Floating bodies and random polytopes.

Olivier Guédon

LAMA, Université Gustave Eiffel

May 19, 2020

Olivier Guédon (LAMA, Université Gustave Ei Floating bodies and random polytopes.

A (1) > A (2) > A

Geometry of convex bodies

Let X be a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of X. We study

$$\operatorname{absconv}(X_1,\ldots,X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i .

A (10) A (10) A (10)

Geometry of convex bodies

Let X be a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of X. We study

$$\operatorname{absconv}(X_1,\ldots,X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i .

• combinatorics : asymptotic computation as *N* goes to ∞ and *n* is fixed : of the number of vertices, facets or volume.

Geometry of convex bodies

Let X be a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of X. We study

$$\operatorname{absconv}(X_1,\ldots,X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i .

- combinatorics : asymptotic computation as *N* goes to ∞ and *n* is fixed : of the number of vertices, facets or volume.
- 2 geometry : asymptotic behavior as $N \ge n$ et $n \to \infty$: extremal properties of the volume of the polytope or its polar.

< 回 > < 三 > < 三 >

Geometry of convex bodies

Let X be a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of X. We study

$$\operatorname{absconv}(X_1,\ldots,X_N) = AB_1^N \subset \mathbb{R}^n$$

where A is a matrix which columns are the vectors X_i .

- combinatorics : asymptotic computation as *N* goes to ∞ and *n* is fixed : of the number of vertices, facets or volume.
- 2 geometry : asymptotic behavior as $N \ge n$ et $n \to \infty$: extremal properties of the volume of the polytope or its polar.
- probability : geometric properties of the polytope according to the law of the random vector which generates the polytope, properties of the operator norm of *A*.

・ロン ・四 ・ ・ ヨン ・ ヨン

• A key result in the local theory of Banach spaces (due to Gluskin in 1981) : the Banach Mazur distance between 2 such random polytopes is "extremal" : $X \sim \mathcal{N}(0, \text{Id})$,with high probability, for $N \ge 10n$

 $d(P_N, P'_N) \ge cn$

• A key result in the local theory of Banach spaces (due to Gluskin in 1981) : the Banach Mazur distance between 2 such random polytopes is "extremal" : $X \sim \mathcal{N}(0, \text{Id})$, with high probability, for $N \ge 10n$

 $d(P_N, P'_N) \ge cn$

2 Szarek (1990), Tikhomirov (2019). With $N = n^3$,

 $d(P_N,B_1^n) \geq n^{5/9}\log^{-C}(n)$

• A key result in the local theory of Banach spaces (due to Gluskin in 1981) : the Banach Mazur distance between 2 such random polytopes is "extremal" : $X \sim \mathcal{N}(0, \text{Id})$, with high probability, for $N \ge 10n$

 $d(P_N, P'_N) \ge cn$

2 Szarek (1990), Tikhomirov (2019). With $N = n^3$,

 $d(P_N, B_1^n) \ge n^{5/9} \log^{-C}(n)$

Extremal properties of such random polytopes : (CFPP 2015) if X has a bounded density (by 1) then

 \mathbb{E} Vol (absconv $(X_1, \ldots, X_N))^o$

is maximal when $X \sim \mathcal{U}_{B_2^n}$.

4 D N 4 B N 4 B N 4

Random matrices : $\Gamma = (X_1, \ldots, X_N)^T : \ell_2^n \to \ell_2^N$

Study of the extreme singular values of the matrix :

$$s_{1}(\Gamma) = \sup_{|x|_{2}=1} |\Gamma x|_{2} = \sup_{|x|_{2}=1} \left(\sum_{j=1}^{N} \langle X_{j}, x \rangle^{2} \right)^{1/2}$$
$$s_{N}(\Gamma) = \inf_{|x|_{2}=1} |\Gamma x|_{2} = \inf_{|x|_{2}=1} \left(\sum_{j=1}^{N} \langle X_{j}, x \rangle^{2} \right)^{1/2}$$

By duality, showing that $s_N \ge \alpha \sqrt{N}$ is equivalent to

$$\alpha\sqrt{N}B_2^n \subset AB_2^N (\subset \sqrt{N}P_N)$$

LPRT (2005), LPRTV (2006) : good hypotheses on the random vector X. Net arguments. In all these arguments, they need a good bound on s_1 to get a lower bound on s_N . Kolesnikov, Mendelson (2014)

Question

X a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of *X*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Question

X a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of *X*.

Define a "natural set" K associated to X such that with high probability

 $K \subset \operatorname{absconv}(X_1, \ldots, X_N)$

A (10) N (10) N (10)

Question

X a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of *X*.

Define a "natural set" K associated to X such that with high probability

 $K \subset \operatorname{absconv}(X_1, \ldots, X_N)$

Q Give some kind of precise description of K?

Question

X a random vector in \mathbb{R}^n , X_1, \ldots, X_N independent copies of *X*.

Define a "natural set" K associated to X such that with high probability

 $K \subset \operatorname{absconv}(X_1, \ldots, X_N)$

Q Give some kind of precise description of K?

Definition

A family of floating bodies. Let X be a symmetric random vector, for every $p \ge 1$, set

$$\mathcal{K}_{p}(X) = \{t \in \mathbb{R}^{n}, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p}\}$$

I) Floating body - Examples.

Definition

A family of floating bodies. Let X be a symmetric random vector, for every $p \ge 1$, set

$$\mathcal{K}_{\mathcal{P}}(X) = \{t \in \mathbb{R}^n, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p}\}$$

Assume X is reasonnably "nice"

I) Floating body - Examples.

Definition

A family of floating bodies. Let X be a symmetric random vector, for every $p \ge 1$, set

$$\mathcal{K}_{p}(X) = \{t \in \mathbb{R}^{n}, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p}\}$$

Assume X is reasonnably "nice"

• For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define

$$B(L_{\rho}(X)) = \left\{ t \in \mathbb{R}^{n}, \left(\mathbb{E} |\langle X, t \rangle|^{\rho} \right)^{1/\rho} \leq 1 \right\}$$

Then by Chebychev inequality

$$\frac{1}{e} \ B(L_p(X)) \subset K_p(X)$$

I) Floating body - Examples.

Definition

A family of floating bodies. Let X be a symmetric random vector, for every $p \ge 1$, set

$$\mathcal{K}_{\mathcal{P}}(X) = \{t \in \mathbb{R}^n, \mathbb{P}(\langle X, t \rangle \geq 1) \leq e^{-p}\}$$

Assume X is reasonnably "nice"

• For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define

$$B(L_p(X)) = \left\{ t \in \mathbb{R}^n, \left(\mathbb{E} |\langle X, t \rangle|^p \right)^{1/p} \leq 1 \right\}$$

Assume also that there exists D ≥ 1 such that

$$orall q \geq 2, orall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t
angle|^{2q}
ight)^{1/2q} \leq D\left(\mathbb{E}|\langle X, t
angle|^q
ight)^{1/q}$$

Then by Paley-Zygmund,

$$K_p(X) \subset 2B(L_{c_1p}(X))$$

where c_1 depends only on D.

Floating body - X is reasonnably "nice".

• For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define $B(L_p(X)) = \left\{ t \in \mathbb{R}^n, \left(\mathbb{E} |\langle X, t \rangle|^p \right)^{1/p} \leq 1 \right\}$

Assume also that there exists D ≥ 1 such that

$$\forall q \geq 2, \forall t \in \mathbb{R}^{n}, \left(\mathbb{E}|\langle X, t \rangle|^{2q}\right)^{1/2q} \leq D\left(\mathbb{E}|\langle X, t \rangle|^{q}\right)^{1/q}$$

Conclusion

$$\exists C_1(D) \geq 1, \forall p \geq 2, \quad rac{1}{e} B(L_p(X)) \subset K_p(X) \subset C_1 B(L_p(X))$$

Floating body - X is reasonnably "nice".

• For every $t \in \mathbb{R}^n$, $\langle X, t \rangle$ has moments of all order. And define $B(L_p(X)) = \left\{ t \in \mathbb{R}^n, \left(\mathbb{E} |\langle X, t \rangle |^p \right)^{1/p} \leq 1 \right\}$

• Assume also that there exists $D \ge 1$ such that

$$\forall q \geq 2, \forall t \in \mathbb{R}^{n}, \left(\mathbb{E}|\langle X, t \rangle|^{2q}\right)^{1/2q} \leq D\left(\mathbb{E}|\langle X, t \rangle|^{q}\right)^{1/q}$$

Conclusion

$$\exists C_1(D) \geq 1, orall p \geq 2, \quad rac{1}{e} \ B(L_p(X)) \subset \mathcal{K}_p(X) \subset C_1 B(L_p(X))$$

Remark

The polar $B(L_p(X))^o$ is called the Z_p -centroid body of X

$$Z_{\rho}(X) = B(L_{\rho}(X))^{o}$$

and is well studied in the geometry of log-concave measures.

• Set $G \sim \mathcal{N}(0, \mathrm{Id})$ then

$$K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n$$
 and $K_p(G)^o \approx \sqrt{p} B_2^n$

イロト イヨト イヨト イヨト

• Set $G \sim \mathcal{N}(0, \mathrm{Id})$ then

$$K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n$$
 and $K_p(G)^o \approx \sqrt{p} B_2^n$

• Set X uniformly distributed on a symmetric convex body K then

 $K_{\rho}(X)^o \approx Z_{\rho}(X)$

where $h_{Z_p(X)}(\theta) = (\mathbb{E}\langle X, \theta \rangle^p)^{1/p}$.

• Set $G \sim \mathcal{N}(0, \mathrm{Id})$ then

$$K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n$$
 and $K_p(G)^o \approx \sqrt{p} B_2^n$

• Set X uniformly distributed on a symmetric convex body K then $K_{\rho}(X)^{\rho} \approx Z_{\rho}(X)$

where $h_{Z_p(X)}(\theta) = (\mathbb{E}\langle X, \theta \rangle^p)^{1/p}$.

Theorem of Montgomery-Smith (1990)

$$\mathbb{P}\left(\sum_{i=1}^n x_i\varepsilon_i > K_{1,2}(x,t)\right) \approx e^{-ct^2}$$

where

$$K_{1,2}(x,\sqrt{p}) = \sum_{i=1}^{p} x_i^* + \frac{1}{\sqrt{p}} \left(\sum_{i=p+1}^{n} x_i^{*2} \right)^{1/2}$$

• Set $G \sim \mathcal{N}(0, \mathrm{Id})$ then

$$K_p(G) \approx \frac{1}{\sqrt{p}} B_2^n$$
 and $K_p(G)^o \approx \sqrt{p} B_2^n$

• Set X uniformly distributed on a symmetric convex body K then

 $K_p(X)^o \approx Z_p(X)$

where $h_{Z_p(X)}(\theta) = (\mathbb{E}\langle X, \theta \rangle^p)^{1/p}$.

• Set $\mathcal{E} = (\varepsilon_1, \dots, \varepsilon_n)$ where ε_i are iid Rademacher r.v. then

$$\mathcal{K}_p(\mathcal{E}) \approx \operatorname{conv}\left(B_1^n \cup \frac{1}{\sqrt{p}}B_2^n\right) \text{ and } \mathcal{K}_p(\mathcal{E})^o \approx B_\infty^n \cap \sqrt{p}B_2^n$$

The result (GKKMR 2019).

Olivier Guédon (LAMA, Université Gustave Ei Floating bodies and random polytopes.

(a)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

💶 || · || a norm

2 Small ball property : there exist $\gamma > 0$ and $\delta > 0$ such that

 $\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \ge \gamma ||t||) \ge \delta$

• • • • • • • • • • •

🔍 🛛 · 🛛 a norm

2 Small ball property : there exist $\gamma > 0$ and $\delta > 0$ such that

$$\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \geq \gamma ||t||) \geq \delta$$

Solution Moment assumption : for some r > 0 and L > 0, we have

$$\forall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t \rangle|^r\right)^{1/r} \leq L \|t\|$$

• • • • • • • • • • • •

🔍 🛛 · 🛛 a norm

2 Small ball property : there exist $\gamma > 0$ and $\delta > 0$ such that

$$\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \geq \gamma ||t||) \geq \delta$$

3 Moment assumption : for some r > 0 and L > 0, we have

$$\forall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t \rangle|^r\right)^{1/r} \leq L \|t\|$$

Theorem

Let $0 < \alpha < 1$, $p = \alpha \log \left(\frac{eN}{n}\right)$ and $N \ge c_0(\alpha, r, \delta, L/\gamma)$ *n*. Therefore, with probability $\ge 1 - 2 \exp(-C_1 N^{1-\alpha} n^{\alpha})$,

$$\frac{1}{2}K_{p}^{o} \subset \operatorname{absconv}(X_{1},\ldots,X_{N})$$

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^{\alpha})$

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^{\alpha})$

• $X = G \sim \mathcal{N}(0, \mathrm{Id})$ then

$$c_2 \sqrt{\alpha \log\left(\frac{eN}{n}\right)} B_2^n \subset \operatorname{absconv}(X_1, \ldots, X_N)$$

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^{\alpha})$

• $X = G \sim \mathcal{N}(0, \mathrm{Id})$ then

$$c_2 \sqrt{\alpha \log\left(\frac{eN}{n}\right)} B_2^n \subset \operatorname{absconv}(X_1, \ldots, X_N)$$

• (LPRT 2005) $\mathcal{E} = (\varepsilon_1, \dots, \varepsilon_n)$ where ε_i are iid Rademacher r.v. then

$$c_2\left(B_{\infty}^n\cap\sqrt{lpha\log\left(rac{eN}{n}
ight)}B_2^n
ight)\subset \mathrm{absconv}(X_1,\ldots,X_N)$$

With probability $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^{\alpha})$

• $X = G \sim \mathcal{N}(0, \mathrm{Id})$ then

$$c_2 \sqrt{\alpha \log\left(\frac{eN}{n}\right)} B_2^n \subset \operatorname{absconv}(X_1, \ldots, X_N)$$

• (LPRT 2005) $\mathcal{E} = (\varepsilon_1, \dots, \varepsilon_n)$ where ε_i are iid Rademacher r.v. then

$$c_2\left(B_{\infty}^n\cap\sqrt{lpha\log\left(rac{eN}{n}
ight)}B_2^n
ight)\subset \mathrm{absconv}(X_1,\ldots,X_N)$$

• (DGT 2009) X uniformly distributed on a symmetric convex body K then

$$c_2 Z_p(X) \subset \operatorname{absconv}(X_1, \ldots, X_N)$$

 $X = (\xi_1, \dots, \xi_n)$ with ξ_i iid *q*-stable : $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$ Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|_q \xi$ and remember that for every large enough *u*

 $\mathbb{P}(\xi \geq u) \approx 1/u^q$

 $X = (\xi_1, \dots, \xi_n)$ with ξ_i iid *q*-stable : $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$ Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|_q \xi$ and remember that for every large enough *u*

$$\mathbb{P}(\xi \geq u) pprox \mathbf{1}/u^q$$

 $\| \cdot \| = | \cdot |_q$ a norm

 $X = (\xi_1, \dots, \xi_n)$ with ξ_i iid *q*-stable : $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$ Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|_q \xi$ and remember that for every large enough *u*

$$\mathbb{P}(\xi \geq u) pprox 1/u^q$$

 $\bigcirc \|\cdot\| = |\cdot|_q \text{ a norm}$

2 Small ball property : there exist $\gamma > 0$ and $\delta > 0$ such that

 $\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \ge \gamma |t|_q) \ge \delta$

 $X = (\xi_1, \dots, \xi_n)$ with ξ_i iid *q*-stable : $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$ Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|_q \xi$ and remember that for every large enough *u*

$$\mathbb{P}(\xi \geq u) pprox 1/u^q$$

 $\bigcirc \|\cdot\| = |\cdot|_q \text{ a norm}$

2 Small ball property : there exist $\gamma > 0$ and $\delta > 0$ such that

 $\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \geq \gamma |t|_q) \geq \delta$

Solution Moment assumption : for r = q/2 > 0 there is L > 0 such that

$$\forall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t \rangle|^r\right)^{1/r} \leq L|t|_q$$

 $X = (\xi_1, \dots, \xi_n)$ with ξ_i iid *q*-stable : $\mathbb{E} \exp(itX) = \exp(-|t|^q/2)$ Observe that $\langle X, t \rangle = \sum t_i \xi_i \sim |t|_q \xi$ and remember that for every large enough *u*

$$\mathbb{P}(\xi \geq u) pprox 1/u^{c}$$

 $\bigcirc \|\cdot\| = |\cdot|_q \text{ a norm}$

2 Small ball property : there exist $\gamma > 0$ and $\delta > 0$ such that

 $\forall t \in \mathbb{R}^n, \mathbb{P}(|\langle X, t \rangle| \geq \gamma |t|_q) \geq \delta$

Solution Moment assumption : for r = q/2 > 0 there is L > 0 such that

$$\forall t \in \mathbb{R}^n, \left(\mathbb{E}|\langle X, t \rangle|^r\right)^{1/r} \leq L|t|_q$$

Theorem

For all $q \ge 1$, taking $p = \alpha \log(eN/n)$, we have

$$c_2(q)\left(rac{N}{n}
ight)^{lpha/q}B^n_{q'}\subset K_p(X)^o\subset 2\mathrm{absconv}(X_1,\ldots,X_N)$$

II) Stochastic domination and floating bodies.

Definition

Let *X* and *Y* be two centered random vectors in \mathbb{R}^n . We say that *X* dominates *Y* when there exist λ_1 and λ_2 such that

$$\forall t \in \mathbb{R}^n, \forall u \in \mathbb{R}, \quad \mathbb{P}(\langle X, t \rangle \ge u) \ge \lambda_1 \mathbb{P}(\langle Y, t \rangle \ge \lambda_2 u)$$

This gives

$$K_{\rho}(X) \subset \lambda_2 K_{\rho'}(Y)$$

with $p' = p - \log(1/\lambda_1)$.

This property is stable by tensorization : if *x* and *y* are symmetric r.v. such that for every u > 0, $\mathbb{P}(x > u) \le \lambda_1 \mathbb{P}(y > \lambda_2 u)$ then $X = (x_1, \ldots, x_n)$ dominates $Y = (y_1, \ldots, y_n)$ with constants $c_1 \lambda_1$ and $c_2 \lambda_2$, where x_1, \ldots, x_n are iid copies of *x* and y_1, \ldots, y_n are iid copies of *y*.

Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ . Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \ge \gamma_0) \ge \delta_0$.

Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ . Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \ge \gamma_0) \ge \delta_0$. Then for every $u \in \mathbb{R}$

$$\mathbb{P}(\xi \geq u) \geq \delta_0 \mathbb{P}(\varepsilon \geq rac{u}{\gamma_0})$$

▲ 同 ▶ → 三 ▶

Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ . Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \ge \gamma_0) \ge \delta_0$. Then for every $u \in \mathbb{R}$

$$\mathbb{P}(\xi \geq u) \geq \delta_0 \mathbb{P}(arepsilon \geq rac{u}{\gamma_0})$$

By tensorisation, for $X = (\xi_1, ..., \xi_n)$ and $\mathcal{E} = (\varepsilon_1, ..., \varepsilon_n)$, we get that there exist λ_1, λ_2 such that for every $t \in \mathbb{R}^n$

$$\forall u \in \mathbb{R}, \quad \mathbb{P}(\langle X, t \rangle \geq u) \geq \lambda_1 \mathbb{P}(\langle \mathcal{E}, t \rangle \geq \lambda_2 u)$$

Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i independent copies of a symmetric r.v. ξ . Assume $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \ge \gamma_0) \ge \delta_0$. Then for every $u \in \mathbb{R}$

$$\mathbb{P}(\xi \geq u) \geq \delta_0 \mathbb{P}(arepsilon \geq rac{u}{\gamma_0})$$

By tensorisation, for $X = (\xi_1, ..., \xi_n)$ and $\mathcal{E} = (\varepsilon_1, ..., \varepsilon_n)$, we get that there exist λ_1, λ_2 such that for every $t \in \mathbb{R}^n$

$$\forall u \in \mathbb{R}, \quad \mathbb{P}(\langle X, t \rangle \geq u) \geq \lambda_1 \mathbb{P}(\langle \mathcal{E}, t \rangle \geq \lambda_2 u)$$

In conclusion, $K_p(X) \subset \lambda_2 K_{p'}(\mathcal{E})$ and $K_p(X)^o \supset \lambda_2^{-1} K_{p'}(\mathcal{E})^o$ where $p' = p - \log(1/\lambda_1)$.

Theorem (GLT 2018)

Let $X = (\xi_1, \ldots, \xi_n)$ with ξ_i indep. copies of ξ . Suppose that $\mathbb{E}\xi^2 = 1$ and $\mathbb{P}(|\xi| \ge \gamma) \ge \delta$. Then for $N \ge c_0(\alpha, \gamma, \delta)n$, we have with proba $\ge 1 - 2 \exp(-c_1 N^{1-\alpha} n^{\alpha})$,

$$\operatorname{absconv}(X_1,\ldots,X_N) \supset c_2\left(B_{\infty}^n \cap \sqrt{\alpha \log\left(\frac{eN}{n}\right)}B_2^n\right)$$

Stochastic domination and comparaison

Theorem

Let $X = (\xi_1, ..., \xi_n)$ be an unconditional random vector in \mathbb{R}^n . Assume that there exist γ and $\delta > 0$ such that for any i = 1, ..., n

 $\mathbb{P}(|\xi_i| \ge \gamma) \ge \delta$

then

$${\it K}_{
m p}({\it X}) \subset rac{{\it c}(\delta)}{\gamma}{\it K}_{
m p}({\cal E})$$

Stochastic domination and comparaison

Theorem

Let $X = (\xi_1, ..., \xi_n)$ be an unconditional random vector in \mathbb{R}^n . Assume that there exist γ and $\delta > 0$ such that for any i = 1, ..., n

 $\mathbb{P}(|\xi_i| \ge \gamma) \ge \delta$

then

$${\it K}_{
m p}({\it X}) \subset rac{{\it c}(\delta)}{\gamma}{\it K}_{
m p}({\cal E})$$

Stochastic domination and comparaison

Theorem

Let $X = (\xi_1, ..., \xi_n)$ be an unconditional random vector in \mathbb{R}^n . Assume that there exist γ and $\delta > 0$ such that for any i = 1, ..., n

 $\mathbb{P}(|\xi_i| \ge \gamma) \ge \delta$

then

$${\it K}_{
ho}({\it X}) \subset rac{{\it c}(\delta)}{\gamma}{\it K}_{
ho}({\cal E})$$

Moreover if X satisfies the hypotheses of the main result then with proba $\geq 1 - 2 \exp(-C_1 N^{1-\alpha} n^{\alpha})$, we have

$$\frac{\gamma}{c_2(\delta)} c_2\left(B_{\infty}^n \cap \sqrt{\alpha \log\left(\frac{eN}{n}\right)} B_2^n\right) \subset \operatorname{absconv}(X_1, \ldots, X_N)$$

Proof

Set $\Gamma = (X_1, \ldots, X_N)^*$ the matrix whose rows are X_1, \ldots, X_N . We need to prove that

$$\mathbb{P}\left(\inf_{t\in\partial\mathcal{K}_{p}(X)}|\Gamma t|_{\infty}\geq 1/2\right)\geq 1-2\exp(-c_{1}N^{1-\alpha}n^{\alpha})$$

We define the set

$$\mathcal{F} = \{f(\cdot) = \mathbf{1}_{|\langle \cdot, u \rangle| \ge 1/2}, \quad u \in \partial K_{p}\}$$

in such a way that

$$\frac{1}{N}\sum_{j=1}^{N}f(X_j) = \#\{j, |\langle X_j, u\rangle| \ge 1/2\}$$

A (10) A (10) A (10)

Key tool - Concentration inequality

Theorem (Talagrand 1996)

Let \mathcal{F} be a class of functions taking values in $\{0, 1\}$ such that $VC(\mathcal{F}) \leq d$ and $\sup_{f \in \mathcal{F}} \mathbb{E}f^2 = \sigma^2$. The for every x > 0,

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{N}\sum_{j=1}^{N}f(X_{j})-\mathbb{E}f\right|\geq R+x\right)\leq\exp\left(-N\frac{x^{2}/2}{\sigma^{2}+2R+x/3}\right)$$

here $R\simeq\frac{d}{N}\log(\frac{c}{\sigma^{2}})+\sigma\sqrt{\frac{d}{N}\log(\frac{c}{\sigma^{2}})}.$

In our case, we have

w

$$\mathcal{F} = \{f(\cdot) = \mathbf{1}_{|\langle \cdot, u \rangle| \ge 1/2}, \quad u \in \partial K_p\}$$

so that $VC(\mathcal{F}) \leq 10(n+1)$

A (10) A (10)