
Joint work with Patrick DeMichele, Alex Moreira

Rank of Erdos-Renyi Graphs
Margalit Glasgow

Discrete Random Matrices

Discrete Random Matrices

Aij ∼ Bernoulli(p)

i.i.d

n

G ∼ 𝔾(n, p) Adjacency Matrix

Discrete Random Matrices

Aij ∼ Bernoulli(p)

i.i.d

n

G ∼ 𝔾(n, p) Adjacency Matrix

Bij ∼ Bernoulli(p)

i.i.d

n

H ∼ 𝔾(n, n, p)
Bi-Adjacency Matrix

What Graphs are Invertible?

What Graphs are Invertible?
Above connectivity threshold , and
are invertible with high probability.

[Rudelson, Basak ’18]

(ln(n) + ω(1) ≤ pn ≤ n/2) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

What Graphs are Invertible?
Above connectivity threshold , and
are invertible with high probability.

[Rudelson, Basak ’18]

(ln(n) + ω(1) ≤ pn ≤ n/2) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

Use G interchangably with
Adj(G), H with Bi-Adj(H)

What Graphs are Invertible?
Above connectivity threshold , and
are invertible with high probability.

[Rudelson, Basak ’18]

(ln(n) + ω(1) ≤ pn ≤ n/2) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

Below this threshold , and are not invertible
with high probability.

[Rudelson, Basak ’18]

pn ≤ (ln(n) − ω(1)) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

Use G interchangably with
Adj(G), H with Bi-Adj(H)

What Graphs are Invertible?
Above connectivity threshold , and
are invertible with high probability.

[Rudelson, Basak ’18]

(ln(n) + ω(1) ≤ pn ≤ n/2) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

For , random d-regular graphs are invertible with high probability.

[Huang ’18]

d ≥ 3

Below this threshold , and are not invertible
with high probability.

[Rudelson, Basak ’18]

pn ≤ (ln(n) − ω(1)) G ∼ 𝔾(n, p) H ∼ 𝔾(n, n, p)

Use G interchangably with
Adj(G), H with Bi-Adj(H)

Sparse ER Graphs Have Linear Dependencies

Sparse ER Graphs Have Linear Dependencies

Isolated Vertex

Sparse ER Graphs Have Linear Dependencies

Isolated Vertex

“Cherry”

1

1

Key Phenomenon:
Linear Dependencies come from small structures
[Costello Vu, Tikhimirov, Jain et al, etc.]

Key Phenomenon:
Linear Dependencies come from small structures
[Costello Vu, Tikhimirov, Jain et al, etc.]

Key Phenomenon:
Linear Dependencies come from small structures
[Costello Vu, Tikhimirov, Jain et al, etc.]

Can we understand the rank of G by removing these
structures?

Karp-Sipser Core

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

GKS IKS

KS Core

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Fact: corank(G) = corank(G′￼) = corank(GKS) + | IKS |

GKS IKS

KS Core

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Fact: corank(G) = corank(G′￼) = corank(GKS) + | IKS |

GKS IKS

KS Core
Use

G interchangably with
Adj(G)

Karp-Sipser Core
Definition: The Karp-Sipser core of a graph G is the graph that remains after peeling vertices of degree
1 and their unique neighbor, and then removing all isolated vertices

G G′￼

Fact: corank(G) = corank(G′￼) = corank(GKS) + | IKS |

GKS IKS

KS Core
Use

G interchangably with
Adj(G)

1

Gv = 0 ⇔ G′￼v′￼ = 0
1 w⊤

w

v = (−w⊤v′￼,0,v′￼)
G

G′￼

v

Prior Results

Let 0 < q < 1 be the smallest solution to .

Then in almost surely,

q = exp(−c exp(−cq))

| IKS(G) | /n → q + e−cq + cqe−cq − 1

Prior Results

Bourdenave Lelarge Salez ‘11: For with , almost surely, G ∼ 𝔾(n, p) p = Θ(1/n)
lim
n→∞

corank(Adj(GKS))/n = 0

Let 0 < q < 1 be the smallest solution to .

Then in almost surely,

q = exp(−c exp(−cq))

| IKS(G) | /n → q + e−cq + cqe−cq − 1

Prior Results

Bourdenave Lelarge Salez ‘11: For with , almost surely, G ∼ 𝔾(n, p) p = Θ(1/n)
lim
n→∞

corank(Adj(GKS))/n = 0

Coja-Oghlan, Ergür, Gao, Hetterich, Rolvien ’20: For , with , in
probability,

H ∼ 𝔾(n, n, p) p = Θ(1/n)

lim
n→∞

corank(Bi-Adj(HKS))/n = 0

Let 0 < q < 1 be the smallest solution to .

Then in almost surely,

q = exp(−c exp(−cq))

| IKS(G) | /n → q + e−cq + cqe−cq − 1

Main Result: Symmetric Bernoulli Matrices

Main Result: Symmetric Bernoulli Matrices

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let where . Let be the Karp-Sipser core of
and let be the set of isolated vertices removed to form the KS core.

G ∼ 𝔾(n, d/n) d = ω(1) GKS G
IKS

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let where . Let be the Karp-Sipser core of
and let be the set of isolated vertices removed to form the KS core.

G ∼ 𝔾(n, d/n) d = ω(1) GKS G
IKS

GKS IKS

G

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let where . Let be the Karp-Sipser core of
and let be the set of isolated vertices removed to form the KS core.

G ∼ 𝔾(n, d/n) d = ω(1) GKS G
IKS

With probability :1 − o(1)
1. is invertible. Adj(GKS)

GKS IKS

G

Main Result: Symmetric Bernoulli Matrices

Theorem 1: Let where . Let be the Karp-Sipser core of
and let be the set of isolated vertices removed to form the KS core.

G ∼ 𝔾(n, d/n) d = ω(1) GKS G
IKS

With probability :1 − o(1)
1. is invertible. Adj(GKS)
2. Equivalently, .corank(Adj(G)) = | IKS |

GKS IKS

G

Main Result: Asymmetric Bernoulli Matrices

Main Result: Asymmetric Bernoulli Matrices

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let where . Let be the Karp-
Sipser core of and let be the set of isolated vertices removed to form the KS core.

H = ((L, R), E) ∼ 𝔾(n, n, d/n) d = ω(1) HKS
H IKS

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let where . Let be the Karp-
Sipser core of and let be the set of isolated vertices removed to form the KS core.

H = ((L, R), E) ∼ 𝔾(n, n, d/n) d = ω(1) HKS
H IKS

HKS

IKSH

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let where . Let be the Karp-
Sipser core of and let be the set of isolated vertices removed to form the KS core.

H = ((L, R), E) ∼ 𝔾(n, n, d/n) d = ω(1) HKS
H IKS

With probability :1 − o(1)
1. or has full column rank. Bi-Adj(HKS) Bi-Adj(HKS)⊤

HKS

IKSH

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let where . Let be the Karp-
Sipser core of and let be the set of isolated vertices removed to form the KS core.

H = ((L, R), E) ∼ 𝔾(n, n, d/n) d = ω(1) HKS
H IKS

With probability :1 − o(1)
1. or has full column rank. Bi-Adj(HKS) Bi-Adj(HKS)⊤

2. Equivalently, .corank(Bi-Adj(H)) = max(| IKS ∩ R | , | IKS ∩ L |)

HKS

IKSH

Main Result: Asymmetric Bernoulli Matrices

Theorem 2: Let where . Let be the Karp-
Sipser core of and let be the set of isolated vertices removed to form the KS core.

H = ((L, R), E) ∼ 𝔾(n, n, d/n) d = ω(1) HKS
H IKS

With probability :1 − o(1)
1. or has full column rank. Bi-Adj(HKS) Bi-Adj(HKS)⊤

2. Equivalently, .corank(Bi-Adj(H)) = max(| IKS ∩ R | , | IKS ∩ L |)

HKS

IKSH

If these numbers different, then
 rectangularBi-Adj(HKS)

Main Tool: Characterization of Linear Dependencies
A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Main Tool: Characterization of Linear Dependencies
A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

2 -1 -1 -1 = 01 1 1 
1 1

1 1

 1 1

Main Tool: Characterization of Linear Dependencies
A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Rank = k - 1
2 -1 -1 -1 = 01 1 1 

1 1

1 1

 1 1

Main Tool: Characterization of Linear Dependencies
A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Dependency
coefficients all non-zero

Rank = k - 1
2 -1 -1 -1 = 01 1 1 

1 1

1 1

 1 1

Main Tool: Characterization of Linear Dependencies
A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Dependency
coefficients all non-zero

No column has
a single non-zero

Rank = k - 1
2 -1 -1 -1 = 01 1 1 

1 1

1 1

 1 1

Main Tool: Characterization of Linear Dependencies
A k-minimal dependency is a set of k linearly dependent rows where all
strict subsets of the k rows are linearly independent.

Dependency
coefficients all non-zero

No column has
a single non-zero

Rank = k - 1
2 -1 -1 -1 = 01 1 1 

1 1

1 1

 1 1

Fact: Any k-minimal dependency must have non-zero entries
≥ 2k − 2

Our Characterization

Our Characterization
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

Our Characterization
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Our Characterization
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

In particular, they have the following ‘tree’ structure:

Our Characterization
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

In particular, they have the following ‘tree’ structure:

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to G

! !

A

Our Characterization

Our Characterization
Theorem 3: Let where , and let .H ∼ 𝔾(n, n, d/n) d = ω(1) B = Bi-Adj(G)

Our Characterization
Theorem 3: Let where , and let .H ∼ 𝔾(n, n, d/n) d = ω(1) B = Bi-Adj(G)

With probability , at least one of the following occurs:1 − o(1)
1) All k-minimal dependencies among rows of have exactly non-zero entries. B 2k − 2

Our Characterization
Theorem 3: Let where , and let .H ∼ 𝔾(n, n, d/n) d = ω(1) B = Bi-Adj(G)

With probability , at least one of the following occurs:1 − o(1)
1) All k-minimal dependencies among rows of have exactly non-zero entries. B 2k − 2
2) All k-minimal dependencies among rows of have exactly non-zero entries.B⊤ 2k − 2

Our Characterization
Theorem 3: Let where , and let .H ∼ 𝔾(n, n, d/n) d = ω(1) B = Bi-Adj(G)

With probability , at least one of the following occurs:1 − o(1)
1) All k-minimal dependencies among rows of have exactly non-zero entries. B 2k − 2
2) All k-minimal dependencies among rows of have exactly non-zero entries.B⊤ 2k − 2

Our Characterization
Theorem 3: Let where , and let .H ∼ 𝔾(n, n, d/n) d = ω(1) B = Bi-Adj(G)

With probability , at least one of the following occurs:1 − o(1)
1) All k-minimal dependencies among rows of have exactly non-zero entries. B 2k − 2
2) All k-minimal dependencies among rows of have exactly non-zero entries.B⊤ 2k − 2

In particular, all such dependencies have the following ‘tree’ structure:

Our Characterization
Theorem 3: Let where , and let .H ∼ 𝔾(n, n, d/n) d = ω(1) B = Bi-Adj(G)

With probability , at least one of the following occurs:1 − o(1)
1) All k-minimal dependencies among rows of have exactly non-zero entries. B 2k − 2
2) All k-minimal dependencies among rows of have exactly non-zero entries.B⊤ 2k − 2

In particular, all such dependencies have the following ‘tree’ structure:

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

Proof of Rank from Characterization

Proof of Rank from Characterization
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Proof of Rank from Characterization
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Proof of Rank from Characterization
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If is a kernel vector of , then there must be a kernel vector of whose
support contains the support of .

x GKS y G
x

Proof of Rank from Characterization
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If is a kernel vector of , then there must be a kernel vector of whose
support contains the support of .

x GKS y G
x

Proof of Rank from Characterization
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If is a kernel vector of , then there must be a kernel vector of whose
support contains the support of .

x GKS y G
x

Claim 3: If is a kernel vector of , then for any , vertex is involved in some

k-minimal dependency.

y G v ∈ supp(y) v

Proof of Rank from Characterization
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If is a kernel vector of , then there must be a kernel vector of whose
support contains the support of .

x GKS y G
x

Claim 3: If is a kernel vector of , then for any , vertex is involved in some

k-minimal dependency.

y G v ∈ supp(y) v

Proof of Rank from Characterization
Claim 1: The corank of a matrix is invariant under the Karp-Sipser leaf removal process.

Claim 2: If is a kernel vector of , then there must be a kernel vector of whose
support contains the support of .

x GKS y G
x

Claim 3: If is a kernel vector of , then for any , vertex is involved in some

k-minimal dependency.

y G v ∈ supp(y) v

Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

Proof of Claim 4 from Characterization

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

1

2

3

4

5

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

1

2

3

4

1

2

3

4

5

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

1

2

3

4

1

2

3

4

1

2

3

4

5

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

1

2

3

4

1

2

3

4

1

2

3

4

5

1

2

3

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

1

2

3

4

1

2

3

4

1

2

3

4

5

1

2

3 3

4

5

Proof of Claim 4 from Characterization
Claim 4: If vertex is involved in some k-minimal dependency, then that vertex is peeled by
the KS leaf-removal process or becomes isolated after this process.

v

1  
1 1 1

 1

 1 1

 1

Ve
rti

ce
s

Edges
1

2 3

4
5

This
graph does NOT
correspond to H

! !

B

1

2

3

4

1

2

3

4

1

2

3

4

5

1

2

3 3

4

5

Proof Outline of Theorem 3 (Characterization)

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

• Union bound over all sets of k rows.

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

• Union bound over all sets of k rows.

• Show that some column in the set of rows has a single 1. A

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

• Union bound over all sets of k rows.

• Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

A

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

• Union bound over all sets of k rows.

• Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

• Main Technique: Littlewood-Offord anti-concentration bounds.

A

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

• Union bound over all sets of k rows.

• Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

• Main Technique: Littlewood-Offord anti-concentration bounds.

Almost works for
d = Ω(1)

A

Proof Outline of Theorem 3 (Characterization)
Theorem 3: Let where , and let .G ∼ 𝔾(n, d/n) d = ω(1) A = Adj(G)

With probability , all k-minimal dependencies among rows of have
non-zero entries.

1 − o(1) A 2k − 2

Proof Outline:

1. Small Domain: Rule out minimal dependencies with k < n/d rows and at least 2k - 1 non-zero entries.

• Union bound over all sets of k rows.

• Show that some column in the set of rows has a single 1.

2. Large Domain: Rule out large linear dependencies (kernel vectors with large support)

• Main Technique: Littlewood-Offord anti-concentration bounds.
Requires d = ω(1)

Almost works for
d = Ω(1)

A

Small Case: k < n/poly(d) rows

Small Case: k < n/poly(d) rows (Warmup)

Small Case: k < n/poly(d) rows

k
1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k
1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k
1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries among the k rowsR

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k
1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k
1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k

Observation: Number of non-zero columnsB < ⌈R/2⌉ ⇒ = R − B > R/2

1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k

Observation: Number of non-zero columnsB < ⌈R/2⌉ ⇒ = R − B > R/2

 At least 1 column with exactly 1 non-zero⇒

1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k

Observation: Number of non-zero columnsB < ⌈R/2⌉ ⇒ = R − B > R/2

 At least 1 column with exactly 1 non-zero⇒

 No minimal dependency in these k rows⇒

1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

(Warmup)

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k

Observation: Number of non-zero columnsB < ⌈R/2⌉ ⇒ = R − B > R/2

 At least 1 column with exactly 1 non-zero⇒

 No minimal dependency in these k rows⇒

1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

(Warmup)

Pr[B ≥ ⌈R/2⌉] ⪅ e−d (k
n)

k

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k

Observation: Number of non-zero columnsB < ⌈R/2⌉ ⇒ = R − B > R/2

 At least 1 column with exactly 1 non-zero⇒

 No minimal dependency in these k rows⇒

1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

 : Symmetric

Pr[B ≥ ⌈R/2⌉] ⪅ e−d (k
n)

k

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k

Observation: Number of non-zero columnsB < ⌈R/2⌉ ⇒ = R − B > R/2

 At least 1 column with exactly 1 non-zero⇒

 No minimal dependency in these k rows⇒

1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

Symmetric Part

 1 1 
 1 1

 1 1

 : Symmetric

Pr[B ≥ ⌈R/2⌉] ⪅ e−d (k
n)

k

Tool: Show that there is a column with exactly one non-zero entry

Small Case: k < n/poly(d) rows

k

Observation: Number of non-zero columnsB < ⌈R/2⌉ ⇒ = R − B > R/2

 At least 1 column with exactly 1 non-zero⇒

 No minimal dependency in these k rows⇒

1 1 
 1

 1

1 1

 1  
 1

 1 1

 1

 = number of non-zero entries that are not first in their columnB

 = number of non-zero entries among the k rowsR

Symmetric Part

 1 1 
 1 1

 1 1

or in upper diagonal of symmetric part

 : Symmetric

Pr[B ≥ ⌈R/2⌉] ⪅ e−d (k
n)

k

Large Case: Anticoncentration Hammer

Large Case: Anticoncentration Hammer

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case: Anticoncentration Hammer

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Quadratic Littlewood Offord Theorem [Costello, Vu ’06]:
Let for . Let contain at least m columns with at least m non-zeros.

Then

Xi ∼ Bernoulli(p) i ∈ [n] M ∈ ℝn×n

Pr[XTMX = 0] ≤ O (1/ 4 pm)

Large Case 1: n/d < k < n/C

Large Case 1: n/d < k < n/C
Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case 1: n/d < k < n/C

—> Add columns one at a time and “knock off” remaining row dependencies.

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case 1: n/d < k < n/C

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Ω(n/d)

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case 1: n/d < k < n/C

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Ω(n/d)

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case 1: n/d < k < n/C

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Ω(n/d)

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case 1: n/d < k < n/C

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Ω(n/d)

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case 1: n/d < k < n/C

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Ω(n/d)

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case 1: n/d < k < n/C

—> Add columns one at a time and “knock off” remaining row dependencies.

k = Ω(n/d)

Sparse Littlewood Offord Theorem [eg. Costello, Vu ’06]:
Let for . Let have support of size at least m.

Then

Xi ∼ Bernoulli(p) i ∈ [n] v ∈ ℝn

Pr[XTv = 0] ≤ O (1/ pm)

Large Case: k = Θ(n)

Large Case: k = Θ(n)

A

Large Case: k = Θ(n)

A

Ax = 0 ⇒ Ai ∈ Span({Aj}j≠i) ∀i ∈ supp(x)
Fact:

Large Case: k = Θ(n)

A

Ax = 0 ⇒ Ai ∈ Span({Aj}j≠i) ∀i ∈ supp(x)
Fact:

Xi := 1(Ai ∈ Span({Aj}j≠i)

Large Case: k = Θ(n)

Pr[∃x : supp(x) ≥ t, Ax = 0] ≤ Pr[∑ Xi ≥ t]
Markov’s Inequality:A

Ax = 0 ⇒ Ai ∈ Span({Aj}j≠i) ∀i ∈ supp(x)
Fact:

Xi := 1(Ai ∈ Span({Aj}j≠i)

Large Case: k = Θ(n)

Pr[∃x : supp(x) ≥ t, Ax = 0] ≤ Pr[∑ Xi ≥ t]
Markov’s Inequality:A

Ax = 0 ⇒ Ai ∈ Span({Aj}j≠i) ∀i ∈ supp(x)
Fact:

Xi := 1(Ai ∈ Span({Aj}j≠i)

≤
n
t

Pr[An ∈ Span({Ai}i≠n)]

Large Case: k = Θ(n)

Large Case: k = Θ(n)

Pr[∃x : supp(x) ≥ t, Ax = 0] ≤
n
t

Pr[An ∈ Span({Ai}i≠n)]
Markov’s Inequality:

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

Large Case: k = Θ(n)

Pr[∃x : supp(x) ≥ t, Ax = 0] ≤
n
t

Pr[An ∈ Span({Ai}i≠n)]
Markov’s Inequality:

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

Ai ∉ Span({Aj}j≠i) ↔ ∃w : wT A = eT
i

Technique: Construct witness vectors :wj

Can find vector orthogonal
to all columns besides Ai

Large Case: k = Θ(n)

Pr[∃x : supp(x) ≥ t, Ax = 0] ≤
n
t

Pr[An ∈ Span({Ai}i≠n)]
Markov’s Inequality:

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n)

Ai ∉ Span({Aj}j≠i) ↔ ∃w : wT A = eT
i

Technique: Construct witness vectors :wj

Can find vector orthogonal
to all columns besides Ai

Large Case: k = Θ(n)

Pr[∃x : supp(x) ≥ t, Ax = 0] ≤
n
t

Pr[An ∈ Span({Ai}i≠n)]
Markov’s Inequality:

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

Case 1: has kernel vector with large support A(n)

A(n)

Ai ∉ Span({Aj}j≠i) ↔ ∃w : wT A = eT
i

Technique: Construct witness vectors :wj

Can find vector orthogonal
to all columns besides Ai

Large Case: k = Θ(n)

Pr[∃x : supp(x) ≥ t, Ax = 0] ≤
n
t

Pr[An ∈ Span({Ai}i≠n)]
Markov’s Inequality:

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

Case 1: has kernel vector with large support A(n)

A(n)

Case 2: has no kernel vector with large support A(n)

Ai ∉ Span({Aj}j≠i) ↔ ∃w : wT A = eT
i

Technique: Construct witness vectors :wj

Can find vector orthogonal
to all columns besides Ai

Case 1: has kernel vector v with large supportA(n)

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n)

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n)

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n)

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n)
V

0

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n) = 0V

0

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n) = 0

⟨v, An⟩

V

0

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Case 1: has kernel vector v with large supportA(n)

Pr[An ∈ Span({Ai}i<n)]
Goal: Bound

A(n) = 0

⟨v, An⟩

Sparse Littlewood-Offord:

Then Pr[AT

n v = 0] ≤ O (1/ d)V

0

An ∉ Span({Aj}j≠n) ↔ ∃w : wT A = eT
n

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion
Main Results

- Whp, corank given by IKS

- Characterization of minimal dependencies

!

A

Conclusion
Main Results

- Whp, corank given by IKS

- Characterization of minimal dependencies

!

A

Tree Dependencies get Peeled!

Conclusion

Key Proof Ideas for Characterization

A(n)

V=
0

- Union bound over small dependencies

- Anticoncentration for large dependencies

Main Results

- Whp, corank given by IKS

- Characterization of minimal dependencies

!

A

Tree Dependencies get Peeled!

Conclusion

Key Proof Ideas for Characterization

A(n)

V=
0

- Union bound over small dependencies

- Anticoncentration for large dependencies

Limitations/Directions

Constant Average Degree?

Main Results

- Whp, corank given by IKS

- Characterization of minimal dependencies

!

A

Tree Dependencies get Peeled!

Thanks!

Questions?

