Rank of Erdos-Renyi Graphs

Margalit Glasgow

Joint work with Patrick DeMichele, Alex Moreira

Discrete Random Matrices

Discrete Random Matrices

n

e

G ~ G(n, p) Adjacency Matrix A;; ~ Bernoulli(p)

Discrete Random Matrices

G ~ G(n, p) Adjacency Matrix A;; ~ Bernoulli(p)

B;; ~ Bernoulli(p)

Bi-Adjacency Matrix
H~ G(n,n,p)

What Graphs are Invertible?

What Graphs are Invertible?

Above connectivity threshold (ln(n) + w(l) < pn < n/2), G ~ G(n,p)and H ~ 3(n, n, p)

are invertible with high probabillity.
[Rudelson, Basak ’18]

Use G interchangably with
Adj(G), H with Bi-Adj(H)

What Graphs are Invertible?
Above connectivity threshold (ln(n) + w(l) < pn < n/2), G ~ G(n,p)and H ~ 3(n, n, p)

are invertible with high probabillity.
[Rudelson, Basak ’18]

Use G interchangably with
Adj(G), H with Bi-Adj(H)

What Graphs are Invertible?
Above connectivity threshold (ln(n) + w(l) < pn < n/2), G ~ G(n,p)and H ~ 3(n, n, p)

are invertible with high probabillity.
[Rudelson, Basak ’18]

Below this threshold pn < (ln(n) — a)(l)), G ~ (o(n,p) and H ~ G(n, n, p) are not invertible

with high probability.
[Rudelson, Basak ’18]}

Use G interchangably with
Adj(G), H with Bi-Adj(H)

What Graphs are Invertible?
Above connectivity threshold (In(n) + w(1) < pn < n/2), G ~ G(n,p) and H ~ G(n, n, p)

are invertible with high probabillity.
[Rudelson, Basak ’18]

Below this threshold pn < (ln(n) — a)(l)), G ~ (o(n,p) and H ~ G(n, n, p) are not invertible

with high probability.
[Rudelson, Basak ’18]

For d > 3, random d-regular graphs are invertible with high probability.
[Huang ’18]

Sparse ER Graphs Have Linear Dependencies

Sparse ER Graphs Have Linear Dependencies

Isolated Vertex

¢ .
& .
~ .
N [
n n
. m
L N
“ ’.

0.. "Q
L Egm®

Sparse ER Graphs Have Linear Dependencies

“Cherry”

Isolated Vertex

¢ .
& .
~ .
N [
n n
. m
L N
“ ..

0.. "Q
L Egm®

Key Phenomenon:
Linear Dependencies come from small structures
[Costello Vu, Tikhimirov, Jain et al, etc.}

Key Phenomenon:
Linear Dependencies come from small structures
[Costello Vu, Tikhimirov, Jain et al, etc.}

!

Key Phenomenon:
Linear Dependencies come from small structures
[Costello Vu, Tikhimirov, Jain et al, etc.}

!

Can we understand the rank of G by removing these
structures?

Karp-Sipser Core

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their uniqgue neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

-

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

-

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

-

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

-

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

-

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

-

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

-

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

AN

G/

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

A

Fact: corank(G) = corank(G’) = corank(Gygy) + | Ixs|

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

A

G interchangably with
Fact: corank(G) = corank(G’) = corank(Ggy) + | Ix]| Adij(G)

Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

A

G’ Use
G interchangably with

Fact: corank(G) = corank(G’) = corank(Ggy) + | Ixs| Adj(G)

Gv=0& GV =0
v v=(—w'v,0,V)
G

Prior Results

Let 0 < g < 1 be the smallest solution to g = exp(—cexp(—cq)).

Then in almost surely, |lx(G)|/n = g+ e 1+ cqge 1 — 1

Prior Results

Bourdenave Lelarge Salez ‘11: For G ~ (3(n, p) with p = ©(1/n), almost surely,
lim corank(Adj(Ggg))/n =0

n— Qoo

Let 0 < g < 1 be the smallest solution to g = exp(—cexp(—cq)).

Then in almost surely, |lx(G)|/n = g+ e 1+ cqge 1 — 1

Prior Results

Bourdenave Lelarge Salez ‘11: For G ~ (3(n, p) with p = ©(1/n), almost surely,
lim corank(Adj(Ggg))/n =0

n— Qoo

Coja-Oghlan, Ergiir, Gao, Hetterich, Rolvien ’20: For H ~ G(n, n, p), with p = ®(1/n), in
probability,
lim corank(Bi-Adj(Hgs))/n = 0

n—~od

Let 0 < g < 1 be the smallest solution to g = exp(—cexp(—cq)).

Then in almost surely, |lx(G)|/n = g+ e 1+ cqge 1 — 1

Main Result: Symmetric Bernoulli Matrices

Main Result: Symmetric Bernoulli Matrices

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let G ~ G(n,d/n) where d = w(1). Let G be the Karp-Sipser core of G
and let /¢ be the set of isolated vertices removed to form the KS core.

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let G ~ G(n,d/n) where d = w(1). Let G be the Karp-Sipser core of G
and let /¢ be the set of isolated vertices removed to form the KS core.

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let G ~ G(n,d/n) where d = w(1). Let G be the Karp-Sipser core of G
and let /¢ be the set of isolated vertices removed to form the KS core.

With probability 1 — o(1):
1. Adj(Ggy) is invertible.

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let G ~ G(n,d/n) where d = w(1). Let G be the Karp-Sipser core of G
and let /¢ be the set of isolated vertices removed to form the KS core.

With probability 1 — o(1):
1. Adj(Ggy) is invertible.
2. Equivalently, corank(Adj(G)) = | Ixg| .

Main Result: Asymmetric Bernoulli Matrices

Main Result: Asymmetric Bernoulli Matrices

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let H = ((L,R), E) ~ G(n,n,d/n) where d = w(1). Let Hg be the Karp-
Sipser core of H and let /¢ be the set of isolated vertices removed to form the KS core.

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let H = ((L,R), E) ~ G(n,n,d/n) where d = w(1). Let Hg be the Karp-
Sipser core of H and let /¢ be the set of isolated vertices removed to form the KS core.

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let H = ((L,R), E) ~ G(n,n,d/n) where d = w(1). Let Hg be the Karp-
Sipser core of H and let /¢ be the set of isolated vertices removed to form the KS core.

With probability 1 — o(1):
1. Bi-Adj(Hyy) or Bi-Adj(Hy) ' has full column rank.

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let H = ((L,R), E) ~ G(n,n,d/n) where d = w(1). Let Hg be the Karp-
Sipser core of H and let Ii¢ be the set of isolated vertices removed to form the KS core.

With probability 1 — o(1):
1. Bi-Adj(Hyy) or Bi-Adj(Hy) ' has full column rank.
2. Equivalently, corank(Bi-Adj(H)) = max(|IxcNR|, |[IxcN L]|).

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let H = ((L,R), E) ~ G(n,n,d/n) where d = w(1). Let Hg be the Karp-
Sipser core of H and let /¢ be the set of isolated vertices removed to form the KS core.

With probability 1 — o(1):
1. Bi-Adj(Hyy) or Bi-Adj(Hy) ' has full column rank.
2. Equivalently, corank(Bi-Adj(H)) = max(|IxcNR|, |[IxcN L]|).

If these numbers different, then
Bi-Adj(Hy) rectangular

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

— bk b
AA

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

— bk b
AA

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Coomer >

Dependency
coefficients all non-zero

—h —h

AA

A

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Coomer >

Dependency
coefficients all non-zero

—h —h

1
1

A

No column has
a single non-zero

Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

@ 2-1-1-1 11 1 =0

Dependency
coefficients all non-zero

No column has
a single non-zero

Fact: Any k-minimal dependency must have > 2k — 2 non-zero entries

Our Characterization

Our Characterization

Theorem 3: Let G ~ G(n,d/n) where d = w(1), and let A = Adj(G).

Our Characterization

Theorem 3: Let G ~ G(n, d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Our Characterization

Theorem 3: Let G ~ G(n, d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

In particular, they have the following ‘tree’ structure:

Our Characterization

Theorem 3: Let G ~ G(n, d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

In particular, they have the following ‘tree’ structure:

Edges
1 This
y @ | graph does NOT !
_é 1 :: 1 2 @ correspond to G
A > 1 1
1

Our Characterization

Our Characterization

Theorem 3: Let H ~ G(n, n,d/n) where d = w(1), and let B = Bi-Adj(G).

Our Characterization

Theorem 3: Let H ~ G(n, n,d/n) where d = w(1), and let B = Bi-Adj(G).

With probability 1 — o(1), at least one of the following occurs:
1) All k-minimal dependencies among rows of B have exactly 2k — 2 non-zero entries.

Our Characterization

Theorem 3: Let H ~ G(n, n,d/n) where d = w(1), and let B = Bi-Adj(G).

With probability 1 — o(1), at least one of the following occurs:
1) All k-minimal dependencies among rows of B have exactly 2k — 2 non-zero entries.
2) All k-minimal dependencies among rows of B' have exactly 2k — 2 non-zero entries.

Our Characterization

Theorem 3: Let H ~ G(n, n,d/n) where d = w(1), and let B = Bi-Adj(G).

With probability 1 — o(1), at least one of the following occurs:
1) All k-minimal dependencies among rows of B have exactly 2k — 2 non-zero entries.
2) All k-minimal dependencies among rows of B' have exactly 2k — 2 non-zero entries.

Our Characterization

Theorem 3: Let H ~ G(n, n,d/n) where d = w(1), and let B = Bi-Adj(G).

With probability 1 — o(1), at least one of the following occurs:
1) All k-minimal dependencies among rows of B have exactly 2k — 2 non-zero entries.
2) All k-minimal dependencies among rows of B' have exactly 2k — 2 non-zero entries.

In particular, all such dependencies have the following ‘tree’ structure:

Our Characterization

Theorem 3: Let H ~ G(n, n,d/n) where d = w(1), and let B = Bi-Adj(G).

With probability 1 — o(1), at least one of the following occurs:
1) All k-minimal dependencies among rows of B have exactly 2k — 2 non-zero entries.
2) All k-minimal dependencies among rows of B' have exactly 2k — 2 non-zero entries.

In particular, all such dependencies have the following ‘tree’ structure:
Edges

1
1

This
| graph does NOT |
correspond to H

1 1 >
:

1 1

@
1

Vertices

Proof of Rank from Characterization

Proof of Rank from Characterization

Proof of Rank from Characterization

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of Gk , then there must be a kernel vector y of G whose
support contains the support of x.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of Gk , then there must be a kernel vector y of G whose

support contains the support of x.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of Gk , then there must be a kernel vector y of G whose
support contains the support of x.

Claim 3: If y is a kernel vector of G, then for any v € supp(Vy), vertex v is involved in some

K-minimal dependency.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of Gk , then there must be a kernel vector y of G whose
support contains the support of x.

Claim 3: If y is a kernel vector of G, then for any v € supp(Vy), vertex v is involved in some
K-minimal dependency.

Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of Gk , then there must be a kernel vector y of G whose
support contains the support of x.

Claim 3: If y is a kernel vector of G, then for any v € supp(Vy), vertex v is involved in some
K-minimal dependency.

Claim 4: If vertex v is involved in some k-minimal dependency, then that vertex is peeled by

the KS leaf-removal process or becomes isolated after this process.

Proof of Claim 4 from Characterization

Proof of Claim 4 from Characterization

Proof of Claim 4 from Characterization

graph does NOT
correspond to H

Vertices

Proof of Claim 4 from Characterization

graph does NOT
correspond to H

Vertices

Proof of Claim 4 from Characterization

graph does NOT
correspond to H

Vertices

Proof of Claim 4 from Characterization

graph does NOT
correspond to H

Vertices

x%-

Proof of Claim 4 from Characterization

graph does NOT
correspond to H

Vertices

Wl

Proof of Claim 4 from Characterization

graph does NOT
correspond to H

Vertices

W

Proof of Claim 4 from Characterization

graph does NOT
correspond to H

Vertices

W

Proof Outline of Theorem 3 (Characterization)

Proof Outline of Theorem 3 (Characterization)

Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

e Union bound over all sets of k rows.

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

e Union bound over all sets of k rows.

 Show that some column in the set of rows has a single 1. A

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

e Union bound over all sets of k rows.

 Show that some column in the set of rows has a single 1. A

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

e Union bound over all sets of k rows.

 Show that some column in the set of rows has a single 1. A
2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

 Main Technique: Littlewood-Offord anti-concentration bounds.

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.
Almost works for
d= Q1)

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

e Union bound over all sets of k rows.

 Show that some column in the set of rows has a single 1. A

 Main Technique: Littlewood-Offord anti-concentration bounds.

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.
Almost works for
d= Q1)

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

e Union bound over all sets of k rows.

 Show that some column in the set of rows has a single 1. A

 Main Technique: Littlewood-Offord anti-concentration bounds.
Requires d = w(1)

Small Case: k < n/poly(d) rows

Small Case: k < n/poly(d) rows (Warmup)

Small Case: k < n/poly(d) rows (Warmup)

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column

Observation: B < |R/2] = Number of non-zero columns = R — B > R/2

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column
Observation: B < |R/2] = Number of non-zero columns = R — B > R/2

= At least 1 column with exactly 1 non-zero

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column
Observation: B < |R/2] = Number of non-zero columns = R — B > R/2

= At least 1 column with exactly 1 non-zero

= No minimal dependency in these k rows

Small Case: k < n/poly(d) rows (Warmup)

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column
Observation: B < |R/2] = Number of non-zero columns = R — B > R/2

k
k
= At least 1 column with exactly 1 non-zero Pr[B > [R/2]] S e <—>
n

= No minimal dependency in these k rows

Small Case: k < n/poly(d) rows: Symmetric

Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column
Observation: B < |R/2] = Number of non-zero columns = R — B > R/2

k
k
= At least 1 column with exactly 1 non-zero Pr[B > [R/2]] S e <—>
n

= No minimal dependency in these k rows

Small Case: k < n/poly(d) rows: Symmetric

Symmetric Part
Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows

B = number of non-zero entries that are not first in their column
Observation: B < |R/2] = Number of non-zero columns = R — B > R/2

k
k
= At least 1 column with exactly 1 non-zero Pr[B > [R/2]] S e <—>
n

= No minimal dependency in these k rows

Small Case: k < n/poly(d) rows: Symmetric

Symmetric Part
Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows
B = number of non-zero entries that are not first in their column or in upper diagonal of symmetric part
Observation: B < |R/2] = Number of non-zero columns = R — B > R/2
P\
= At least 1 column with exactly 1 non-zero Pr[B > [R/2]] S e ¢ <—>

n

= No minimal dependency in these k rows

Large Case: Anticoncentration Hammer

Large Case: Anticoncentration Hammer

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) for i € [n]. Let v € R" have support of size at least m.

Then Pr[X'v = 0] < O (1/ pm)

Large Case: Anticoncentration Hammer

Sparse Littlewood Offord Theorem [eg. Costello, Vu '06]:
Let X. ~ Bernoulli(p) for i € [n]. Let v € R" have support of size at least m.

Then Pr[X'v =0] < O (1/ pm)

Quadratic Littlewood Offord Theorem [Costello, Vu ’06]:
Let X; ~ Bernoulli(p) for i € [n]. Let M € R™" contain at least m columns with at least m non-zeros.

Then Pr[XTMX = 0] < O (1/ 4 pm)

Large Case 1: n/d <k <n/C

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X'v =0] < O (1/ pm)

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X7v = 0] < O (1/ pm)

—> Add columns one at a time and “knock off” remaining row dependencies.

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X7v = 0] < O (1/ pm)

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Q((n/d)

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X7v = 0] < O (1/ pm)

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Q((n/d)

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X7v = 0] < O (1/ pm)

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Q((n/d)

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X7v = 0] < O (1/ pm)

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Q((n/d)

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X7v = 0] < O (1/ pm)

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Q((n/d)

Large Case 1: n/d <k <n/C

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let X. ~ Bernoulli(p) fori € [n]. Let v € R" have support of size at least m.

Then Pr[X7v = 0] < O (1/ pm)

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Q((n/d)

Large Case: kL = O(n)

Large Case: kL = O(n)

Large Case: kL = O(n)

Fact:

Ax=0= A, € Span({A;}..,) Vi € supp(x)

Large Case: kL = O(n)

Fact:

Ax=0= A, € Span({A;}..,) Vi € supp(x)

X; == 1(A; € Span({A;}..)

Large Case: kL = O(n)

Fact:

Ax=0= A, € Span({A;}..,) Vi € supp(x)

X; == 1(A; € Span({A;}..)

A Markov’s Inequality:
Pr[3x : supp(x) > t,Ax = 0] < Pr| ZXZ- > 1]

Large Case: kL = O(n)

Fact:

Ax=0= A, € Span({A;}..,) Vi € supp(x)
X; == 1(A; € Span({A;}..)

A Markov’s Inequality:
Pr[3x : supp(x) > t,Ax = 0] < Pr| ZXZ- > 1]

n
< " Pr[A, € Span({A;};.,)]

Large Case: kL = O(n)

Large Case: k = ®(n)

Goal: Bound
Pr[A, € Span({A;},.,)]

Large Case: kL = O(n)

Markov’s Inequality:

Pr[dx : supp(x) > 1,Ax = 0] < %Pr[An € Span({A;},.,)]

Goal: Bound
Pr[A, € Span({A;},.,)]

Technique: Construct withess vectors Wi

A; & Span({A;}.;) < Iw: w'A=e'

l

Can find vector orthogonal
to all columns besides A,

Large Case: kL = O(n)

Markov’s Inequality:

Pr[dx : supp(x) > 1,Ax = 0] < %Pr[An € Span({A;},.,)]

A

Goal: Bound
Pr[A, € Span({4;},.,)]

Technique: Construct withess vectors Wi

A ¢Span({Aj}i) <« Iw:w'A=¢/

l

Can find vector orthogonal
to all columns besides A,

Large Case: kL = O(n)

Markov’s Inequality:

Pr[dx : supp(x) > 1,Ax = 0] < %Pr[An € Span({A;},.,)]

A M)

Goal: Bound
Pr[A, € Span({4;},.,)]

Technique: Construct withess vectors Wi

A ¢Span({Aj}i) <« Iw:w'A=¢/

l

Can find vector orthogonal

. A '
Case 1: A" has kernel vector with large support to all columns besides A,

Large Case: kL = O(n)

Markov’s Inequality:

Pr[dx : supp(x) > 1,Ax = 0] < %Pr[An € Span({A;},.,)]

A M)

Goal: Bound
Pr[A, € Span({4;},.,)]

Technique: Construct withess vectors Wi

A ¢Span({Aj}i) <« Iw:w'A=¢/

l

Can find vector orthogonal

. A '
Case 1: A" has kernel vector with large support to all columns besides A,

Case 2: AYY has no kernel vector with large support

Case 1: A" has kernel vector v with large support

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)]

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)] A, & Span({A;}.,) < Iw :wlA=¢

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)] A, & Span({A;}.,) < Iw :wlA=¢

A M)

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)] A, & Span({A;}.,) < Iw :wlA=¢

A M)

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)] A, & Span({A;}.,) < Iw :wlA=¢

A M)

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)] A, & Span({A;}.,) < Iw :wlA=¢

A M)

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)] A, & Span({A;}.,) < Iw :wlA=¢

A M)

<
|

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({A;};.,)] A, & Span({A;}.,) < Iw :wlA=¢

(n)
A | =

| bnD

Case 1: A" has kernel vector v with large support

Goal: Bound
Pr[A, € Span({4;};.,)] A, & Span({A;}.,) < Iw:wlA =¢!

A M)

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

o e %

Conclusion

o« ot e %

Conclusion

o o %

Conclusion

ak

Main Results

- Whp, corank given by /i

- Characterization of minimal dependencies

.
|

11
.
|

.
|

->
A

S

Conclusion

ak

Tree Dependencies get Peeled!

1
1

1 1
:

Main Results

- Whp, corank given by /i

- Characterization of minimal dependencies

.
|

11
.
|

.
|

->
A

S

Conclusion

IR

Main Results

]
_> 111
1
1 1
1

Tree Dependencies get Peeled! Key Proof ldeas for Characterization

1
1

.
.

.

.

1
1

==

e

- Union bound over small dependencies

- Anticoncentration for large dependencies

- Whp, corank given by /i

- Characterization of minimal dependencies

S

Conclusion

IR

Main Results

- Whp, corank given by /i

- Characterization of minimal dependencies

_>

1
1

.
.

.

.

. o

|

Tree Dependencies get Peeled! Key Proof ldeas for Characterization

1
1

.
.

.

.

1
1

==

e

- Union bound over small dependencies

- Anticoncentration for large dependencies

Limitations/Directions

Constant Average Degree?

Thanks!

Questions?

