f

Of
|x |2 � 2f 2

O|x |
|x |3

�
e�g(N)d�

=

Z
2f
|x |2ON · Ofe�g(N)d��2

Z
f 2ON · x

|x |4 e�g(N)d�

 2

Z
f

|x |2 |ON||Of |e�g(N)d�

 2

p
C

Z
|f |
N|x | |Of |e

�g(N)d�.

Where the last two inequalities use the calculation of ON · x , from 3) and the

upper bound on |ON| from 1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 See Technical Lemma 
 Heisenberg: rN ¢ x ¸ 0



Trial 1: Use Hardy’s Inequality

Applying Cauchy’s inequality with ✏ : ab 
✏a2

2
+

b
2

2✏
with a =

|f |
N|x |

e
� g(N)

2 and

b =
p
C |Of |e�

g(N)
2 ,

Z
f
2
✓
A
g
0(N)

N2 �
B

N3

◆
e
�g(N)

d� ✏

Z |f |2

N2|x |2
e
�g(N)

d�+
C

✏

Z
|Of |2e�g(N)

d�.

For f 2 C
1
0 (Rn+m), we want to use Hardy’s inequality:

Z
f
2

|x |2
d� 

4
(n � 2)2

Z
|Of |2d�.

The bad term becomes:

✏

Z
( fe

�g(N)
2

N
)2

|x |2
d� 

4✏
(n � 2)2

Z
|O

fe
�g(N)

2

N
|2d�

=
✏

(n � 2)2

Z
f
2
g
0(N)2

N2 |ON|2dµ+ other terms.

This last term cannot be absorbed in the left-hand side of our U�Bound inequality,
and Trial 1 fails.
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Trial 2: Use Hardy’s Inequality with f 2 C1
0
(BR ⇥ B1)

Using Hardy’s inequality on the bad term:

✏

Z |f |2

N2|x |2
e
�g(N)

d� = ✏

Z

BR⇥B1

|f |2

N2|x |2
e
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d�+ ✏

Z
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|f |2
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e
�g(N)

d�
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|f |2

|x |2
d�+ I2


4✏
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Z

BR⇥B1
|Of |2d�+ I2


4✏C

(n � 2)2

Z
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|Of |2dµ+ I2.

Where the last line is true since we can bound e
�g(N) from below on BR ⇥ B1.

Regarding the complement:

(BR ⇥ B1)
c = B

c

R
⇥ B

c

1 [ B
c

R
⇥ B1 [ BR ⇥ B

c

1 .

On B
c

R
⇥ B

c

1 and B
c

R
⇥ B1, we have

1
|x |2


1
R2 ,so we avoid the singularity. However,

on BR ⇥ B
c

1 ,we face the same problem as Trial 1.
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Trial 3: Introduce F = {(x , z) 2 Rn+m : |x |
p
g 0(N) < 1}

Z
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Z
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d�+ GT .

If f 2 C
1
0 (F ), we apply Hardy’s inequality, and we are done. However, this is not the

case, and we must consider the boundary term.
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Final trial: Hardy’s inequality on Fr = {(x , z) 2 Rn+m : |x |
p

g 0(N) < r}, where 1  r  2.

✏
R
Fr

|fe
�g(N)

2 |2

N2|x|2 d� = ✏
n�2

R
Fr

|fe
�g(N)

2 |2

N2 r ·
⇣

x

|x|2

⌘
d�

= � 2✏
n�2

R
Fr

fe

�g(N)
2
N

r
 

fe

�g(N)
2
N

!
· x

|x|2 d� + boundary term

 ✏
2
R
Fr

|fe
�g(N)

2 |2

N2|x|2 d� + 2✏
(n�2)2

R
Fr

�����r
 

fe

�g(N)
2
N

!�����

2

d� + boundary term.

Where we have used Integration by parts in the first line, Cauchy’s inequality in the last line,

and boundary term =
✏
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Using the fact that F ⇢ Fr ⇢ F2,
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Recover the full measure using the Coarea formula

✏
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To recover the full measure in the boundary term, we use the Coarea formula:
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The remainder of the proof is to use the condition of the theorem, the technical lemma, the
domain of integrations, and the given fields Xj ,to find a suitable ✏, which turns out to be

satisfying
✓

10✏
n � 2

+ ✏

◆
< A. (Recall: 1) A
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N2 .)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Thanks for your attention!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


