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Classical topic in geometry : optimizing a geometric quantity subject to a
constraint.

Eg. : Isoperimetric problem. among all shapes with �xed volume the sphere
minimizes the perimeter.

Today : optimization for manifolds satisfying a curvature constraint.
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A �rst framework
We consider a smooth N-dimensional Riemannian manifold (M, g) whose
Ricci curvature tensor satis�es

Ric ≥ (N − 1)g .

The constant is chosen so that the sphere with unit radius satis�es this
bound.
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One way of de�ning the Ricci curvature tensor is via the Bochner formula :

1

2
∆|∇f |2 − 〈∇f ,∇∆f 〉 = ||∇2f ||2HS + Ric(∇f ,∇f ).

From the arithmetic-geometric inquality, this implies

1

2
∆|∇f |2 − 〈∇f ,∇∆f 〉 ≥ 1

N
(∆f )2 + Ric(∇f ,∇f ).
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Lichnerowicz ('58) : the �rst positive eigenvalue of −∆ is larger than that
of the sphere of radius one, which is N.

Bonnet-Myers Theorem : the diameter is maximized by the sphere.

Obata ('62) : both bounds are rigid : among all smooth N-manifolds with
Ric ≥ N − 1, the sphere is the only equality case.
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Once a rigidity result holds, the next question is stability : if a space almost
optimizes the desired bound, is it close to a true optimizer ?

Cheng ('75), Croke ('82) : the diameter is almost maximal i� the spectral
gap is almost minimal.

Gromov ('81) : the class of spaces satisfying the curvature bound is
precompact in the class of metric spaces endowed with measures, with
respect to the measured Gromov-Hausdor� convergence.

A weak form of stability would be to show that a sequence of spaces that
asymptotically saturates the bound converges to a sphere.
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The answer is no (Anderson '90) : such a sequence may converge to a
spherical suspension. To get full convergence in dimension n, we need
convergence of λN to N (Petersen '99, Aubry '05).

However, if λ1 is close to n, the manifold almost contains a piece that is
close to a circle. More generaly, if λk is close to N for k ≤ N, then the
manifold contains a piece close to a k-sphere (Bertrand '05).
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De�ning curvature on metric-measure spaces, following

Ambrosio, Gigli and Savaré, Erbar, Kuwada and Sturm

Given a metric-measure space (M, d , µ), we can

De�ne a slope |∇f |(x) = lim sup |f (x)−f (y)|d(x ,y) for locally lipschitz

functions.

De�ne the Cheeger energy
∫
|∇f |2dµ for general functions by

approximation. In�nitessimally Hilbertian space : assume the Cheeger
energy is quadratic.

De�ne
∫
〈∇f ,∇g〉dµ by polarization.

De�ne a Laplacian by integration by parts.
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Once the Laplacian is de�ned, we can de�ne a curvature-dimension
condition RCD(K ,N) via the Bochner inequality

1

2
∆|∇f |2 − 〈∇f ,∇∆f 〉 ≥ K |∇f |2 +

1

N
(∆f )2.

Not well-de�ned pointwise if the space is non-smooth, so de�ned in a weak
sense, by integration against nice test functions.
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In this framework, spherical suspensions also satisfy the
curvature-dimension condition RCD(N − 1,N), and saturate the spectral
gap/diameter bound. Cheeger & Colding ('96), Ketterer ('15) : they are
the only ones.
One common feature : the eigenfunction is the cosine of the distance to
some point, and the pushforward of the volume measure by the
eigenfunction always follows a symmetrized (scaled) Beta(N/2,N/2)
distribution, that is a measure with density proportional to (1− x2)N/2−1.
Cavaletti, Mondino & Semola ('19) :

||f − cos(d(x , x0))||2 ≤ C (N)(λ1 − N)1/(8N+4).

Moreover,
π − Diam(M) ≤ C (N)(λ1 − N)1/N .
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Theorem

Consider an RCD(N − 1,N) space (M, d , µ), and assume that λ1 ≤ N + ε.
Then if f is an eigenfunction with eigenvalue λ1 with

||∇f ||2 =
√
N/(N + 1), we have

W1(µ ◦ f −1,Beta(N/2)) ≤ C (N)ε.

Here W1 stands for the L1 Wasserstein distance from optimal transport :

W1(ρ1, ρ2) = sup
g 1−lip

∫
gdρ1 −

∫
gdρ2.

C (N) can be made explicit, and the order of magnitude in ε is sharp.
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From the Bochner formula applied to the eigenfunction f , we have

1

2
∆(|∇f |2 + (1 + ε)f 2) ≥ −C (N)εf 2.

Setting h = |∇f |2 + (1 + ε)f 2, we have

||∆h||1 = 2||(∆h)−||1 ≤ C (N)ε.

Since the kernel of ∆ is the set of constant functions, we expect h to be
almost constant.
For a spherical suspension, the eigenfunction would be cos(d(x , x0)) for a
well-chosen point x0, and h is indeed constant.
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Theorem

If the space is RCD(N − 1,N), then for any centered function g , we have

||g ||1 ≤ C (N)||∆g ||1.

L1 version of a Gaussian inequality of Meyer in Lp for p > 1. Discrete
versions studied by Pisier, Naor & Schechtman, Eskenazis & Ivanisvili. Fails
for the Gauss space.

Semigroup proof, uses ultracontractivity.
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From this lemma we deduce that |∇f |2 + f 2 is L1-close to its average, up
to an error of order ε.
Moreover, by integration by parts, for any smooth test function
g : R −→ R, we have∫

fg(f )dµ = −(λ1)−1
∫

(∆f )g(f )dµ = λ−11

∫
g ′(f )|∇f |2dµ.

Hence we have the approximate integration by parts formula∫
fg(f )dµ ≈ N−1

∫
g ′(f )(1− f 2)dµ.

For ν = µ ◦ f −1 we have∫
xg(x)dν ≈ N−1

∫
g ′(x)(1− x2)dν.
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If a smooth density ρ exactly satis�es the previous integration by parts
formula, we would have

Nxρ = 2xρ− (1− x2)ρ′

that is ρ(x) is proportional to (1− x2)N/2−1. This is exactly a
(symmetrized) Beta distribution.
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Stein's method

So we are brought to the problem of comparing two probability measures
that almost satisfy the same integration-by-parts formula. This is the
typical situation Stein's method was designed to address. The gaussianity
of eigenfunctions on manifolds via Stein's method was studied by E.
Meckes ('08).
Broad principle : aim to bound the L1 Wasserstein distance

W1(ρ, ν) := sup
g 1−lip

∫
gdρ−

∫
gdν.

Assume we have a linear operator L such that∫
(Lh)dν = 0 ∀h

Typically, L is the generator of a Markov process with invariant measure µ.
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If we rewrite an arbitrary 1-lipschitz function g as

g −
∫

gdν = Lh

and identify a family of functions H that contains at least one solution for
any f , then trivially

W1(µ, ν) ≤ sup
h∈H

∫
Lhdµ.

The whole problem is then reduced to deriving non-trivial information on
solutions to reduce the size of H.
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Here Lf = a(x)f ′ + b(x)f , so we can analyze solutions by solving ODEs. In
the general setting, must typically analyze PDE or �nite-di�erence
operators.

Theorem (Goldstein & Reinert '13, Döbler '15)

If ρ is supported in [−1, 1] then

W1(ρ,Beta(N/2)) ≤ sup
||h′||∞≤4N

∫
(1− x2)h′ − Nxhdρ.

Need an extra cuto� procedure on f to apply this result, to remove values
larger than 1 or smaller than −1. Extra error of order ε.
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The argument can be abstracti�ed independently of the application
considered here, giving a variant of a result of E. Meckes :

Theorem

Let f be an eigenfunction of a reversible di�usion generator on a manifold

with invariant probability measure µ, with eigenfunction λ, and normalized

so that
∫
|∇f |2dµ = N/(N + 1). Then

W1(f ,Beta(N/2)) ≤ C (N)(|||∇f |2 + f 2 − 1||1 + |λ− N|).
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In the RCD(1,∞) setting, same strategy (with a problematic lemma)
leads to a bound of order ε log(1/ε) to the Gaussian measure. Improves
earlier results of De Philippis & Figalli, Courtade & F., Bertrand & F.

Also makes sense for negative values of N. Model space is a
generalized Cauchy distribution, and can get O(ε log(1/ε)) bound
under extra regularity and integrability assumptions on the
eigenfunction when N < −2.
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Thanks !
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