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OUTLINE

I. Discrete isoperimetric-type inequalities

[symmetry obtained via concavity]

II. Discrete Faber-Krahn-type inequalities

[symmetry obtained via first variation]

III. Overdetermined boundary value problems on polygons

[symmetry obtained via reflection]
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Admissible shapes

K n :=
n

convex bodies in Rn

o

P
n

:=
n

convex n-gons in R2
o

Shape functionals

First Dirichlet eigenvalue

(

��u
K

= l1(K)u
K

in K

u
K

= 0 on ∂K

Torsional rigidity

(

��u
K

= 1 in K

u
K

= 0 on ∂K

Capacity ( Log-Capacity n = 2)

8

>

>

<

>

>

:

��u
K

= 0 in Rn \K

u
K

= 1 on ∂K

u
K

! 0 as |x | ! +•
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I. Discrete isoperimetric inequalities

Definition: The isoperimetric quotient for the volume functional is the
scale-invariant functional given by

I
V

(K) :=
d

dt
|K + tB |

1
n

�

�

�

t=0+
=

1

n
|K |

1
n

�1|∂K | 8K 2 K n

(B = unit ball)

Theorem [ISOPERIMETRIC INEQUALITY]

(i) I
V

(K) � I
V

(B) 8K 2 K n

(ii) I
V

(P) � I
V

(P⇤
n

) 8P 2 P
n

(P⇤
n

= regular n-gon)

[Burago-Zalgaller ’88, De Giorgi ’58, Fusco ’04]
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Q: Is there a variational analogue of the isoperimetric inequality?

Let F = l1 (first Dirichet Laplacian eigenvalue), t (torsion), Cap (capacity)

Note that F is homogeneous of degree a under domain dilation: if

a = �2 for l1, a = n+2 for t, a = n�2 for Cap, it holds

F (tK) = taF (K) 8K 2 K n , 8t 2 R+

Definition: The isoperimetric quotient for F is the scale-invariant functional
given by

I
F

(K) :=
d

dt
F (K + tB)

1
a

�

�

�

t=0+
=

1

a

F (K)
1
a

�1 d

dt
F (K + tB)

�

�

�

t=0+
| {z }

How does it read?

(B = unit ball)
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Hadamard’s formula for variational energies

d

dt
F (K + tL)

�

�

�

t=0+
= sign(a)

Z

S

n�1
h
L

dµ

K

8K ,L 2 K n

h
L

= support function of L h
L

(x ) := sup
x2L(x ·x )

µ

K

= first variation measure of K µ

K

= (n
K

)]
�

|—u
K

|2H n�1
∂K

�

Z

S

n�1
j dµ

K

:=
Z

∂K

j �n

K

|—u
K

|2 dH n�1

Z

S

n�1
1dµ

K

=
Z

∂K

|—u
K

|2 dH n�1 =: |µ
K

|

Ex. K = P ) µ

P

= Â
i

Z

S

i

|—u
P

|2d

n

i

, |µ
P

| = Â
i

Z

S

i

|—u
P

|2

Remark: Perfect analogy with the case of volume (µ
K

= surface area measure)

[Jerison ’96, Colesanti-Fimiani ’10, Xiao ’18]
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In particular:

Taking L= K :

d

dt
F ((1+t)K)

�

�

�

t=0+
= sign(a)

Z

S

n�1
h
K

dµ

K

=
d

dt
(1+t)aF (K)

�

�

�

t=0+
=aF (K)

) F (K) =
1

|a|

Z

h
K

dµ

K

representation formula for F

(for circumscribed polygons, reduces to F (K) = 1
|a| rK

|µ
K

|)

Taking L= B:

d

dt
F (K + tB)

�

�

�

t=0+
= sign(a)

Z

S

n�1
1dµ

K

= sign(a)
Z

∂K

|—u
K

|2 dH n�1

) I
F

(K) =
1

a

F (K)
1
a

�1 d

dt
F (K + tB)

�

�

�

t=0+
=

1

|a|F (K)
1
a

�1
Z

∂K

|—u
K

|2 dH n�1

expression of the isoperimetric quotient of F
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Theorem [VARIATIONAL ISOPERIMETRIC INEQUALITY]

Let F = l1,t, or Cap.

(i) I
F

(K) � I
F

(B) 8K 2 K n [Bucur-F.-Lamboley ’12]

(ii) I
F

(P) � I
F

(P⇤
n

) 8P 2 P
n

[Bucur-F., in progress]

Among convex bodies (resp. convex n-gons) with prescribed energy,

the ball (resp. the regular n-gon) is the MOST STABLE.
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Sketch of proof.

Brunn-Minkowski inequality

(BM) F
1
a

�

(1�t)K+tL
�

� (1�t)F
1
a (K)+tF

1
a (L) 8K ,L2 K n , 8t 2 [0,1]

with equality i↵ K ,L are homothetic

[Brascamp-Lieb ’75, Borell ’83-’85, Ca↵arelli-Jerison-Lieb ’96, Colesanti’ 05]

Minkowski’s first inequality (infinitesimal form of BM)

(M1)
Z

S

n�1
h
L

dµ

K

� |a|F 1� 1
a (K)F

1
a (L) 8K ,L 2 K n
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(i) Continuous case: Take K 2 K n arbitrary and L= B in (M1).

Z

S

n�1
h
B

dµ

K

| {z }

=|µ
K

|

� |a|F 1� 1
a (K)F

1
a (B)

+

I
F

(K) =
1

|a|F
1
a

�1(K)|µ
K

| � F
1
a (B) = I

F

(B)
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(ii) Discrete case:

STEP 1: Take K = P 2 P
n

arbitrary and L= P0 in (M1)

P0:= the circumscribed polygon with the same incircle and same normals as P
Z

S

n�1
h
P0

dµ

P

| {z }

r(P0)|µP

|

� |a|F 1� 1
a (P)F

1
a (P0)

+

I
F

(P) =
1

|a|F
1
a

�1(P)|µ
P

| � F
1
a (P0)

r(P0)
= I

F

(P0)
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STEP 2: Show that, if P0 2 P
n

is circumscribed, it holds

I
F

(P0) =
F

1
a (P0)

r(P0)
� I

F

(P⇤
n

)

 shape optimization problem under INRADIUS constraint

. For the volume functional: I
V

(P0) =
p

Â
i

cot(q
i

/2)

. For variational functionals: via construction of trial functions

r(P0) = const. ) l1(P0)  l1(P⇤
n

) [Solynin ’92]
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II. Discrete Faber-Krahn inequalities

For F = l1,t,Cap, balls are optimal domains under volume constraint,

A discrete version of this symmetry result is a challenging open problem!

E (K) := l1(K)1/2|K |1/n

(i) E (K) � E (B) 8K 2 K n FABER-KRAHN INEQUALITY ’23

(ii) E (P) � E (P⇤
n

) 8P 2 P
n

PÓLYA CONJECTURE ’51

proved for n = 3,4, open for n � 5.

1) The approach by symmetrization

2) The approach by concavity

3) A lucky case
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1) The approach by symmetrization

(i) Continuous case: u 2 H1
0 (⌦) u⇤ 2 H1

0 (⌦
⇤) Schwarz symmetrization

l1(⌦) =

R

⌦ |—u⌦|2
R

⌦ |u⌦|2
�

R

⌦ |—u⇤
⌦|2

R

⌦ |u⇤
⌦|2

� l1(⌦
⇤)

(ii) Discrete case: u 2 H1
0 (⌦) u] 2 H1

0 (⌦
]) Steiner symmetrization

l1(⌦) =

R

⌦ |—u⌦|2
R

⌦ |u⌦|2
�

R

⌦ |—u]
⌦|2

R

⌦ |u]
⌦|2

� l1(⌦
])
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Which directions to choose?

n = 3: Given any triangle, a sequence of Steiner symmetrizations w.r.t.
the mediators of each side converges to the equilateral triangle

n = 4: Given any quadrilateral, a sequence of 3 Steiner symmetrizations
transforms it into a rectangle

n � 5: No way to reach P⇤
n

by preserving the number of sides

	
	
	
	
	

	

52 Chapter 3. The first eigenvalue of the Laplacian-Dirichlet

Figure 3.3: A sequence of three Steiner symmetrizations transforms any quadri-
lateral into a rectangle.

Figure 3.4: The Steiner symmetrization of a pentagon has, in general, six edges.

3.4 Domains in a box

Instead of looking at open sets just with a volume constraint, we can consider
open sets constrained to lie in a given box D (and also with a given volume). In
other words, we could look for the solution of

min{�1(�), � ⇢ D, |�| = A (given)}. (3.14)

According to Theorem 2.4.6 of Buttazzo-DalMaso, the problem (3.14) has always
a solution in the class of quasi-open sets. Of course, if the constant A is small
enough in such a way that there exists a ball of volume A in the box D, it will

Figure 9: The Steiner symmetrization of a pentagon
               may have more than 5 sidesIlaria Fragalà
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2) The approach by concavity

– in the continuous setting, using (M1) with the two bodies K and B
exchanged allows to prove that balls minimize l1 under perimeter constraint.

– in the discrete setting, using a similar strategy allows to prove that the
regular n-gon minimizes l1:

under perimeter constraint, in the restricted class of equiangular n-gons;

under symmetric content constraint:

s(P) := inf
n1

n

n

Â
i=1

h
P

(n
i

) : (n1, . . . ,nn) 2 E
n

(S1)
o

where E
n

(S1):=the class of equidistributed n-tuples of vectors in S1
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3) A lucky case: the Cheeger constant

Given ⌦ ⇢ R2 with finite measure

h(⌦) := inf
nPer(A,R2)

|A| : A measurable , A ✓ ⌦
o

.

A solution is called a Cheeger set of ⌦

[Alter, Buttazzo, Carlier, Caselles, Chambolle, Comte, Figalli, Fridman, Fusco,
Kawohl, Krejčǐŕık, Lachand-Robert, Leonardi, Maggi, Novaga, Pratelli]

It is the limit as p ! 1+ of the first Dirichlet eigenvalue of �
p

.

It satisfies the Faber-Krahn inequality h(⌦) � h(⌦⇤).

Ilaria Fragalà
Symmetry problems for variational functionals: from continuous to discrete



18/28

Theorem [DISCRETE F.K. FOR THE CHEEGER CONSTANT] [Bucur-F. ’16]

Among all simple polygons with a given area and at most n sides,

the regular n-gon minimizes the Cheeger constant.

h(P) � h(P⇤
n

) 8P 2 P
n

.

No convexity is needed on the admissible polygons.

The same result holds true for log-capacity [Solynin-Zalgaller ’04] .
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Sketch of proof – the case of convex polygons (easy!)

If P minimizes the Cheeger constant among polygons in P
n

with the same
area, it is Cheeger regular, and consequently [Kawohl-Lachand Robert ’06]

h(P) =
|∂P|+

p

|∂P|2 �4|P|(⇤(P)�p)

2|P| with ⇤(P) = Â
i

cot
⇣

q

i

2

⌘

.

By the discrete isop. inequality (Step 1), I
V

(P) = 1
2

|∂P|
|P|1/2 � I

V

(P0) = ⇤(P)1/2

h(P) �
|∂P|+

p

4p|P|
2|P| .

By the discrete isop. inequality (Step 2), I
V

(P) � I
V

(P⇤
n

)

h(P) �
|∂P⇤

n

|+
p

4p|P⇤
n

|
2|⌦⇤

n

| = h(P⇤
n

) .
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Sketch of proof – the case of general polygons

. Since P
n

is not closed in the Hausdor↵ complementary topology, we
enlarge the class of competitors to P

n

(thus allowing self-intersections).

. For such “generalized polygons”, we introduce a notion of relaxed Cheeger
constant. In this framework, we obtain an existence result, and a
representation formula for an optimal generalized polygon.

Ilaria Fragalà
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. We introduce a Lagrange multiplier µ and we use first order shape
derivatives to get some stationarity conditions:

d

de

⇣

h(P
e

)+µ|P
e

|
⌘

�

�

�

e=0
= 0 .

The deformations we use are rotations and parallel movements of one side.

. Via the stationarity conditions, we show that the boundary of an optimal
generalized polygons contains no self-intersections and no reflex angles.

We are thus back to the case of simple convex polygons and we are done.

Ilaria Fragalà
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Q: Is it possible to attack Pólya conjecture for l1 by the same approach?

. Stationarity conditions in the previous proof are purely geometric! E.g.,

sin( b�a

2 )

sin
�

a

2

�

sin
�

b

2

�

`h(P) =
cos2

�

a

2

�

sin2
�

a

2

�

. For l1, stationarity conditions are no longer purely geometric!

This leads to study overdetermined boundary value problems on polygons.

.... NEW TOPIC!

Ilaria Fragalà
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III. Overdetermined boundary value problems on polygons

Let u⌦ be the torsion function of an open bounded domain ⌦ ⇢ R2,

i.e. the unique solution to
(

��u⌦ = 1 in ⌦ ,

u = 0 on ∂⌦ .

Serrin’s symmetry result:

If u⌦ satisfies the following overdetermined boundary condition, ⌦ is a ball:

(⇤) |—u⌦| = c on ∂⌦ ,

Remark: (⇤) corresponds to the stationarity condition d

de

⇣

t(⌦
e

)
|⌦

e

|2
⌘

�

�

�

e=0
= 0
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Conjecture (discrete version of Serrin’s result)

Let u
P

be the torsion function or first Dirichlet eigenfunction of a polygon P,

with sides S
i

= [A
i

,A
i+1] of length `

i

.

It u
P

satisfies the overdetermined boundary conditions

8

>

>

<

>

>

:

(Par)
Z

S

i

|—u
P

|2 = k`
i

8i

(Rot)
Z

S

i

� `
i

2
� |x �A

i

|
�

|—u
P

|2 = 0 8i ,

then P is a regular polygon.

(Par) is the stationarity condition under parallel movement of S
i

(Rot) is the stationarity condition under rotation of S
i

around its
mid-point.
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Theorem [SERRIN’S THEOREM FOR TRIANGLES] [F.-Velichkov ’19]

Let u
T

be the torsion function or first Dirichlet eigenfunction of a triangle T .

(i) Triangular equidistribution: For any triangle T , u
T

satisfies

(Par)
Z

S

i

|—u
T

|2 = k`
i

8i =1,2,3.

(ii) Triangular symmetry: If u
T

satisfies

(Rot)
Z

S

i

� `
i

2
� |x�A

i

|
�

|—u
T

|2 =0 8i =1,2,3 ,

then T is a regular triangle.
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Symmetry problems for variational functionals: from continuous to discrete



26/28

Sketch of proof

(i) Triangular equidistribution.

Recall that (Par) corresponds to the the stationarity condition

d

de

⇣

l1(Te

) |T
e

|
⌘

�

�

�

e=0
= 0

when T
e

are obtained from T by parallel movement of one if its side.

But ALL triangles obtained this way are homothetic, and the shape functional

T 7! l1(T )|T |

is invariant under dilations.

It follows that condition (Par) holds true for any triangle.

[Christianson ’17]
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(ii) Triangular symmetry.

We prove: q2 > q1 )
Z

A2

A1

� `
i

2
� |x �A

i

|
�

|—u
T

|2 < 0.

	

7

Lemma 2.7 (Shape derivatives with respect to parallel movements). Let F be as in Definition
2.1. Let T 2 T and let {Tt} be as in Definition 2.3. Then

d

dt

�

�

�

t=0
F (Tt) = (sign �) (p � 1)

Z A2

A1

|�u|p dH1. (2.8)

d

dt

�

�

�

t=0
Vol (Tt) = `1. (2.9)

d

dt

�

�

�

t=0
Per (Tt) = f(�1) + f(�2). (2.10)

Proof. Notice that the perturbation described in Definition 2.3 corresponds to the di�eomorphism
�t(x) = h+t

h x, where without loss of generality we suppose A3 = 0 and we set h to be the distance
from A3 to the side [A1, A2]. Thus V (x) = x/h and V (x) · nT (x) � 1 on [A1, A2], so we get (2.8),
while (2.9) and (2.10) follow directly by the equalities

Per (Tt) = Per (T )+ t
�

f(�1)+f(�2)
�

and Vol (Tt) = Vol (T )+ t`1 +o(t). �

3. Proof of Theorems 1.1 and 1.2

We will prove Theorems 1.1 and 1.2 by a reflection argument. We first give the geometric
construction, which is the same for the cases of interior or exterior domains, and then we will
treat them separately.

Geometric construction. Suppose by contradiction that T has two di�erent inner angles �1 <
�2. Let M be the midpoint of the side [A1, A2] and let LM be the line passing through M and
orthogonal to the side [A1, A2]. Without loss of generality we can suppose that M = 0, LM is the
y-axis {x = 0}, A1 = (�`1/2, 0), A2 = (`1/2, 0) and A3 = (x3, y3) with x3 > 0 and y3 > 0 (see
Figure 2). Let N be the intersection of LM with the side [A1, A3]. We denote by �int the interior
of the triangle with vertices M, N and A2 and by �ext the unbounded domain {x > 0} \ T . For
any function u : R2 ! R we consider the reflection ũ : R2 ! R of u defined by ũ(x, y) = u(�x, y).

A1 A2

A3

M

N

LM

�1 �2

�int

�ext

Figure 2. Construction of the reflected domainFigure 13: The reflection argument for triangular symmetry

Consider on the reflected triangle in red the di↵erence v = u
T

� eu
T

.

It satisfies ��v = l1v inside and is nonnegative on the boundary.

By the max principle, it is strictly positive inside.

Then, by Hopf boundary point principle |—u
T

| > |—eu
T

| on [M,A2].

Z

A2

M

|x �M||—u
T

|2 >
Z

A2

M

|x �M||—eu
T

|2 =
Z

M

A1

|x �M||—u
T

|2 .
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OPEN PROBLEMS:

Pólya conjecture (for n � 5)

discrete Serrin (for n � 4)

THANK YOU FOR YOUR ATTENTION!
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