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Blaschke-Santaló inequality
The polar and the volume product of a symmetric convex body
K ⊂ Rn are K◦ = {y ∈ Rn; 〈y, x〉 ≤ 1,∀ x ∈ K} and P(K) = |K||K◦|. The
volume product is invariant with respect to inversible linear transform.

Blaschke–Santaló inequality

P(K) ≤ P(Bn
2),

with equality if and only if K is an ellipsoid.

• Blaschke (1923) for n ≤ 3, Santaló (1949) for n > 3.
• Saint-Raymond (1981), Petty (1985) for the equality case.
• Proofs using Steiner symmetrization: Meyer–Pajor (1990).
• Functional forms: Ball (1986), Artstein-Avidan–Klartag–Milman (2004),

Fradelizi–Meyer (2007), Lehec (2009).
• Stability Results: Böröczky (2010), Barthe–Böröczky–Fradelizi (2014).
• Harmonic Analysis based proof: Bianchi–Kelly (2015).
• Random polytope forms and more general measures than volume:

Cordero-Erausquin–Fradelizi–Paouris–Pivovarov (2015).
• Maximum for polytopes with fixed number of vertices: Meyer–Reisner

(2011) for n = 2 and Alexander–Fradelizi–Zvavitch (2019) for n ≥ 3.
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P(K) ≤ P(Bn
2),

with equality if and only if K is an ellipsoid.

• Blaschke (1923) for n ≤ 3, Santaló (1949) for n > 3.
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Mahler’s conjecture and Hanner polytopes

Mahler’s conjecture, symmetric case

P(K) ≥ P([−1, 1]n) =
4n

n!
,

with equality if and only if K is a Hanner polytope.

For K ⊂ Rn1 , L ⊂ Rn2 with Rn = Rn1 ⊕ Rn2 , we construct in Rn:

• K⊕∞ L = K + L the `∞-sum: ‖(x1, x2)‖K⊕∞L = max{‖x1‖K , ‖x2‖L}
• K ⊕1 L = conv(K ∪ L) their `1-sum: ‖(x1, x2)‖K⊕1L = ‖x1‖K + ‖x2‖L

e1

e2

e3

e1

e2

e3

(I ⊕1 I)⊕∞ I (I ⊕∞ I)⊕1 I

A Hanner polytope is the iterated `1 or `∞ sum of segments.
If K ⊂ Rn is a Hanner polytope, then P(K) = 4n

n! .
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Mahler’s conjecture, history

Mahler’s conjecture, symmetric case

P(K) ≥ P([−1, 1]n) =
4n

n!
.

• True if n = 2 (Mahler 1939) and if n = 3 (Iriyeh–Shibata 2020), short proof
(F.–Hubard–Meyer–Roldán-Pensado–Zvavitch, submitted).

• Unconditional bodies (Saint-Raymond 1981), equality case (Meyer 1986),
(Reisner 1987).

• Zonoids (Reisner 1986), (Gordon–Meyer–Reisner 1988).
• Bourgain–Milman Inequality: P(K) ≥ cnP(Bn

1) (Bourgain–Milman 1987),
(Kuperberg 2008), (Nazarov 2009), (Giannopoulos–Paouris–Vritsiou 2012).

• Polytopes with few vertices: (Lopez–Reisner 1998), (Meyer–Reisner 2006).
• Functional forms: (Klartag–Milman 2005), (F.–Meyer 2008-10), (Lehec 2009),

(Gordon–F.–Meyer–Reisner 2010).
• A body with a point of positive curvature is not a minimizer: (Stancu, 2009),

(Reisner–Schütt–Werner 2010), (Gordon–Meyer 2011).
• Close to Hanner polytopes/Unconditional bodies:

(Nazarov–Petrov–Ryabogin–Zvavitch 2010), (Kim 2013), (Kim–Zvavitch 2013).
• Convex bodies with ‘many’ symmetries: (Barthe–Fradelizi 2010).
• It follows from Viterbo’s conjecture in symplectic geometry,

(Artstein-Avidan–Karasev–Ostrover 2014).
• Hyperplane sections of `p-balls and Hanner polytopes, (Karasev 2019).
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Shadow systems

• Definition (Shephard ’64): (Kt)t is a shadow system if Kt = Pt(C) is the
projection on Rn parallel to en+1 − tθ of a closed convex set C in Rn+1,
where θ ∈ Sn−1 is fixed.

• A shadow system in direction θ ∈ Sn−1 with
base B is Kt = conv{x + α(x)tθ; x ∈ B}.

• Example: Steiner symmetrization.
• Shephard ’64: t 7→ |Kt| is convex.
• Campi-Gronchi ’06: If Kt are symmetric, then t 7→ |(Kt)

◦|−1 is convex.
• Meyer-Reisner ’06: In general t 7→ minx |(Kt − x)◦|−1 is convex.

Moreover if t 7→ |Kt| is affine then t 7→ P(Kt) is quasi-concave and if it is
constant then Kt = AtK0 where At affine.

• Cordero-Erausquin-F.-Paouris-Pivovarov ’15: Generalization of
Campi-Gronchi to more measures.
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Shadow systems of polytopes

Let n ≥ 2 and m ≥ n + 1. Let K be a polytope with at most m vertices. Let
0 ≤ k ≤ n− 1 and F be a k-face of K. Let x in the relative interior of F and u in
the normal cone. Let Kt = conv(K, x + tu), t > 0.

1) k = 0: we move a vertex. Then
• if n = 2 then a maximizer of these moves is an affine image of a regular

polygon. Meyer-Reisner (2011) + Alexander-F.-Zvavitch (2019).
• a simplicial minimizers of these moves is an affine image of an `1 ball

F.-Meyer-Zvavitch (2012).
• a local maximizer is simplicial Alexander-F.-Zvavitch (2019).

2) k = n− 1: we add a vertex close to a facet. Alexander-F.-Zvavitch (2019):
• P(Kt) = |K||K◦|+ t|K◦||F|/n + o(t) > P(K).

• m 7→ max{P(K);K has at most m vertices} is increasing.
• no polytope is a local maximizer of the volume product.

Meyer-Reisner (2019): ellipsoids are the only local maximizers of P.

3) 1 ≤ k ≤ n− 1: Alexander-F.-Garcı́a-Lirola-Zvavitch (submitted):
generalization of the case k = n− 1 and application to the maximizer of the
volume product among Lipschitz-free balls. See below.
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Finite metric spaces and graphs

• Let M = {a0, . . . , an} be a finite metric space with metric d.

• We can represent M by a weighted graph:

• (ai, aj) is an edge of the graph if and only if
d(ai, aj) < d(ai, z) + d(z, aj) for all z ∈ M \ {ai, aj}.
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Lipschitz-free spaces

• Let M = ({a0, . . . , an}, d) be a finite metric space.

We denote
Lip0(M) = {f : M → R; f (a0) = 0} endowed with the norm
‖f‖Lip0

= maxi 6=j
f (ai)−f (aj)

d(ai,aj)
and the Lipschitz-free space over M is

F(M) = span(δai)
‖·‖∗Lip0 ⊂ Lip0(M)∗.

• We identify f to (f (a1), . . . , f (an)) ∈ Rn. One has, with e0 = 0,

BLip0(M) :=
{

f ; ‖f‖Lip0
≤ 1

}
=

{
f ; 〈f ,

ei − ej

d(ai, aj)
〉 ≤ 1 ∀i 6= j

}
BF(M) := B◦Lip0(M) = conv

{
ei − ej

d(ai, aj)
: i 6= j

}
⊂ Rn.

BF(M) is a symmetric convex body
of Rn, a polytope having at most
n(n + 1) vertices, called alcoved
polyhedron, polytrope. F(M) is
also called Arens-Eells,
Wasserstein W1,
Kantorovich-Rubinstein, ...
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When F(M) and F(M′) are isometric?
• To (M, d) we associate a weighted graph G = (V,E, d).
• The �-sum of two metric spaces M and N is M � N obtained by

identifying the distinguished points of M and N.

• One has F(M � N) = F(M)⊕1 F(N) and BF(M�N) = conv(BF(M),BF(N)).
• Every metric space M can be decomposed uniquely in

M = M1 � · · · �Mk, these are the 2-connected components of M.
• To any metric isometry f : M → M′ we can associate a canonical linear

isometry Tf : F(M)→ F(M′) such that Tf BF(M) = BF(M′).
• But there are non-isometric metric spaces whose Lipschitz-free spaces

are isometric, for example: the trees (Godard 2010).

Theorem (Alexander–F.–Garcı́a-Lirola–Zvavitch, 2020+)
F(M) and F(M′) are isometric if and only if |M| = |M′| and there
exists a cyclic bijection σ : E → E′ such that e 7→ d(σ(e))/d(e) is
constant on each 2-connected component of G.
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Minimizers of the volume product of a metric space

P(M) := |BF(M)| · |BLip0(M)|

≥ 4n

n!?

True for:

• Trees: BF(M) is an affine image of Bn
1. Godard 2010.

• 4-points weighted graphs: BF(M) ⊂ R3. Iriyeh-Shibata 2020.

• Cycles: BF(M) is the convex hull of 2n + 2 points. Karasev 2019.

Theorem (Alexander–F.–Garcı́a-Lirola–Zvavitch, 2020)
1) Let M be a minimizer of the volume product such that BF(M) is a
simplicial polytope. Then M is a tree (and so P(M) = 4n/n!).
2) BF(M) is a Hanner polytope if and only if the 2-connected
components of M are bipartite graphs K2,m, with constant weight.

BK2,m = Bm
1 ⊕∞ [−1, 1]
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Maximizers of the volume product of a metric space

For n = 2, the maximizer is the complete graph
K3 with equal weights.

Theorem (Alexander–F.–Garcı́a-Lirola–Zvavitch, 2020)
Let M be a metric space with n + 1 points which maximizes P(M)
among the metric spaces with n + 1 points. Then

• BF(M) has n(n + 1) vertices: the associated graph is Kn+1.

• BF(M) is simplicial: all its facets are simplices.

If n ≥ 3 and M is Kn+1 with equal weights,
then BF(M) is not simplicial!
Therefore it doesn’t maximize the volume
product.
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Thank you!
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