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OUTLINE

|. Discrete isoperimetric-type inequalities

[symmetry obtained via concavity]

Il. Discrete Faber-Krahn-type inequalities

[symmetry obtained via first variation]

Ill. Overdetermined boundary value problems on polygons

[symmetry obtained via reflection]
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Admissible shapes
o "= { convex bodies in R”}

o Py = { convex n-gons in Rz}

Shape functionals

—Aug =M (K)uxk in K

o First Dirichlet eigenvalue
ug =0 on dK

—Aug=1 inK

o Torsional rigidity
uk =0 on dK

—Aug =0 inR"\K
@ Capacity (~ Log-Capacity n=2) ug =1 on dK

uk —0 as |x| = 4o
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I. Discrete isoperimetric inequalities

Definition: The isoperimetric quotient for the volume functional is the
scale-invariant functional given by

d 1 1 1
Av(K) = |K+tBln| = |K|» Lokl  VvKex"

(B = unit ball)
Theorem [ISOPERIMETRIC INEQUALITY]
(i) Hv(K)> Ay (B) VYK ex"
(i) Av(P)> 2y (P}) VP e 2,
(P}, = regular n-gon)
[Burago-Zalgaller '88, De Giorgi '58, Fusco '04]
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Q: Is there a variational analogue of the isoperimetric inequality?
Let F = A1 (first Dirichet Laplacian eigenvalue), 7 (torsion), Cap (capacity)

Note that F is homogeneous of degree o under domain dilation: if

o =-2for 4y, &« =n+2 for T, o« = n—2 for Cap, it holds

F(tK) = t*F(K) VKex", VteRy

Definition: The isoperimetric quotient for F is the scale-invariant functional
given by
d 1 1 1 d
Ie(K) = —F(K+1tB)a = -F(K)a ! —F(K+tB
F(K):= g F(K+tB)w| = F(K)a — F(K+tB)| _ .
S~—

How does it read?

(B = unit ball)
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Hadamard’s formula for variational energies

d o ;
SF(K+e)| = s1gn(a)/sn71 hiduk  VK.Lex

@ h;= support function of L hi(&) :==supyer(x-&)

@ Uy = first variation measure of K ik = (Vi)s (|Vuk 2" 1L9K)
P duk 1:/ @ovk|Vuk|?d" !
St IK

1d :/ Vuk[2do"t =
/SH e = [ Vil k|
Ex. K=P = pp :Z/s \Vup[*Sy,,  |upl :Z/s Vup[?
I i i i
Remark: Perfect analogy with the case of volume (= surface area measure)

[Jerison '96, Colesanti-Fimiani '10, Xiao '18]
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In particular:
e Taking L=K:

%F((l-ﬁ-t)K)‘ o :Sign(a)/an hk d,uK:%(l-H)“F(K) ot =aF(K)

t=|

1

:>F(K):m

/ hi duk  representation formula for F
(for circumscribed polygons, reduces to F(K) = ﬁPKWKD
e Taking L= B:

d o o 2 n—1
EF(K—&—tB) o = mgn(oc)/sw1 1duk —51gn(a)/aK|VuK| d#

t=l

1 1.4d 1 1 o
5 Jr(K)= —F(K)e L S F(K+B)| | = (g U0 1/9K|VUK|2d/f" 1

expression of the isoperimetric quotient of F
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Theorem [VARIATIONAL ISOPERIMETRIC INEQUALITY]
Let F = A4, 7, or Cap.

(i) Fr(K)> F(B) VKex" [Bucur-F.-Lamboley '12]

(it)y Fe(P) > Fe(P}) VP e &, [Bucur-F., in progress]

Among convex bodies (resp. convex n-gons) with prescribed energy,
the ball (resp. the regular n-gon) is the MOST STABLE.
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Sketch of proof.

Brunn-Minkowski inequality
(BM)  Fa((1—t)K+tL)>(1—t)Fa(K)+tFe(L)  VK,Le#", Vte[0,1]

with equality iff K, L are homothetic
[Brascamp-Lieb '75, Borell '83-'85, Caffarelli-Jerison-Lieb '96, Colesanti’ 05]

Minkowski's first inequality (infinitesimal form of BM)

(M1) /571hLduK2|a|Fl_é(K)Fé(L) VK,Le "
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(i) Continuous case: Take K € ™ arbitrary and L = B in (M1).

/  hgduk > |alF1 5 (K)F & (B)
S

=|pk|

¢

IE(K) = = Fa Y (K)|uk| > F= (B) = 7 (B)

r
|o
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(ii) Discrete case:

STEP 1: Take K =P € &, arbitrary and L = Py in (M1)

Pgy:= the circumscribed polygon with the same incircle and same normals as P

_1 1
/snfthodﬂlealFl «(P)F«(Po)
—_———

p(Po)lupl
1 1 Fa(Po)
Ie(P)= —Fa (P > = Ir(P
F(P) ol (P)lup| = 2(Po) F(Po)
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STEP 2: Show that, if Py € &2, is circumscribed, it holds

F(Po)
p(Po)

JF(Po) = > JIr(Pn)

~~ shape optimization problem under INRADIUS constraint

> For the volume functional: .#\/(Py) = /Y cot(6;/2)

> For variational functionals: via construction of trial functions
p(Po) = const. = A1(Po) < A1(P;) [Solynin '92] O
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Il. Discrete Faber-Krahn inequalities

For F = A1,7,Cap, balls are optimal domains under volume constraint,

A discrete version of this symmetry result is a challenging open problem!

E(K) =M (K)V2 K [H"

(i) &(K)>&(B)  VKex" FABER-KRAHN INEQUALITY '23

(i) &(P)>&(P;)  VPe 2, POLYA CONJECTURE '51

proved for n = 3,4, open for n > 5.

1) The approach by symmetrization
2) The approach by concavity
3) A lucky case
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1) The approach by symmetrization

(i) Continuous case: u € H}(Q) ~» u* € H}(Q*) Schwarz symmetrization

2 * 12
.[Q'VUQ| > leVUQ| >)L]_(Q*)

() =
)= Tl = Jalw? =

ii) Discrete case: ue€ HY(Q) ~ u? € HY(QF) Steiner symmetrization
0 0

_ JalVual? _ JalVihP
Jalual? = fq |ub 2

2 (Q) > 4()
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Which directions to choose?

e n=23: Given any triangle, a sequence of Steiner symmetrizations w.r.t.
the mediators of each side converges to the equilateral triangle

e n=4: Given any quadrilateral, a sequence of 3 Steiner symmetrizations
transforms it into a rectangle

e n>5: No way to reach P} by preserving the number of sides
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2) The approach by concavity

— in the continuous setting, using (M1) with the two bodies K and B
exchanged allows to prove that balls minimize A; under perimeter constraint.

— in the discrete setting, using a similar strategy allows to prove that the
regular n-gon minimizes A;:

@ under perimeter constraint, in the restricted class of equiangular n-gons;

@ under symmetric content constraint:

o(P) = inf{% éhp(v,-) L (Vi,.... V) € gn(sl)}

where &,(S!):=the class of equidistributed n-tuples of vectors in S!
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3) A lucky case: the Cheeger constant
Given Q C R? with finite measure

h(Q) := inf{%ﬁz) : A measurable, AC Q}.
A solution is called a Cheeger set of Q

[Alter, Buttazzo, Carlier, Caselles, Chambolle, Comte, Figalli, Fridman, Fusco,
Kawohl, Krejtifik, Lachand-Robert, Leonardi, Maggi, Novaga, Pratelli]

o It is the limit as p — 1T of the first Dirichlet eigenvalue of Ap,.

o It satisfies the Faber-Krahn inequality h(2) > h(Q*).
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Theorem [DISCRETE F.K. FOR THE CHEEGER CONSTANT] [Bucur-F. '16]
Among all simple polygons with a given area and at most n sides,

the regular n-gon minimizes the Cheeger constant.

h(P) > h(P}) VP e 2.

@ No convexity is needed on the admissible polygons.

@ The same result holds true for log-capacity [Solynin-Zalgaller '04] .
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Sketch of proof — the case of convex polygons (easy!)

If P minimizes the Cheeger constant among polygons in &, with the same
area, it is Cheeger regular, and consequently [Kawohl-Lachand Robert '06]

_ [9P|++/|9P]2—4[P|(A(P) —7)

h(P) T with A(P) :Zcot(%).

By the discrete isop. inequality (Step 1), #y/(P) = % 0P Py (Po) =N(P)Y/?

n(p) > 12PI /AP
- 2P

By the discrete isop. inequality (Step 2), .Zy(P) > 2y (P})
IP:| + /47 |P;,
n(p)y > 10PalH VATIPAL oy
2|25
O
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Sketch of proof — the case of general polygons

> Since &2, is not closed in the Hausdorff complementary topology, we
enlarge the class of competitors to &7, (thus allowing self-intersections).

> For such “generalized polygons”, we introduce a notion of relaxed Cheeger
constant. In this framework, we obtain an existence result, and a
representation formula for an optimal generalized polygon.
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> We introduce a Lagrange multiplier 4 and we use first order shape
derivatives to get some stationarity conditions:

2 (P uiP)| =0

The deformations we use are rotations and parallel movements of one side.

> Via the stationarity conditions, we show that the boundary of an optimal
generalized polygons contains no self-intersections and no reflex angles.

We are thus back to the case of simple convex polygons and we are done.
O
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Q: Is it possible to attack Pdlya conjecture for A1 by the same approach?

> Stationarity conditions in the previous proof are purely geometric! E.g.,

)

sin? (

)

B COS2 (

(h(P) =

NIR (VIR

> For A1, stationarity conditions are no longer purely geometric!
This leads to study overdetermined boundary value problems on polygons.

.... NEW TOPIC!
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Overdetermined boundary value problems on polygons

Let uq be the torsion function of an open bounded domain Q C R?,

i.e. the unique solution to

—Aug=1 in Q,
u=0 on d9.

Serrin’s symmetry result:

If uq satisfies the following overdetermined boundary condition, Q is a ball:

(%) |[Vug|=con 909,

=0

Remark: (x) corresponds to the stationarity condition % <T(QE)>
e=0

Q2
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Conjecture (discrete version of Serrin’s result)
Let up be the torsion function or first Dirichlet eigenfunction of a polygon P,
with sides S; = [A;, Aj 1] of length ¢;.

It up satisfies the overdetermined boundary conditions

(Par) /S Vupl2=xt; Vi
4 ) )
(Rot) /.s.(af\fo;|)\Vup‘ —0 Vi,

then P is a regular polygon.

@ (Par) is the stationarity condition under parallel movement of S;

@ (Rot) is the stationarity condition under rotation of S; around its
mid-point.
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Theorem [SERRIN'S THEOREM FOR TRIANGLES] [F.-Velichkov '19]

Let u7 be the torsion function or first Dirichlet eigenfunction of a triangle T.
(i) Triangular equidistribution: For any triangle T, ut satisfies

(Par) /$|VuT|2:Ke,- Vi=1,2,3.
(ii) Triangular symmetry: If ut satisfies

(ROt) /S (%—|X—A,")|VUT|2:0 VI-:1,2,3,

then T is a regular triangle.

Symmetry problems for variational functionals: from continuous to discrete
llaria Fragala



Sketch of proof
(i) Triangular equidistribution.

Recall that (Par) corresponds to the the stationarity condition

d
S (maTl)| =0
when T are obtained from T by parallel movement of one if its side.

But ALL triangles obtained this way are homothetic, and the shape functional

T = M(T)IT|

is invariant under dilations.
It follows that condition (Par) holds true for any triangle.

[Christianson '17]
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(ii) Triangular symmetry.

A 2
We prove: 6 > 6y :>/ (5—‘X—A;D|VUT‘ <0.
Ar

Qext

0

Ay

Consider on the reflected triangle in red the difference v =ut —ur.
It satisfies —Av = A;v inside and is nonnegative on the boundary.
By the max principle, it is strictly positive inside.

Then, by Hopf boundary point principle |Vur| > |ViT| on [M,Az].

A2 2 Az ~ 2 M 2
[ = Mivur > [ MvarR = [ Mivar .
M M A
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OPEN PROBLEMS:

e Pdlya conjecture (for n > 5)

o discrete Serrin (for n > 4)

THANK YOU FOR YOUR ATTENTION!
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