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[Rudelson, Basak ’18] 

(ln(n) + ω(1) ≤ pn ≤ n/2) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

For , random d-regular graphs are invertible with high probability.

[Huang ’18] 

d ≥ 3

Below this threshold ,   and  are not invertible 
with high probability.

[Rudelson, Basak ’18]

pn ≤ (ln(n) − ω(1)) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

Use G interchangably with 
Adj(G), H with Bi-Adj(H)



Sparse ER Graphs Have Linear Dependencies



Sparse ER Graphs Have Linear Dependencies

Isolated Vertex



Sparse ER Graphs Have Linear Dependencies

Isolated Vertex

“Cherry”

1

1





Key Phenomenon:  
Linear Dependencies come from small structures 
[Costello Vu, Tikhimirov, Jain et al, etc.]



Key Phenomenon:  
Linear Dependencies come from small structures 
[Costello Vu, Tikhimirov, Jain et al, etc.]



Key Phenomenon:  
Linear Dependencies come from small structures 
[Costello Vu, Tikhimirov, Jain et al, etc.]

Can we understand the rank of G by removing these 
structures?
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1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Fact: corank(G) = corank(G′￼) = corank(GKS) + | IKS |
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Gv = 0 ⇔ G′￼v′￼ = 0
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Prior Results

Bourdenave Lelarge Salez ‘11: For  with , almost surely, G ∼ 𝔾(n, p) p = Θ(1/n)
lim
n→∞

corank(Adj(GKS))/n = 0

Coja-Oghlan, Ergür, Gao, Hetterich, Rolvien ’20: For , with , in 
probability, 

H ∼ 𝔾(n, n, p) p = Θ(1/n)

lim
n→∞

corank(Bi-Adj(HKS))/n = 0

Let 0 < q < 1 be the smallest solution to .


Then in almost surely, 

q = exp(−c exp(−cq))

| IKS(G) | /n → q + e−cq + cqe−cq − 1
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Main Result: Asymmetric Bernoulli Matrices

Theorem 2:  Let  where . Let  be the Karp-
Sipser core of  and let  be the set of isolated vertices removed to form the KS core.

H = ((L, R), E) ∼ 𝔾(n, n, d/n) d = ω(1) HKS
H IKS

With probability :1 − o(1)
1.   or  has full column rank. Bi-Adj(HKS) Bi-Adj(HKS)⊤

2. Equivalently, .corank(Bi-Adj(H)) = max( | IKS ∩ R | , | IKS ∩ L | )

HKS

IKSH

If these numbers different, then  
 rectangularBi-Adj(HKS)
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Main Tool: Characterization of Linear Dependencies
A k-minimal dependency is a set of k linearly dependent rows where all 
strict subsets of the k rows are linearly independent. 

Dependency 
coefficients all non-zero

No column has 
a single non-zero 

Rank = k - 1
2 -1 -1 -1 = 01  1  1 

1      1

1  1   

    1  1

Fact: Any k-minimal dependency must have  non-zero entries
≥ 2k − 2
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Proof Outline of Theorem 3 (Characterization)
Theorem 3:  Let  where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of  have  
non-zero entries. 

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries. 

• Union bound over all sets of k rows.

• Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

• Main Technique: Littlewood-Offord anti-concentration bounds.
Requires d = ω(1)

Almost works for 
d = Ω(1)

A
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Markov’s Inequality:

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound 

Case 1:       has kernel vector with large support A(n)

A(n)

Case 2:       has no kernel vector with large support A(n)

Ai ∉ Span({Aj}j≠i) ↔ ∃w : wT A = eT
i

Technique:  Construct witness vectors :wj

Can find vector orthogonal 
to all columns besides Ai
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Case 1:  has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound 

A(n) = 0

⟨v, An⟩

Sparse Littlewood-Offord:

Then Pr[AT

n v = 0] ≤ O (1/ d)V

0

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n
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Conclusion

Key Proof Ideas for Characterization

A(n)

V=
0

- Union bound over small dependencies

- Anticoncentration for large dependencies

Limitations/Directions

Constant Average Degree?

Main Results

- Whp, corank given by IKS

- Characterization of minimal dependencies

!

A

Tree Dependencies get Peeled! 



Thanks!


Questions?


