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Classical topic in geometry : optimizing a geometric quantity subject to a
constraint.

Eg. : Isoperimetric problem. among all shapes with fixed volume the sphere
minimizes the perimeter.

Today : optimization for manifolds satisfying a curvature constraint.
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A first framework

We consider a smooth N-dimensional Riemannian manifold (M, g) whose
Ricci curvature tensor satisfies

Ric > (N — 1)g.

The constant is chosen so that the sphere with unit radius satisfies this
bound.
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One way of defining the Ricci curvature tensor is via the Bochner formula :
1
5A|Vﬂ2 — (Vf,VAF) = ||V?f|}s + Ric(VF, VF).

From the arithmetic-geometric inquality, this implies

1

%Aywﬁ — (Vf,VAF) > N(Af)z + Ric(Vf, VF).
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Lichnerowicz ('58) : the first positive eigenvalue of —A is larger than that
of the sphere of radius one, which is N.

Bonnet-Myers Theorem : the diameter is maximized by the sphere.

Obata ('62) : both bounds are rigid : among all smooth N-manifolds with
Ric > N — 1, the sphere is the only equality case.
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Once a rigidity result holds, the next question is stability : if a space almost
optimizes the desired bound, is it close to a true optimizer?

Cheng ('75), Croke ('82) : the diameter is almost maximal iff the spectral
gap is almost minimal.

Gromov ('81) : the class of spaces satisfying the curvature bound is
precompact in the class of metric spaces endowed with measures, with
respect to the measured Gromov-Hausdorff convergence.

A weak form of stability would be to show that a sequence of spaces that
asymptotically saturates the bound converges to a sphere.
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The answer is no (Anderson '90) : such a sequence may converge to a
spherical suspension. To get full convergence in dimension n, we need
convergence of Ay to N (Petersen '99, Aubry '05).

However, if A1 is close to n, the manifold almost contains a piece that is
close to a circle. More generaly, if Ay is close to N for k < N, then the
manifold contains a piece close to a k-sphere (Bertrand '05).
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Defining curvature on metric-measure spaces, following
Ambrosio, Gigli and Savaré, Erbar, Kuwada and Sturm

Given a metric-measure space (M, d, 1), we can

[F(x)=f(y)

@ Define a slope |Vf|(x) = limsup 0y | for locally lipschitz

functions.

o Define the Cheeger energy [ |Vf|>du for general functions by
approximation. Infinitessimally Hilbertian space : assume the Cheeger
energy is quadratic.

o Define [(Vf,Vg)du by polarization.
@ Define a Laplacian by integration by parts.
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Once the Laplacian is defined, we can define a curvature-dimension
condition RCD(K, N) via the Bochner inequality

%Aywﬁ — (Vf,VAF) > K|Vf]> + %(Af)z.

Not well-defined pointwise if the space is non-smooth, so defined in a weak
sense, by integration against nice test functions.
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In this framework, spherical suspensions also satisfy the
curvature-dimension condition RCD(N — 1, N), and saturate the spectral
gap/diameter bound. Cheeger & Colding ('96), Ketterer ('15) : they are
the only ones.

One common feature : the eigenfunction is the cosine of the distance to
some point, and the pushforward of the volume measure by the
eigenfunction always follows a symmetrized (scaled) Beta(N /2, N/2)
distribution, that is a measure with density proportional to (1 — x?)N/2-1,
Cavaletti, Mondino & Semola ('19) :

| — cos(d(x,x0))|]2 < C(N)(Ay — N)L/BN+4),

Moreover,
7 — Diam(M) < C(N)(A\ — N)Y/N,

L DOy U0 (e



Theorem

Consider an RCD(N — 1, N) space (M, d, i), and assume that A\; < N + €.
Then if f is an eigenfunction with eigenvalue \1 with
[|VFll2=+/N/(N+1), we have

Wi (o 1, Beta(N/2)) < C(N)e.

Here W stands for the L1 Wasserstein distance from optimal transport :

Wi(p1,p2) = sup /gdm —/gdpz.
g 1—lip

C(N) can be made explicit, and the order of magnitude in € is sharp.
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From the Bochner formula applied to the eigenfunction f, we have
1
EA(nyF + (1 +€)f?) > —C(N)ef?.

Setting h = |[Vf|2 + (1 + €)f2, we have
|Ah[] = 2[|(Ah)-[[1 < C(N)e.

Since the kernel of A is the set of constant functions, we expect h to be
almost constant.

For a spherical suspension, the eigenfunction would be cos(d(x, xp)) for a
well-chosen point xg, and h is indeed constant.
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Theorem
If the space is RCD(N — 1, N), then for any centered function g, we have

lgll < C(N)I|Ag]]s-

L' version of a Gaussian inequality of Meyer in LP for p > 1. Discrete
versions studied by Pisier, Naor & Schechtman, Eskenazis & lvanisvili. Fails
for the Gauss space.

Semigroup proof, uses ultracontractivity.
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From this lemma we deduce that |Vf|? 4 f2 is L!-close to its average, up
to an error of order e.

Moreover, by integration by parts, for any smooth test function

g :R — R, we have

[ fetndi =0 [@nNedu=x" [ OV
Hence we have the approximate integration by parts formula
[ fetran =t [ (-
For v = p10 f~1 we have

/xg(x)dv ~ N1 /g’(x)(l — x?)dv.
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If a smooth density p exactly satisfies the previous integration by parts
formula, we would have

Nxp = 2xp — (1 — x?)p

that is p(x) is proportional to (1 — x?)V/2=1_ This is exactly a
(symmetrized) Beta distribution.

L DOy (2



Stein’s method

So we are brought to the problem of comparing two probability measures
that almost satisfy the same integration-by-parts formula. This is the
typical situation Stein’s method was designed to address. The gaussianity
of eigenfunctions on manifolds via Stein’s method was studied by E.
Meckes ('08).

Broad principle : aim to bound the L! Wasserstein distance

Wi(p,v) := sup /gdp /gdv
g 1-—lip

Assume we have a linear operator L such that

/(Lh)du =0 Vh

Typically, L is the generator of a Markov process with invariant measure .
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If we rewrite an arbitrary 1-lipschitz function g as

g—/ng:Lh

and identify a family of functions # that contains at least one solution for
any f, then trivially

Wa(u,v) < sup/Lhdy.
heH

The whole problem is then reduced to deriving non-trivial information on
solutions to reduce the size of H.
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Here Lf = a(x)f’ 4+ b(x)f, so we can analyze solutions by solving ODEs. In
the general setting, must typically analyze PDE or finite-difference
operators.

Theorem (Goldstein & Reinert '13, Dobler "15)
If p is supported in [—1,1] then

Wi (p, Beta(N/2)) <  sup /(1—x2)h'—Nxhdp.
[1]] oo <4N

Need an extra cutoff procedure on f to apply this result, to remove values
larger than 1 or smaller than —1. Extra error of order .
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The argument can be abstractified independently of the application
considered here, giving a variant of a result of E. Meckes :

Theorem

Let f be an eigenfunction of a reversible diffusion generator on a manifold
with invariant probability measure u, with eigenfunction X\, and normalized
so that [ |Vf|?du = N/(N + 1). Then

Wi (f,Beta(N/2)) < C(N)(|||VF|? + 2 — 1|1 + |A = N]).
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@ In the RCD(1, 00) setting, same strategy (with a problematic lemma)
leads to a bound of order e log(1/€) to the Gaussian measure. Improves
earlier results of De Philippis & Figalli, Courtade & F., Bertrand & F.

@ Also makes sense for negative values of N. Model space is a
generalized Cauchy distribution, and can get O(elog(1/¢)) bound
under extra regularity and integrability assumptions on the
eigenfunction when N < —2.
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Thanks!



