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Use G interchangably with
Adj(G), H with Bi-Adj(H)

What Graphs are Invertible?
Above connectivity threshold (In(n) + w(1) < pn < n/2), G ~ G(n,p) and H ~ G(n, n, p)

are invertible with high probabillity.
[Rudelson, Basak ’18]

Below this threshold pn < (ln(n) — a)(l)), G ~ (o(n,p) and H ~ G(n, n, p) are not invertible

with high probability.
[Rudelson, Basak ’18]

For d > 3, random d-regular graphs are invertible with high probability.
[Huang ’18]
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Can we understand the rank of G by removing these
structures?
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Karp-Sipser Core

Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

A

G’ Use
G interchangably with

Fact: corank(G) = corank(G’) = corank(Ggy) + | Ixs| Adj(G)

Gv=0& GV =0
v v=(—w'v,0,V)
G
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Prior Results

Bourdenave Lelarge Salez ‘11: For G ~ (3(n, p) with p = ©(1/n), almost surely,
lim corank(Adj(Ggg))/n =0

n— Qoo

Coja-Oghlan, Ergiir, Gao, Hetterich, Rolvien ’20: For H ~ G(n, n, p), with p = ®(1/n), in
probability,
lim corank(Bi-Adj(Hgs))/n = 0

n—~od

Let 0 < g < 1 be the smallest solution to g = exp(—cexp(—cq)).

Then in almost surely, |lx(G)|/n = g+ e 1+ cqge 1 — 1
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Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let H = ((L,R), E) ~ G(n,n,d/n) where d = w(1). Let Hg be the Karp-
Sipser core of H and let /¢ be the set of isolated vertices removed to form the KS core.

With probability 1 — o(1):
1. Bi-Adj(Hyy) or Bi-Adj(Hy) ' has full column rank.
2. Equivalently, corank(Bi-Adj(H)) = max(|IxcNR|, |[IxcN L]|).

If these numbers different, then
Bi-Adj(Hy ) rectangular
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Main Tool: Characterization of Linear Dependencies

A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

@ 2-1-1-1 11 1 =0

Dependency
coefficients all non-zero

No column has
a single non-zero

Fact: Any k-minimal dependency must have > 2k — 2 non-zero entries
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Our Characterization

Theorem 3: Let H ~ G(n, n,d/n) where d = w(1), and let B = Bi-Adj(G).

With probability 1 — o(1), at least one of the following occurs:
1) All k-minimal dependencies among rows of B have exactly 2k — 2 non-zero entries.
2) All k-minimal dependencies among rows of B' have exactly 2k — 2 non-zero entries.

In particular, all such dependencies have the following ‘tree’ structure:
Edges

1
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Proof of Rank from Characterization

Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If x is a kernel vector of Gk , then there must be a kernel vector y of G whose
support contains the support of x.

Claim 3: If y is a kernel vector of G, then for any v € supp(Vy), vertex v is involved in some
K-minimal dependency.

Claim 4: If vertex v is involved in some k-minimal dependency, then that vertex is peeled by

the KS leaf-removal process or becomes isolated after this process.
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Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let G ~ G(n,d/n) whered = w(1), and let A = Adj(G).

With probability 1 — o(1), all k-minimal dependencies among rows of A have 2k — 2
non-zero entries.

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.
Almost works for
d= Q1)

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

e Union bound over all sets of k rows.

 Show that some column in the set of rows has a single 1. A

 Main Technique: Littlewood-Offord anti-concentration bounds.
Requires d = w(1)
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Small Case: k < n/poly(d) rows: Symmetric

Symmetric Part
Tool: Show that there is a column with exactly one non-zero entry

R = number of non-zero entries among the k rows
B = number of non-zero entries that are not first in their column or in upper diagonal of symmetric part
Observation: B < |R/2] = Number of non-zero columns = R — B > R/2
P\
= At least 1 column with exactly 1 non-zero Pr[B > [R/2]] S e ¢ <—>

n

= No minimal dependency in these k rows
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Quadratic Littlewood Offord Theorem [Costello, Vu ’06]:
Let X; ~ Bernoulli(p) for i € [n]. Let M € R™" contain at least m columns with at least m non-zeros.

Then Pr[XTMX = 0] < O (1/ 4 pm)
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