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Random polytopes

Geometry of convex bodies
Let X be a random vector in Rn, X1, . . . ,XN independent copies of X .
We study

absconv(X1, . . . ,XN) = ABN
1 ⊂ Rn

where A is a matrix which columns are the vectors Xi .

1 combinatorics : asymptotic computation as N goes to∞ and n is
fixed : of the number of vertices, facets or volume.

2 geometry : asymptotic behavior as N ≥ n et n→∞ : extremal
properties of the volume of the polytope or its polar.

3 probability : geometric properties of the polytope according to the
law of the random vector which generates the polytope, properties
of the operator norm of A.
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Olivier Guédon (LAMA, Université Gustave Eiffel)Floating bodies and random polytopes. May 19, 2020 2 / 16



Random polytopes

Geometry of convex bodies
Let X be a random vector in Rn, X1, . . . ,XN independent copies of X .
We study

absconv(X1, . . . ,XN) = ABN
1 ⊂ Rn

where A is a matrix which columns are the vectors Xi .

1 combinatorics : asymptotic computation as N goes to∞ and n is
fixed : of the number of vertices, facets or volume.

2 geometry : asymptotic behavior as N ≥ n et n→∞ : extremal
properties of the volume of the polytope or its polar.

3 probability : geometric properties of the polytope according to the
law of the random vector which generates the polytope, properties
of the operator norm of A.
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Random polytopes
1 A key result in the local theory of Banach spaces (due to Gluskin

in 1981) : the Banach Mazur distance between 2 such random
polytopes is ”extremal” : X ∼ N (0, Id),with high probability, for
N ≥ 10n

d(PN ,P ′N) ≥ cn

2 Szarek (1990), Tikhomirov (2019). With N = n3,

d(PN ,Bn
1) ≥ n5/9 log−C(n)

3 Extremal properties of such random polytopes : (CFPP 2015) if X
has a bounded density (by 1) then

EVol (absconv(X1, . . . ,XN))o

is maximal when X ∼ UBn
2
.
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Random matrices : Γ = (X1, . . . ,XN)T : `n
2 → `N

2

Study of the extreme singular values of the matrix :

s1(Γ) = sup
|x |2=1

|Γx |2 = sup
|x |2=1

 N∑
j=1

〈Xj , x〉2
1/2

sN(Γ) = inf
|x |2=1

|Γx |2 = inf
|x |2=1

 N∑
j=1

〈Xj , x〉2
1/2

By duality, showing that sN ≥ α
√

N is equivalent to

α
√

NBn
2 ⊂ ABN

2 (⊂
√

NPN)

LPRT (2005), LPRTV (2006) : good hypotheses on the random vector
X . Net arguments. In all these arguments, they need a good bound on
s1 to get a lower bound on sN .
Kolesnikov, Mendelson (2014)
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Floating body and geometry of the polytopes.

Question
X a random vector in Rn, X1, . . . ,XN independent copies of X .

1 Define a ”natural set” K associated to X such that with high
probability

K ⊂ absconv(X1, . . . ,XN)

2 Give some kind of precise description of K ?

Definition
A family of floating bodies. Let X be a symmetric random vector, for
every p ≥ 1, set

Kp(X ) = {t ∈ Rn,P(〈X , t〉 ≥ 1) ≤ e−p}
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I) Floating body - Examples.

Definition
A family of floating bodies. Let X be a symmetric random vector, for
every p ≥ 1, set

Kp(X ) = {t ∈ Rn,P(〈X , t〉 ≥ 1) ≤ e−p}

Assume X is reasonnably ”nice”

For every t ∈ Rn, 〈X , t〉 has moments of all order. And define

B(Lp(X )) =
{

t ∈ Rn,
(
E|〈X , t〉|p

)1/p ≤ 1
}

Assume also that there exists D ≥ 1 such that

∀q ≥ 2,∀t ∈ Rn,
(
E|〈X , t〉|2q

)1/2q
≤ D

(
E|〈X , t〉|q

)1/q
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∀q ≥ 2,∀t ∈ Rn,
(
E|〈X , t〉|2q

)1/2q
≤ D

(
E|〈X , t〉|q

)1/q

Then by Paley-Zygmund,

Kp(X ) ⊂ 2B(Lc1p(X ))

where c1 depends only on D.
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Floating body - X is reasonnably ”nice” .

For every t ∈ Rn, 〈X , t〉 has moments of all order. And define

B(Lp(X )) =
{

t ∈ Rn,
(
E|〈X , t〉|p

)1/p ≤ 1
}

Assume also that there exists D ≥ 1 such that

∀q ≥ 2,∀t ∈ Rn,
(
E|〈X , t〉|2q

)1/2q
≤ D

(
E|〈X , t〉|q

)1/q

Conclusion

∃C1(D) ≥ 1, ∀p ≥ 2,
1
e

B(Lp(X )) ⊂ Kp(X ) ⊂ C1B(Lp(X ))

Remark
The polar B(Lp(X ))o is called the Zp-centroid body of X

Zp(X ) = B(Lp(X ))o

and is well studied in the geometry of log-concave measures.
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Floating body - Various examples.

Set G ∼ N (0, Id) then

Kp(G) ≈ 1
√

p
Bn

2 and Kp(G)o ≈
√

pBn
2

Set X uniformly distributed on a symmetric convex body K then

Kp(X )o ≈ Zp(X )

where hZp(X)(θ) = (E〈X , θ〉p)1/p.

Set E = (ε1, . . . , εn) where εi are iid Rademacher r.v. then

Kp(E) ≈ conv
(

Bn
1 ∪

1
√

p
Bn

2

)
and Kp(E)o ≈ Bn

∞ ∩
√

pBn
2
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Set X uniformly distributed on a symmetric convex body K then

Kp(X )o ≈ Zp(X )

where hZp(X)(θ) = (E〈X , θ〉p)1/p.

Theorem of Montgomery-Smith (1990)

P

(
n∑

i=1

xiεi > K1,2(x , t)

)
≈ e−ct2

where

K1,2(x ,
√

p) =

p∑
i=1

x∗i +
1
√

p

 n∑
i=p+1

x∗2i

1/2
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The result (GKKMR 2019).

Few hypotheses on X :

1 ‖ · ‖ a norm
2 Small ball property : there exist γ > 0 and δ > 0 such that

∀t ∈ Rn,P(|〈X , t〉| ≥ γ‖t‖) ≥ δ

3 Moment assumption : for some r > 0 and L > 0, we have

∀t ∈ Rn,
(
E|〈X , t〉|r

)1/r ≤ L‖t‖

Theorem

Let 0 < α < 1, p = α log
(

eN
n

)
and N ≥ c0(α, r , δ,L/γ) n. Therefore,

with probability ≥ 1− 2 exp(−C1N1−αnα),

1
2

K o
p ⊂ absconv(X1, . . . ,XN)
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Various older results
With probability ≥ 1− 2 exp(−C1N1−αnα)

X = G ∼ N (0, Id) then

c2

√
α log

(
eN
n

)
Bn

2 ⊂ absconv(X1, . . . ,XN)

(LPRT 2005) E = (ε1, . . . , εn) where εi are iid Rademacher r.v.
then

c2

(
Bn
∞ ∩

√
α log

(
eN
n

)
Bn

2

)
⊂ absconv(X1, . . . ,XN)

(DGT 2009) X uniformly distributed on a symmetric convex body
K then

c2Zp(X ) ⊂ absconv(X1, . . . ,XN)
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Olivier Guédon (LAMA, Université Gustave Eiffel)Floating bodies and random polytopes. May 19, 2020 10 / 16



Various older results
With probability ≥ 1− 2 exp(−C1N1−αnα)

X = G ∼ N (0, Id) then

c2

√
α log

(
eN
n

)
Bn

2 ⊂ absconv(X1, . . . ,XN)

(LPRT 2005) E = (ε1, . . . , εn) where εi are iid Rademacher r.v.
then

c2

(
Bn
∞ ∩

√
α log

(
eN
n

)
Bn

2

)
⊂ absconv(X1, . . . ,XN)

(DGT 2009) X uniformly distributed on a symmetric convex body
K then

c2Zp(X ) ⊂ absconv(X1, . . . ,XN)
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The case of q-stable random vector.
X = (ξ1, . . . , ξn) with ξi iid q-stable : E exp(itX ) = exp(−|t |q/2)
Observe that 〈X , t〉 =

∑
tiξi ∼ |t |q ξ and remember that for every large

enough u
P(ξ ≥ u) ≈ 1/uq

1 ‖ · ‖ = | · |q a norm
2 Small ball property : there exist γ > 0 and δ > 0 such that

∀t ∈ Rn,P(|〈X , t〉| ≥ γ|t |q) ≥ δ
3 Moment assumption : for r = q/2 > 0 there is L > 0 such that

∀t ∈ Rn,
(
E|〈X , t〉|r

)1/r ≤ L|t |q

Theorem
For all q ≥ 1, taking p = α log(eN/n), we have

c2(q)

(
N
n

)α/q

Bn
q′ ⊂ Kp(X )o ⊂ 2absconv(X1, . . . ,XN)

Olivier Guédon (LAMA, Université Gustave Eiffel)Floating bodies and random polytopes. May 19, 2020 11 / 16



The case of q-stable random vector.
X = (ξ1, . . . , ξn) with ξi iid q-stable : E exp(itX ) = exp(−|t |q/2)
Observe that 〈X , t〉 =

∑
tiξi ∼ |t |q ξ and remember that for every large

enough u
P(ξ ≥ u) ≈ 1/uq

1 ‖ · ‖ = | · |q a norm

2 Small ball property : there exist γ > 0 and δ > 0 such that

∀t ∈ Rn,P(|〈X , t〉| ≥ γ|t |q) ≥ δ
3 Moment assumption : for r = q/2 > 0 there is L > 0 such that
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(
E|〈X , t〉|r

)1/r ≤ L|t |q

Theorem
For all q ≥ 1, taking p = α log(eN/n), we have

c2(q)

(
N
n

)α/q

Bn
q′ ⊂ Kp(X )o ⊂ 2absconv(X1, . . . ,XN)
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II) Stochastic domination and floating bodies.

Definition
Let X and Y be two centered random vectors in Rn. We say that X
dominates Y when there exist λ1 and λ2 such that

∀t ∈ Rn, ∀u ∈ R, P(〈X , t〉 ≥ u) ≥ λ1P(〈Y , t〉 ≥ λ2u)

This gives
Kp(X ) ⊂ λ2Kp′(Y )

with p′ = p − log(1/λ1).

This property is stable by tensorization : if x and y are symmetric r.v.
such that for every u > 0, P(x > u) ≤ λ1P(y > λ2u) then
X = (x1, . . . , xn) dominates Y = (y1, . . . , yn) with constants c1λ1 and
c2λ2, where x1, . . . , xn are iid copies of x and y1, . . . , yn are iid copies
of y .
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Let X = (ξ1, . . . , ξn) with ξi independent copies of a symmetric r.v. ξ.
Assume Eξ2 = 1 and P(|ξ| ≥ γ0) ≥ δ0.

Then for every u ∈ R

P(ξ ≥ u) ≥ δ0P(ε ≥ u
γ0

)

By tensorisation, for X = (ξ1, . . . , ξn) and E = (ε1, . . . , εn), we get that
there exist λ1, λ2 such that for every t ∈ Rn

∀u ∈ R, P(〈X , t〉 ≥ u) ≥ λ1P(〈E , t〉 ≥ λ2u)

In conclusion, Kp(X ) ⊂ λ2Kp′(E) and Kp(X )o ⊃ λ−1
2 Kp′(E)o where

p′ = p − log(1/λ1).

Theorem (GLT 2018)

Let X = (ξ1, . . . , ξn) with ξi indep. copies of ξ. Suppose that Eξ2 = 1
and P(|ξ| ≥ γ) ≥ δ. Then for N ≥ c0(α, γ, δ)n, we have with proba
≥ 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . ,XN) ⊃ c2

(
Bn
∞ ∩

√
α log

(
eN
n

)
Bn

2

)
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Stochastic domination and comparaison

Theorem
Let X = (ξ1, . . . , ξn) be an unconditional random vector in Rn. Assume
that there exist γ and δ > 0 such that for any i = 1, . . . ,n

P(|ξi | ≥ γ) ≥ δ

then
Kp(X ) ⊂ c(δ)

γ
Kp(E)

Moreover if X satisfies the hypotheses of the main result then with
proba ≥ 1− 2 exp(−C1N1−αnα), we have

γ

c2(δ)
c2

(
Bn
∞ ∩

√
α log

(
eN
n

)
Bn

2

)
⊂ absconv(X1, . . . ,XN)
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Proof
Set Γ = (X1, . . . ,XN)∗ the matrix whose rows are X1, . . . ,XN . We need
to prove that

P
(

inf
t∈∂Kp(X)

|Γt |∞ ≥ 1/2
)
≥ 1− 2 exp(−c1N1−αnα)

We define the set

F = {f (·) = 1|〈·,u〉|≥1/2, u ∈ ∂Kp}

in such a way that

1
N

N∑
j=1

f (Xj) = #{j , |〈Xj ,u〉| ≥ 1/2}
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Key tool - Concentration inequality

Theorem (Talagrand 1996)
Let F be a class of functions taking values in {0,1} such that
VC(F) ≤ d and supf∈F Ef 2 = σ2. The for every x > 0,

P

sup
f∈F

∣∣∣∣∣∣ 1
N

N∑
j=1

f (Xj)− Ef

∣∣∣∣∣∣ ≥ R + x

 ≤ exp

(
−N

x2/2
σ2 + 2R + x/3

)

where R ' d
N log( c

σ2 ) + σ
√

d
N log( c

σ2 ).

In our case, we have

F = {f (·) = 1|〈·,u〉|≥1/2, u ∈ ∂Kp}

so that VC(F) ≤ 10(n + 1)
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