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2.4 The Randomized Carathéodory theorem . . . . . . . . . . . . . . . . . . . . 9
2.5 The standard ε-net argument . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 A lattice net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 An application: an efficient net for matrix multiplication . . . . . . . . . . . 18
2.8 High-dimensional phenomenon: some themes . . . . . . . . . . . . . . . . . . 21

1



3 Concentration Inequalities for sums of independent random variables 23
3.1 What is a concentration inequality? . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Hoeffding’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Chernoff’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Application to Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Sub-Gaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 General Hoeffding’s inequality and Khinchine’s inequality . . . . . . . . . . . 32
3.7 Sub-Exponential Random Variables . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Bernstein’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Concentration of the norm of a random vector with independent sub-Gaussian

coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 Sub-Gaussian Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.11 Grothendieck’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Random Matrices 43
4.1 Norm of a sub-Gaussian random matrix . . . . . . . . . . . . . . . . . . . . 44
4.2 Two-sided bounds for intermediate singular values of tall enough random ma-

trices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Matrix Bernstein Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Non-asymptotic bounds for the smallest singular value of random matrices . 50

4.4.1 General discussion about the smallest singular value of a random matrix 50
4.4.2 Small ball (or anti-concentration) assumption and the tensorization

lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.3 The smallest singular value of tall random matrices . . . . . . . . . . 55
4.4.4 A net construction which works with high probability for matrices with

independent columns . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Proof of Theorem 4.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 The smallest singular value of square random matrices . . . . . . . . . . . . 63

4.6.1 Rudelson–Vershynin decomposition of the sphere . . . . . . . . . . . 65
4.6.2 Survey of results regarding the smallest singular value of square ran-

dom matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Proof of Theorem 4.45 Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7.1 Compressible Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.2 Incompressible Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.3 Distance Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.4 Proof of the first part of Theorem 4.45 . . . . . . . . . . . . . . . . . 74

5 Gaussian Random Processes 75
5.1 Basic Concepts and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Slepian’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Gaussian Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Proof of Slepian’s Inequality . . . . . . . . . . . . . . . . . . . . . . . 79

2



5.2.3 The Sudakov-Fernique Inequality . . . . . . . . . . . . . . . . . . . . 81
5.2.4 Application of Sudakov-Fernique Inequality to Gaussian Random Ma-

trices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 The Semigroup method 84
6.1 Basic definitions and set up . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1 Notation and Preliminaries

1.1 Notation

• Rn is the n−dimensional Euclidean space

• Lebesgue measure (volume) in Rn of a measurable set A ⊂ Rn is denoted by |A|

• N is the set of positive integers

• ∥x∥p = (|x1|p + · · ·+ |xn|p)1/p is the p-norm in Rn for p ≥ 1

• ∥x∥∞ = maxi=1,...,n |xi| is the ∞-norm

• |x| = ∥x∥2 is a shorthand for Euclidean length

• Bn
p = {x ∈ Rn : ∥x∥p ≤ 1} is p-ball in Rn

• Sn−1 = ∂Bn
2 = {x ∈ Rn : |x| = 1} is the n-dimensional hypersphere, or the boundary

of Bn
2

• ⟨x, y⟩ =
∑n

i=1 xiyi is the standard inner product

• For θ ∈ Sn−1, we have the hyperplane

θ⊥ = {x ∈ Rn : ⟨x, θ⟩ = 0}

and the affine hyperplane

θ⊥ + tθ = {x ∈ Rn : ⟨x, θ⟩ = t}

for all t ∈ R.

• A half-space is a set of the form {x ∈ Rn : ⟨x, θ⟩ ≤ t, for some given θ ∈ Sn−1 and
t ∈ R.

• A strip is a set of the form {x ∈ Rn : |⟨x− y, θ⟩| ≤ t, for some given y ∈ Rn, θ ∈ Sn−1

and t ≥ 0.

• Fix x ∈ R. Then [x] is the floor function, the largest integer which is no larger than x.
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1.2 Preliminaries from geometry in High dimension and convexity

Definition 1.1 (Convex Set). A set K ⊆ Rn is called convex if for all x, y ∈ K, the line
segment [x, y] = {λx+ (1− λ)y : λ ∈ [0, 1]} is contained in K.

Note that strips, half-spaces and Bn
p for p ≥ 1 are convex sets. On the other hand, Bn

p

for p < 1, Sn−1, sets which are not 1-connected, are non-convex. Below see an example of a
non-convex set:

Any convex set is the intersection of (possibly infinitely many) half-spaces. A convex
polytope is an intersection of finitely many half-spaces.

1.3 Preliminaries from linear algebra

The operator norm ∥·∥op of a matrix A is defined by

∥A∥op = sup
x∈Rn\{0}

|Ax|
|x|

= sup
y∈Sn−1

|Ay|. (1)

Definition 1.2 (Hilbert-Schmidt norm). Given a matrix A = (aij),

∥A∥HS =

√∑
i,j

a2ij =
√
σ2
1 + ...+ σ2

n,

where σ1 ≥ · · · ≥ σn are the singular values of A.

Recall that the smallest singular value is also defined as

σn(A) = inf
x∈Sn−1

|Ax|.

Remark 1.3. Note that √
n∥A∥op ≥ ∥A∥HS ≥ ∥A∥op,

since σi ≤ σ1, and σ1 ≤
√
σ2
1 + ...+ σ2

n ≤
√
nσ1.
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Theorem 1.4 (Spectral Decomposition). Let A be a symmetric matrix over R with n eigen-
values λ1, · · · , λn ∈ R and corresponding eigenvectors u1, · · · , un ∈ Sn−1. Then

A =
n∑
i=1

λiui ⊗ ui (2)

Note that for ∀u ∈ Rn, u ⊗ u = uuT =


u21 u1u2 · · · u1un
u1u2 u22 · · · u2un
...

...
...

...
u1un u2un · · · unun

 is a rank-1 matrix. For

∀x ∈ Rn, Ax =
∑n

i=1 λi⟨x, ui⟩ui.

Definition 1.5 (Functions on Matrices). For any function f : R → R and n× n symmetric
matrix X =

∑n
i=1 λiui ⊗ ui, then f(X) :=

∑n
i=1 f(λi)ui ⊗ ui.

1.4 Preliminaries from Functional Analysis and Probability

Recall that for any non-negative random variable

EX =

ˆ ∞

0

P(X > t)dt. (3)

Indeed, X =
´∞
0

1{X>t}dt, and therefore

EX = E
ˆ ∞

0

1{X>t}dt =

ˆ ∞

0

E 1{X>t}dt =

ˆ ∞

0

P(X > t)dt.

Lemma 1.6 (Markov). Let X ≥ 0 be a random variable defined on a probability space
(Ω,F ,P). Then, for t > 0, we have

P (X > t) ≤ EX
t
.

Proof. For any t > 0, note that

EX =

ˆ ∞

0

P(X > s) ds ≥
ˆ t

0

P(X > s) ds ≥ t · P(X > t).

Definition 1.7. A function F : Rn → R is called convex if for all x, y ∈ Rn

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y).
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Remark 1.8. Note that if F is convex, then we may conclude inductively that

F

(
m∑
i=1

λixi

)
≤
∑

1≤i≤m

λiF (xi),

where λ1 + · · ·+ λm = 1.

Theorem 1.9 (Jensen Inequality). Let µ be any probability measure and g ∈ L1(Rn). Let
F : R → R be a convex function. Then,

F

(ˆ
Rn
g dµ

)
≤
ˆ
Rn
F (g) dµ.

Remark 1.10. Note that Jensen inequality implies Remark 1.8 by taking µ to be the discrete
measure on Rn with suppµ = {1, . . . ,m} and µ({i}) = λi for 1 ≤ i ≤ m.

Definition 1.11. Let X be a random variable. For the p ≥ 1, the p-norm of X is defined
by

∥X∥p = (E |X|p)1/p .
Theorem 1.12 (Minkowski). Let X, Y be two random variables and p ≥ 1. Then,

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p .

Theorem 1.13 (Cauchy-Schwarz). Let a, b ∈ V , where (V, ⟨·, ·⟩) is an inner product space.
Then,

|⟨a, b⟩| ≤ ∥a∥ · ∥b∥ ,
where ∥·∥ denotes the norm induced by ⟨·, ·⟩.
Theorem 1.14 (Hölder’s Inequality). Suppose that p, q ≥ 1 and 1/p+ 1/q = 1. Then,

ˆ
|fg| dµ ≤

(ˆ
|f |p dµ

)1/p

·
(ˆ

|g|q dµ
)1/q

2 The Probabilistic Method and the concept of the

high-dimensional phenomena

2.1 A cool fact about the cube

We will mostly study Rn – the n-dimensional Euclidean space – where n is a large, positive
integer (or, in other words, the dimension n of our space is high). We will often think
that n → ∞ and analyze things asymptotically. We know intuitively that functions on R2

are more complex than those on R, and functions on R3 are more complex than on R2.
However, in some sense, objects in high-dimensional spaces actually become simpler, and
more predictable. We will soon see some examples of this phenomenon, but for the time
being we concentrate on the so-called probabilistic method in High-Dimensional Geometry.

We now state the following cool fact:

6



Fact 2.1. Consider the cube [0, 1]n (with side-length 1) and pick x ∈ [0, 1]n. Take any
(arbitrary!) θ ∈ Sn−1, and consider the strip centered at x orthogonal to θ of width 1, i.e.

S =

{
y ∈ Rn : |⟨y − x, θ⟩| ≤ 1

2

}
.

Then at least one vertex of [0, 1]n belongs to S.

The proof will be based on the probabilistic method. Imagine that someone shows you
a non-transparent box full of balls and tells you that if you draw a ball from it then with
probability 0.3 you get a red ball from it. Then you can conclude that there exists at least
one red ball in the box.

In our case, the box will be the vertices of the cube, and the red ball will be the vertex
with the desired property of falling into the specific strip.

2.2 Random rounding

We will first define the concept of randomized rounding, which was introduced in one dimen-
sion by Raghavan, Thompson [31], and later extended and studied by many authors including
Kannan, Vempala [16], Alon, Klartag [2], Klartag, Livshyts [18], see a survey by Srinivasan
[42]. This object is very useful in Computer Science, as well as in High-Dimensional Proba-
bility and related areas.

Definition 2.2 (Random Rounding). We outline the definition in two steps.

Step 1 (dimension 1). For x ∈ R, define ηx to be a random variable such that

ηx =

{
[x] w.p. 1− p

[x] + 1 w.p. p,

where p = p(x) = x− [x]. Note that p is chosen so that ηx is centered at x:

E ηx = [x](1− (x− [x])) + ([x] + 1)(x− [x]) = [x] + x− [x] = x.

Step 2 (dimension n). For x ∈ Rn, define ηx to be a random vector taking values in the
vertex set of the lattice cube which x falls into, so that the coordinates of ηx are independent
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and E ηx = x. In other words, each coordinate of x is independently randomly rounded
using the 1-dimensional definition. Namely, we let ηx = ((ηx)1, ..., (ηx)n), where the random
variables (ηx)i are independent, and distributed as follows:

(ηx)i =

{
[xi] w.p. 1 - p

[xi] + 1 w.p. p,

where p = p(i, x) = xi − [xi],

2.3 Proof of the cool fact about the cube

First, recall the following basic fact:

Lemma 2.3. For independent random variables X1, . . . , Xn,

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn).

Proof. First, consider

E(X1 + ...+Xn)
2 =

n∑
i=1

EX2
i +

∑
i ̸=j

2EXiXj =
n∑
i=1

EX2
i +

∑
i ̸=j

2EXi EXj.

where in the last step we used that by independence, EXiXj = EXi EXj. On the other
hand,

(EX1 + ...+ EXn)
2 =

n∑
i=1

(EXi)
2 +

∑
i ̸=j

2EXi EXj

Therefore,

Var(X1 + · · ·+Xn) = E(X1 + ...+Xn)
2 − (E(X1 + ...+Xn))

2 =
n∑
i=1

EX2
i −

n∑
i=1

(EXi)
2 =

Var(X1) + · · ·+Var(Xn).
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We may now proceed with the proof of the cool fact.

Proof of Fact 2.1. For the vector x ∈ [0, 1]n consider the random rounding ηx. Note that
E⟨ηx − x, θ⟩ = 0, so

E⟨ηx − x, θ⟩2 = Var⟨ηx − x, θ⟩ =
n∑
i=1

E((ηx)i − xi)
2θ2i ,

by Lemma 2.3. Hence,

E⟨ηx − x, θ⟩2 =
n∑
i=1

θ2i (E(ηx)2i − x2i ).

Note that (by definition of random rounding),

E(ηx)2i = 0 · (1− xi) + 1 · xi = xi,

so

E(ηx)2i − x2i = xi − x2i ≤
1

4
,

where we use the fact that for any a ∈ [0, 1] one has a− a2 ≤ 1
4
. We conclude that

E⟨ηx − x, θ⟩2 =
n∑
i=1

θ2i xi(1− xi) ≤
|θ|2

4
=

1

4
. (4)

Therefore, there exists some realization of ηx, a vertex y ∈ {0, 1}n such that ⟨y−x, θ⟩2 ≤ 1/4.
Hence, |⟨y − x, θ⟩| ≤ 1/2.

2.4 The Randomized Carathéodory theorem

We will now state a second cool fact, which is an approximate version of Carathéodory’s
theorem. We follow Vershynin [53] in this subsection.

Definition 2.4 (Convex hull). Let A ⊆ Rn. The convex hull of A is

conv(A) =

{
m∑
i=1

λixi : m ∈ N, x1, . . . , xm ∈ A, λi ≥ 0,
m∑
i=1

λi = 1

}
.

The expression
∑m

i=1 λixi is called a convex combination of x1, ..., xm.
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For example, the convex hull of n+1 linearly independent points in Rn is called a simplex.

The next classical result tells us that every point in a convex hull of some set in Rn can
be represented as a convex combination of at most n+ 1 points from this set, i.e. m in the
definition of convex hull need not be larger than n+ 1.

Theorem 2.5 (Carathéodory’s theorem). Let A ⊆ Rn and x ∈ conv(A). Then there exist
x1, . . . , xn+1 ∈ A and λ1, . . . , λn+1 ≥ 0,

∑n+1
i=1 λi = 1 such that x =

∑n+1
i=1 λixi. In other

words, x belongs to a simplex with vertices spanned by x1, . . . , xn+1 ∈ A.

Proof. Home work!

Carathéodory’s Theorem could be useful for constructing various algorithms. However,
having to operate with n+ 1 points could still be too difficult if n = 100000000, say. Would
it be possible to represent x with less than n + 1 points from A? In general, of course, not.
However, if we were willing to represent x approximately, with some small error, then we
could get away with using a lot less points, potentially:

Fact 2.6 (Randomized/Approximate Carathéodory). Suppose A ⊆ Rn with diameter

diam(A) = sup
x,y∈A

|x− y| ≤ 1.

Then for all x ∈ conv(A), k ∈ N, there exist x1, . . . , xk ∈ A, such that∥∥∥∥∥x− 1

k

k∑
i=1

xi

∥∥∥∥∥ ≤ 1√
k
.

Note that we allow repetitions among the points.

While 1
k

∑k
i=1 xi does not equal to x, but rather approximates it with error 1√

k
, the

advantage is that we only need k points, and potentially k ≪ n + 1. Another interesting
feature here is that we can take λ1 = λ2 = . . . = λk = 1

k
, rather than deal with different

weights.
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Proof of Fact 2.6. Choose any x ∈ conv(A). By Carathéodory’s theorem, there exist z1, . . . , zn+1 ∈
A and λ1, . . . , λn+1 ≥ 0 such that

∑n+1
i=1 λi = 1 and

x =
∑

1≤i≤n+1

λizi.

Consider a random vector Z which takes value z1 with probability λ1, value z2 with prob-
ability λ2, and so on (overall, this random vector takes n + 1 values z1, . . . , zn ∈ A). Note
that

EZ =
∑

1≤i≤n+1

λizi = x.

Now, given an integer k, consider k i.i.d. copies of Z denoted by Z1, . . . , Zk (the existence
of these random vectors is guaranteed by Kolmogorov’s extension theorem, see Theorem 1
in section 2.9 of [57]). Note that by Lemma 2.3,

E

∣∣∣∣∣x− 1

k

∑
1≤i≤k

Zi

∣∣∣∣∣
2

=
1

k2

∑
1≤i≤k

E |x− Zi|2 ≤
1

k2
· k =

1

k
,

where in the last passage we used the fact that x ∈ conv(A), and 1
k

∑
1≤i≤k Zi ∈ A ⊂ conv(A)

with probability 1, and the diameter of the convex hull of A is bounded from above by the
diameter of A (homework!), which in turn is bounded by 1.

We conclude that

E

∣∣∣∣∣x− 1

k

∑
1≤i≤k

Zi

∣∣∣∣∣
2

≤ 1

k
.
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Hence, there exist y1, . . . , yk ∈ A, the realizations of Z1, ..., Zn, such that∣∣∣∣∣x− 1

k

∑
1≤j≤k

yi

∣∣∣∣∣ ≤ 1√
k
,

which proves our Fact.

The Approximate Carathéodory Theorem has, for example, the following useful conse-
quence:

Corollary 2.7. Let P be a polytope in Rn with at most N vertices, i.e.,

P = conv{x1, . . . , xN},

where each xi ∈ Rn. Suppose that diam(P ) ≤ 1. Fix any ε > 0. Then, P can be covered by
at most N ⌊1/ε2⌋ euclidean balls of radius ε.

Proof. Home work!

While we leave this fact as a home work, in the next sub-section we prove a related and
very useful result.

2.5 The standard ε-net argument

Suppose we would like to view the sphere or the unit ball as a discrete set, in which each
point is represented approximately. What would be a good way to do that? We start by
presenting the most classical result.

Theorem 2.8 (Classical ε-net Construction). Let n ∈ N and ε > 0. Then, there exists a
positive integer m ≤

(
2+ε
ε

)n
, and y1, . . . , ym ∈ Bn

2 , such that the unit ball Bn
2 is covered by

balls of radius ε with the centers at yi, that is,

Bn
2 ⊆

⋃
1≤i≤m

(yi + εBn
2 ).
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Proof. Without loss of generality, we may assume that ε < 1 (otherwise, the statement is
straightforward). Consider a maximal packing of balls of radius ε/2 in (1 + ε/2)Bn

2 , i.e.,
pick y1, . . . , ym such that yi+(ε/2)Bn

2 are disjoint, yi+(ε/2)Bn
2 ⊆ (1+ ε/2)Bn

2 , and m is the
largest possible number of balls with such properties (see Remark below for a justification
for the existence of such a packing).

First, we show that

Bn
2 ⊆

⋃
1≤i≤m

(yi + εBn
2 ). (5)

Suppose not. Then, there exists x ∈ Bn
2 such that |x − yi| > ε/2 for all 1 ≤ i ≤ m, and

x+ ε
2
Bn

2 ⊂ (1+ ε
2
)Bn

2 . But then x+(ε/2)Bn
2 ∩yi+(ε/2)Bn

2 = ∅, contradicting the maximality
of m. Hence (5) is confirmed. That is, we found a construction of some covering of Bn

2 with
balls of radius ε; our next task is to estimate its size.

Observe that
(1 + ε/2)Bn

2 ⊇
⊔

1≤i≤m

(yi + ε/2Bn
2 )

Therefore, by the additive property of the Lebesgue measure, we have∑
1≤i≤m

∣∣∣yi + ε

2
Bn

2

∣∣∣ ≤ |(1 + ε/2)Bn
2 | ,

where |·| denotes the n-dimensional Lebesgue measure. Therefore, we have

m ·
(ε
2

)n
≤
(
1 +

ε

2

)n
Hence, m ≤ (1 + 2/ε)n, as desired.

Remark 2.9 (Ideas by Ruijia Cao, not something Galyna suggested). To show that a max-
imal packing used in the proof above exists, we can use the following argument. Note that
for t > 0 and any packing of m disjoint balls, we have

m⊔
i=1

(yi + tBn
2 ) ⊆ Bn

2 ,

13



Then, m ≤ 1/tn. Let ε > 0. We will use the following algorithm to explicitly construct a
maximal packing of Bn

2 using balls with radii ε/2:

1. First, pick any x1 ∈ Bn
2 .

2. In the second step, choose x2 ∈ Bn
2 such that ∥x2 − x1∥ ≥ ε.

3. At the k-th step, suppose that x1, . . . , xk−1 have been chosen such that xi+(ε/2)Bn
2 are

pairwise disjoint. Choose xk such that ∥xk − xi∥ ≥ ε for all 1 ≤ i ≤ k − 1.

4. If no such xk exists, then the algorithm terminates.

Since the number of balls in any packing of disjoint ball is finite, the above algorithm will
terminate in finitely many steps.

Remark 2.10 (a small addition by Galyna). Arguing along the lines of the previous Remark
(by Ruijia), one can consider the collection of all such “locally optimal” packings. Since the
sizes of all of them are bounded by t−n (as was explained using the volumetric argument),
and since the supremum of a bounded from above sequence is attained, we conclude that at
least one of such packings is maximal. For details, see e.g. Vershynin [53].

Remark 2.11. Note that the size m of the covering of the unit ball by balls of radius ε is
necessarily at least 1

εn
, since m · |εBn

2 | ≥ |Bn
2 |. Therefore, the bound in Theorem 2.8 is sharp

up to 3n, when ε < 1.
Therefore, one may conclude that the optimal ε-covering is of the size

(
c
ε

)n
where c ∈ [1, 3]

(technically, the sharp c might depend on ε but we could discuss the “limiting value” in some
sense). There is vast literature on the subject and tighter bounds are known, however the
only dimensions in which the limiting value of c is known (when ε → 0) are 2, 8 and 24.
Dimension 2 is assigned as a (difficult!) home work, while in dimensions 8 and 24 this result
was established by a Fields medalist Viazovska [55], and Cohn, Kumar, Miller, Radchenko,
Viazovska [56].
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Remark 2.12. Since Sn−1 ⊂ Bn
2 , Theorem 2.8 implies that there exists a covering of size(

3
ε

)n
of the unit sphere by ε−balls. In fact, a stronger result is true: there is such a cover of

size at most
(
c
ε

)n−1
. This important fact is left as a home work.

Theorem 2.8 is very classical and it has many powerful applications, some of which we
will see in this course. However, there are situations when this result is, in fact, insufficiently
sharp. Another disadvantage of the argument we presented is that it is not constructive
(as one of the students cleverly pointed out), because an optimal packing is not constructed
explicitly.

2.6 A lattice net

In this subsection, we discuss a refinement of Theorem 2.8 which is furthermore constructive
(although of course one cannot only gain and not lose, so some features of Theorem 2.8
might not be kept). First, we note the following classical

Lemma 2.13. Let n,N ∈ Z be positive integers. Then, there are
(
N+n−1
n−1

)
number of solu-

tions to the following equation
x1 + · · ·+ xn = N,

where xi ∈ Z and xi ≥ 0.

Proof. Note that the number of ways to represent N as an ordered sum of n non-negative
integers is the same as the number of ways to distributeN identical balls into n different boxes
(any box can contain between 0 and n balls). The answer to this classical combinatiorial
riddle is

(
N+n−1
n−1

)
. Indeed, this corresponds to the number of ways to arrange a sequence

of N zeroes (corresponding to the balls) and n − 1 ones (corresponding to the sides of the
boxes, except the two on the edges). And this is the same as selecting n− 1 spots to place
ones in the collection of N + n− 1 spots. See Figure 1.

Theorem 2.14. Let R > 0. Then, there exists a constant C > 0 such that

#{x ∈ Zn : ∥x∥1 ≤ R} ≤
(
CR

n

)n
.
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Figure 1: (n− 1) dividers and N balls

Proof. Applying Lemma 2.13, we have

# {x ∈ Zn : ∥x∥1 ≤ R} ≤ 2n ·#

{
x ∈ Zn : xi ≥ 0,

∑
1≤i≤n

xi ≤ R

}

= 2n ·
⌊R⌋∑
N=1

(
N + n− 1

n− 1

)
.

Now, Stirling’s formula states that for any k ≥ 1

k! = (1 + o(1)) ·
√
2πk

(
k

e

)k
.

Therefore, with a bit of arithmetic, one can show (Home work! ) that there exists a constant
C > 0 such that

2n ·
⌊R⌋∑
N=1

(
N + n− 1

n− 1

)
≤
(
CR

n

)n
.

Corollary 2.15. Fix any ε > 0. Then, there exist y1, . . . , ym ∈ Bn
2 and a constant c > 0

such that ⋃
1≤i≤m

(
yi +

ε√
n
Bn

∞

)
⊇ Bn

2 ,

where m ≤ (C/ε)n.
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Proof. Let R = n/ε. Then, by Theorem 2.14, there exist c > 0 and y1, . . . , ym ∈ Zn with
∥yi∥1 ≤ R, where m ≤ (C/ε)n. Therefore,

R√
n
·Bn

2 ⊆
⋃

1≤i≤m

(yi +Bn
∞) .

Now, by excluding those yi that lie outside a ball of radius 3
2
R√
n

and by re-indexing if

necessary, we may choose y1, . . . , ym′ ∈ 3
2
R√
n
Bn

2 ∩ {y1, . . . , ym} such that

R√
n
·Bn

2 ⊆
⋃

1≤i≤m′

(yi +Bn
∞) ,

where m′ ≤ m. Therefore,

Bn
2 ⊆

⋃
1≤i≤m

(
ε√
n
yi +

ε√
n
Bn

∞

)
.

Note that each ε√
n
yi ∈ 3

2
Bn

2 for 1 ≤ i ≤ m′ because ∥yi∥1 ≤ R, and because

√
n|x| ≥ ∥x∥1 ≥ |x|,

for any x ∈ Rn.

Remark 2.16. Here, we give a comparison between Theorem 2.8 and Corollary 2.15. By
Theorem 2.14 and Corollary 2.15,

Bn
2 ⊆

⋃
1≤i≤m

(
yi +

ε√
n
Bn

∞

)
, (6)

where m ≤ ( c
ε
)n. On the other hand, Theorem 2.8 implies that

Bn
2 ⊆

⋃
1≤i≤m

(yi + εBn
2 ) , (7)

where m ≤
(
3
ε

)n
.

Note that in some sense, Corollary 2.15 is stronger than Theorem 2.8 since Bn
∞ ⊆

√
nBn

2

(see Figure 2), and therefore (6) implies (7). However, Corollary 2.15 does have a minor dis-
advantage comparing to Theorem 2.8: the constant C > 3 is unspecified in our computation.
But this usually doesn’t play a role in applications.

Since Sn−1 ⊂ Bn
2 , and by removing some unused points of small Euclidean norm, we get

the following result about sphere covering from Corollary 2.15:

Corollary 2.17 (Home Work). For any ε > 0, there there exist y1, . . . , ym ∈ Bn
2 such that

for any x ∈ Sn−1 there exists i ∈ [m] with ∥x− yi∥∞ < ε/
√
n and m ≤ (C/ε)n−1.

17



Figure 2: L2 and L∞ norms comparison

Remark 2.18. Note that not all yi ∈ Sn−1, as in our previous construction of the standard
ϵ-net argument.

We can also restate Theorem 2.14 and Corollary 2.17 in the following manner:

Theorem 2.19. 1. For all ε > 0, there exists a collection of points y1, ..., ym ∈ Sn−1 with
m ≤ (C

ε
)n, such that for all x ∈ Sn−1, there exists i ∈ {1, ...,m} such that |x− yi| < ε.

2. For all ε > 0, there exists y1, ..., ym ⊂ 3
2
Bn

2\1
2
Bn

2 with m ≤ (C
′

ε
)n, such that for all

x ∈ Sn−1, there exists i ∈ {1, ...,m} such that ∥x− yi∥∞ ≤ ε√
n
.

Proof. The first part follows from By Theorem 2.8 and the standard net argument, while
the second part follows from Corollary 2.17.

Remark 2.20. Note that 1√
n
|a| ≤ ∥a∥∞ ≤ |a|, where | · | = ∥ · ∥2, and therefore the second

part of Theorem 2.19 is stronger than the first part, in the essential sense.

Remark 2.21. However note that in the second part of Theorem 2.19, unlike in the first
part, one needs to assume that the points of the net are in 3

2
Bn

2\1
2
Bn

2 , rather than simply in
Bn

2 . This is because the collection of our approximating points in the second part consists of
the vertices of the lattice cubes, rather than centers! This will not make a difference for our
applications, however.

2.7 An application: an efficient net for matrix multiplication

From now on, we will use the word net to mean a collection of points which has some good
approximating properties for a given set (usually, the sphere). We will use notation N for
a finite set of points, in place of just listing the points {y1, . . . , ym} as before, to save time.
First, we outline the following
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Theorem 2.22. For all ε > 0, there exists a set N ⊆ Sn−1 such that #N ≤ ( c
ε
)n, and for

all x ∈ Sn−1, there exists y ∈ N such that for any integer N ≥ 0, and for any N × n matrix
A,

∥A(x− y)∥ ≤ ∥A∥op · ε,

where we recall that the operator norm of a matrix was defined in (1).

Proof. By the usual net argument, for all x ∈ Sn−1, there exists some y ∈ N such that
|x− y| < ε. Take any matrix A, we have |A(x− y)| ≤ ∥A∥op · |x− y| ≤ ∥A∥op · ε.

Next, we now explain a more precise way to approximate points on the sphere in order
to compare the functional |Ax| at those points. This net construction combines the ideas
we already explained in Theorem 2.19 (part 2), with the idea of random rounding which we
discussed in subsection 2.2. This net construction first appears in Klartag, Livshyts [18],
and was later further developed in Livshyts [25].

Theorem 2.23. Fix n ∈ N. For all ε > 0, there exists N ⊂ 3
2
Bn

2\1
2
Bn

2 such that #N ≤ (C
ε
)n,

and so that for all x ∈ Sn−1 and for all N ∈ N, for any N × n matrix A, there exists y ∈ N
such that

|A(x− y)| ≤ ε · ∥A∥HS√
n

,

where the Hilbert-Schmidt norm of a matrix was defined in Definition 1.2.

Remark 2.24. As we noted before, ∥A∥HS√
n

· ε ≤ ∥A∥op · ε, and thus the net in Theorem 2.23
is more precise than the net in Theorem 2.22. Apart from some minor differences in the
order of quantifiers (which we discuss below), Theorem 2.23 is stronger than Theorem 2.22,
in the essential sense (but not literally).

Proof of 2.23. ConsiderN to be the net given in Corollary 2.17. Then indeedN ⊂ 3
2
Bn

2\1
2
Bn

2

such that #N ≤ (C
ε
)n, and for every x ∈ Sn−1 one may find a lattice cube

Q =
ϵ√
n

n∏
i=1

[ti, ti + 1],

for some integers ti, such that x ∈ Q, and the vertices of Q all belong to the point set N .
Consider the (scaled) random rounding ηx of x ∈ Sn−1 to the vertices of the cube Q (as

defined earlier).
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Namely, ηx is a random vector which takes values in the vertices of Q, has independent
coordinates, and E ηx = x. Recall from (4), after the appropriate re-scaling by 2ϵ√

n
, that

E⟨x− ηx, θ⟩2 ≤
ϵ2|θ|2

n
. (8)

Recall that |Ay|2 =
∑N

i=1⟨AT ei, y⟩2 (here AT ei are the rows of A). Using the inequality (8)
with θ = AT ei, we get

E |A(x− ηx)|2 = E
N∑
i=1

⟨AT ei, x− ηx⟩2

=
N∑
i=1

E⟨AT ei, x− ηx⟩2

≤ ε2

n

N∑
i=1

|AT ei|2

= ∥A∥2HS ·
ε2

n
.

Since E |A(x − ηx)|2 ≤ ∥A∥2HS · ε2
n
, there exists a realization of random vector y of ηx such

that

|A(x− y)|2 ≤ ε2 · ∥A∥2HS
n

,

or equivalently,

|A(x− y)| ≤ ε · ∥A∥HS√
n

.

Note that any realization of ηx is a vertex of Q and in particular, y ∈ N .

Remark 2.25. Note that:
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• For both Theorem 2.22 and Theorem 2.23, the net does not depend on the matrix A.

• For Theorem 2.22, the approximation point y depends on both A and x, which is not
the case for Theorem 2.23. But we will see that in applications that we consider, this
does not make a difference.

Example 2.26. Let us consider two concrete examples of matrices.

• A = Idn. Then ∥A∥op = 1, and ∥A∥HS =
√
1 + · · ·+ 1 =

√
n. Therefore, ∥A∥HS√

n
=

∥A∥op, and therefore Theorems 2.22 and 2.23 provide the same precision.

• A =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


Then 1√

n
∥A∥HS = 1√

n
≪ 1 = ∥A∥op, and therefore, Theorem 2.23 is

√
n more

precise when approximating the functional Ax = x1 on the sphere, or,
equivalently, any one-dimensional projection ⟨x, ξ⟩! For instance, this was
crucial in [18], and the necessity to have a net with such a property motivated this
construction.

2.8 High-dimensional phenomenon: some themes

Weirdness of high dimension

Consider the cube Bn
∞ and place a copy of Bn

2 centered at each vertex of Bn
∞ (see the Figure

below). Note that the largest ball you can place at the center of B∞ without intersecting
any of the copies of Bn

2 will have radius
√
n− 1. This might be somewhat surprising, since

in many directions the ball extends out much further from the origin than the cube does,
when n is large.

↑2i
IO1 / ↳

& d
- * &

e

-1

1

- -
1

-2(x - 1) [ 1998
⑳

↑ ⑳ -

* E * S

↳S2 O 2

-

&

&
- ↑-2

n
=2

n = 1000000
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Central Limit Theorem and its geometric meaning

The following result is a very classical fact in Probability, see e.g. Durrett [7].

Theorem 2.27 (Central Limit Theorem). Let X1, X2, . . . be i.i.d. random variables with
finite second moment. Let µ = EX1 and σ2 = Var(X1). Let Sn =

∑
1≤k≤nXk. Then,

Sn − nµ√
nσ2

→ N (0, 1),

where the convergence is in distribution as n→ ∞.

To get a geometric interpretation of this, note that the vector X := (X1, · · · , Xn) is dis-
tributed uniformly over the unit cubeB∞

n := [−1, 1]n. Given the vector θ = (1/
√
n, · · · , 1/

√
n)

the above example says that the random variable ⟨X, θ⟩ is distributed roughly as a normal
random variable.

What is the geometric meaning of the density f(t) of ⟨X, θ⟩? After thinking a little, we
see that

f(t) = |B∞
n ∩ {⟨x, θ⟩ = t}|n−1.

Thus f(t) the n − 1 dimensional area of the hyperplane section of the cube perpendicular
to θ, distance t from the origin. Although sections of cubes are hard to compute exactly, as
the dimension goes to infinity they resemble a normal random variable, which is a simple
object.

This phenomenon appears to stem from independence. However, this fact is true not just
about cubes! For any convex body there exists a direction θ (in fact, many of them) for
which ⟨X, θ⟩ behaves a bit like a Gaussian (in the appropriate sense). This is the content of
the Central Limit Theorem for convex bodies from 2007 due to Klartag [17].

About the thin shell type concentration

Suppose that X is a random vector that is distributed uniformly over the sphere. Then with
high probability, its Euclidean norm is very close to 1 when n is large!
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Indeed, note that

P
(
|X| ≥ 1− 10

n

)
=

|Bn
2 \ (1− 10/n)Bn

2 |
|Bn

2 |
= 1−

(
1− 10

n

)n
≥ 1− e−10

≥ 0.99.

3 Concentration Inequalities for sums of independent

random variables

3.1 What is a concentration inequality?

In this section, we closely follow Vershynin [53]; see also the references therein. Recall the
Law of Large Numbers (see Theorem 2.4.1 in Durrett [7]).

Theorem 3.1 (LLN). Let (Xn)n≥1 be iid random variables with E |X1| <∞. Then,

X1 + . . .+XN

N

a.s.−→ EX1

as N → ∞.

Definition 3.2. Let X be a random variable. We say that X satisfies a concentration
inequality if

P (|X − EX| > t) ≤ ,(t).

We usually think of ,(t) as a function that decays to 0 fast.

In some sense, a concentration inequality is a quantitative version of the Law of Large
Numbers. A classical example is the Chebychev inequality:

Theorem 3.3 (Chebychev). Let X be a random variable with E |X|2 <∞ and t ≥ 0. Then,

P (|X − EX| ≥ t) ≤ Var(X)

t2
.

Proof. First, note that

E |X − EX|2 = EX2 − (EX)2 ≤ EX2 <∞.

Applying Markov’s inequality to the random variable |X − EX|, we see that

P (|X − EX| ≥ t) = P
(
|X − EX|2 ≥ t2

)
=

1

t2
Var(X).
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3.2 Hoeffding’s inequality

However, Chebyshev’s inequality provides a weak bound when it comes to random variables
which are sums of independent random variables with certain properties. Below, we present
the first example of a much stronger result.

Theorem 3.4 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent symmetric Bernoulli
random variables (taking values 1 and −1 with probability 0.5 each). Let a = (a1, . . . , an) ∈
Rn. Then, for all t ≥ 0, we have

P

( ∑
1≤i≤n

aiXi ≥ t

)
≤ e

− t2

2|a|2

Proof of Theorem 3.4. Without loss of generality, we may assume that a ∈ Sn−1 (otherwise,
replace a by a/ |a| in the proof below).

Then, using the so-called Chernoff’s trick, we have

P

(∑
i

aiXi ≥ t

)
= P

(
eλ

∑
aiXi ≥ eλt

)
≤ e−λt

∏
1≤i≤n

E
(
eλaiXi

)
Recall that X1, . . . , Xn are symmetric Bernoulli random variables, i.e.,

Xi =

{
1, w.p. 1/2

−1, w.p. 1/2

Hence, we have

E
(
eλaiXi

)
=

1

2
eλai +

1

2
e−λai

= cosh(λai)

Hence, for any λ > 0,

P

( ∑
1≤i≤n

aiXi ≥ t

)
≤ e−λt

∏
1≤i≤n

cosh(λai) (9)

≤ e−λt
∏

1≤i≤n

eλ
2a2i /2 (prove cosh(x) ≤ ex

2/2 in HW)

= e−λteλ
2/2

∑
1≤i≤n a

2
i (10)

= e−λt+λ
2/2 ( |a| = 1,∀λ ≥ 0)

By picking the optimal λ = t, the upper bound becomes e−t
2/2.
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Remark 3.5. There is a nice geometric interpretation for this inequality, Let X ∈ {−1, 1}n,
t > 0 and a ∈ Sn−1.

P (⟨X, a⟩ ≥ t) ≤ e−t
2/2,

and therefore, the relative number of the points of the hypercube located in a half-space or-
thogonal to a and distance t from the origin behaves as (or, rather, better than) the Gaussian
function.

Theorem 3.6 (Hoeffding’s inequality for Bounded R.V.). Let X1, . . . , Xn be bounded inde-
pendent random variables, i.e., Xi ∈ [mi,Mi] for some mi,Mi ∈ R. Then, for all β > 0, we
have

P

(∣∣∣∣∣∑
i

Xi − EXi

∣∣∣∣∣ ≥ β

)
≤ 2e

− cβ2∑
i(Mi−mi)2

Proof of Theorem 3.6. Homework.
Hint:

P

(∣∣∣∣∣∑
i

Xi − EXi

∣∣∣∣∣ ≥ β

)
= P

( ∑
1≤i≤n

Xi − EXi ≥ β

)
+ P

( ∑
1≤i≤n

Xi − EXi ≤ −β

)

and estimate both parts.

Remark 3.7. (Hoeffding vs. Chebyshev) Theorem 3.6 tells us that

P

(∣∣∣∣∣ ∑
1≤i≤n

Xi − EXi

∣∣∣∣∣ ≥ t

)
≤ 2e−ct

2

On the other hand, Chebyshev’s inequality yields that

P

(∣∣∣∣∣∑
i

Xi − EXi

∣∣∣∣∣ ≥ t

)
≤ Var(

∑
iXi)

t2
=

∑
iVar(Xi)

t2

Since c1
t
≥ e−ct

2+log 2 for large enough t and some positive constants c1 and c2, we see that
Hoeffding’s inequality gives a tighter bound than Chebyshev’s inequality.

Remark 3.8. (Hoeffding vs. Central Limit Theorem) According to CLT, we know X1+···+Xn√
n

d→
Z ∼ N (0, 1). Let Xi be independent Bernoulli random variables, i.e.,

Xi =

{
1, w.p. p

−1, w.p. 1− p

For t > 0, observe that

1√
2π

(
1

t
− 1

t3

)
e−

t2

2 ≤ P(Z > t) ≤ 1√
2π

1

t
e−

t2

2 . (11)
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The lower bound is for t ≥ 1 is left as homework. For the upper bound, note that

P (Z > t) =

ˆ ∞

t

1√
2π
e−

s2

2 ds

=
1√
2π

ˆ ∞

t

s · 1
s
· e−

s2

2 ds

≤ 1

t

1√
2π

ˆ ∞

t

s · e−
s2

2 ds

=
1

t

1√
2π

ˆ ∞

t2/2

e−s ds

=
1

t

1√
2π
e−

t2

2 .

But we cannot directly deduce Hoeffding from CLT: although∣∣∣∣P(X1 + · · ·+Xn√
n

≥ t

)
− P(Z ≥ t)

∣∣∣∣→n→∞ 0,

For fixed n, it can be polynomial in t. Hoeffding is not a stronger theorem than CLT, but it
implies the behaviour predicted by the CLT when it comes to tail probabilities.

Remark 3.9. (HW) In fact, Hoeffding is not tight for non-symmetric Bernoulli random
variables

Xi =

{
1 w.p. pi

−1 w.p. 1− pi,

where pi ≈ 0.99. Chernoff’s Inequality below is better.

3.3 Chernoff’s inequality

Theorem 3.10. (Chernoff’s Inequality) Let

Xi =

{
1, w.p. pi

0, w.p. 1− pi

be independent Bernoulli random variables with parameters pi. Denote SN =
∑N

i=1Xi and

ESN =
N∑
i=1

EXi =
N∑
i=1

pi =: µ.

Then for all t > µ,

P(SN > t) ≤ e−µ
(eµ
t

)t
.
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Proof. For any λ ∈ R,

P
(∑

Xi > t
)
= P

(
eλ

∑
Xi > eλt

)
≤ e−λt E eλ

∑
Xi

= e−λt
N∏
i=1

E eλXi (by independence)

= e−λt
N∏
i=1

(pie
λ + 1− pi)

= e−λt
N∏
i=1

(1 + pi(e
λ − 1))

≤ e−λt
N∏
i=1

epi(e
λ−1) (1 + x ≤ ex,∀x ∈ R)

= e−λte(e
λ−1)

∑
pi

= e−λteµ(e
λ−1)

By choosing the optimal λ = log t
µ
(HW: show that this choice is indeed optimal), the upper

bound becomes e−µ( eµ
t
)t.

Corollary 3.11 (HW, “small deviation Chernoff”). Suppose

Xi =

{
1, w.p. pi

0, w.p. 1− pi
,

and X1, · · · , XN are independent. Let SN =
∑N

i=1Xi and ESN = µ. Then, for all δ ∈ [0, 1],

P (|SN − µ| ≥ δµ) ≤ 2e−cµδ
2

.

3.4 Application to Random Graphs

A graph is a pair (V,E) where V (vertices) is some finite set and E (edges) is a subset of
V × V . Schematically, if a pair (vi, vj) (where vi, vj ∈ V ) belongs to E then there is an edge
between vi and vj.
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A random graph is a graph selected in some random way.

Definition 3.12 (Erdös-Rényi Random Graph). Given a positive integer n and p ∈ [0, 1], a
random graph G(n, p) satisfies the properties:

1. the set of vertices is {1, . . . , n}.

2. For a given pair of vertices, there is an edge with probability p ∈ (0, 1).

3. The edge events are independent.

Recall that the degree of a vertex v, denoted by deg(v), is the number of edges that
terminate at v.

Theorem 3.13 (The degree of each vertex of G(n, p) is well concentrated around its mean).
Assume that there exists c > 0 such that for any vertex v of G ∼ G(n, p) one has

E[deg(v)] = d ≥ c log n.

Then, for all v ∈ G,
P (deg(v) ∈ [0.9, 1.1d]) ≥ 0.9

Proof of Theorem 3.13. For i ̸= j, let

Xij =

{
1, w.p. p

0, w.p. 1− p
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denote the existence of an edge between i-th and j-th vertex. Then deg(i) =
∑

j ̸=iXij. By
Chernoff’s inequality Corollary 3.11,

P (|deg(i)− d| ≥ 0.1d) = P

(∣∣∣∣∣∑
j ̸=i

Xij − d

∣∣∣∣∣ ≥ 0.1d

)
≤ 2e−cd = 0.9.

for right c, c > 0.

Remark 3.14. Since the Xi are i.i.d, we see that E[deg(v)] = p(n− 1), and thus d ≥ c log n
is equivalent to p ≥ c′ logn

n
.

3.5 Sub-Gaussian Random Variables

Next, we busy ourselves with the question:
Could we prove Hoeffding’s inequality in a more general situation than bounded random

variables? What sort of generality could we hope for?

Note that if the inequality

P(|
n∑
i

aiXi| ≥ t) ≤ 2e−ct
2

holds for all a ∈ Sn−1, then by taking a = ei, we see that necessarily

P(|Xi| ≥ t) ≤ 2e−ct
2

. (12)

We will show that (12) is in fact also a sufficient condition for Hoeffding’s inequality to hold
when X1, · · · , Xn are independent. As a first step, we show the following (see Proposition
2.5.2 of [53]):

Proposition 3.15. Let X be a random variable. Then, the following are equivalent (the
parameters K1, K2, K3, K4, K5 ≥ 0 differ from one another at most by an absolute non-
negative constant multiple):

1. P(|X| ≥ t) ≤ 2e−t
2/K2

1 , for all t ≥ 0 and a fixed K1 > 0;

2. ||X||p = (E |X|p)1/p ≤ K2
√
p for all p ≥ 1;

3. E eλ2X2 ≤ eK
2
3λ

2
for all λ ∈ [− 1

K3
, 1
K3

];

4. E e
X2

K2
4 ≤ 2.

Moreover, if EX = 0, then conditions (1) - (4) are also equivalent to

5. E eλX ≤ eK
2
5λ

2
for all λ ∈ R.
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Proof. Firstly show (1) ⇒ (2). Suppose that P(|X| ≥ t) ≤ 2e−t
2
. We would like to show

that in this case, E |X|p ≤ (C
√
p)p. Indeed, by (3), and using a change of variables, we get

E |X|p =
ˆ ∞

0

P(|X|p > t) dt

= p

ˆ ∞

0

P(|X| > s)sp−1 ds

≤ 2p

ˆ ∞

0

sp−1e−s
2

ds = pΓ
(p
2

)
· C

In the last passage we used the assumption. It remains to recall that

Γ(m) =

ˆ ∞

0

tm−1e−tdt Γ
(p
2

)
= (C

√
p)p.

Next we show (2) ⇒ (3). Suppose (E|X|p)
1
p ≤ √

p. By Taylor’s formula, ea =
∑∞

k=0
ak

k!

for any a ∈ [0, 1], and therefore

Eeλ2X2

= E
∞∑
k=0

(λ2X2)k

k!
=

∞∑
k=0

λ2kEX2k

k!

≤
∞∑
k=0

(λ)2k(2k)k

k!

≤
∞∑
k=0

(Cλ)2k (by Stirling’s formula k! =
√
2πk

(
k
e

)k (
1 +O

(
1
k

))
)

=
1

1− (Cλ)2

≤ eCλ
2

for C|λ| ∈ [0, 1).

In the last passage we used the inequality 1− x ≤ e−x (see home work).

It is straightforward to show (3) ⇒ (4) : take s = c
K3
.

To verify (4) ⇒ (1), note that

P(X ≥ t) = P(ex2 ≥ et
2

) ≤ Eex2e−t2 ≤ 2e−t
2

,

where the last inequality uses the assumption Eex2 ≤ 2.

Now check (3) ⇒ (5). Suppose EX = 0 and Eeλ2x2 ≤ eλ
2
, ∀λ ∈ [−1, 1]. We use the

inequality ex ≤ x+ ex
2
,∀x ∈ R (which we leave as a home work).

Eeλx ≤E(λx+ eλ
2x2)

=Eeλ2x2 (Since we assumed Ex = 0)

≤eλ2 . (if |λ| < 1, apply (3))
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Now assume |λ| ≥ 1. Then we use the inequality 2λx ≤ x2 + λ2,∀λ, x ∈ R, which is also left
as a home work.

Eeλx ≤eλ2/2Eex2/2 (apply (3))

≤eλ2/2
√
e ≤ eλ

2

.

Lastly, we show (5) ⇒ (1). Suppose EX = 0, and Eeλx ≤ eλ
2
, for all λ ∈ R. Then

P(X ≥ t) = P(eλX ≥ eλt) ≤ e−λtEeλX ≤ e−λteλ
2

.

We plug the optimal value of λ = t
2
, which gives P(X ≥ t) ≤ e−t

2/4. Applying the same
argument to the lower tail, we get

P(|X| ≥ t) = P(X ≥ t) + P(X ≤ −t) ≤ 2 · e−t2/4.

This brings us to a

Definition 3.16. (Sub-Gaussian Random Variables) If a random variable X satisfies (either
of the) properties (1) - (4), it is called a sub-Gaussian random variable. The sub-Gaussian
norm of X, denoted ∥X∥ψ2 , is defined to be the smallest K4 in property 4. In other words,
we define

∥X∥ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}.

The sub-Gaussian norm is indeed a norm, which is left as a home work.

Example 3.17 (Examples of sub-Gaussian variables). The following random variables are
sub-Gaussian:

• Gaussian: X ∼ N(0, 1) is a sub-gaussian random variable with ∥X∥ψ2 ≤ C, where
C is an absolute constant.

• Bernoulli: Let X be symmetric Bernoulli random variable. Since |X| = 1, it follows
that X is a sub-Gaussian random variable with

∥X∥ψ2 =
1√
ln 2

.

• Bounded: More generally, any bounded random variable X with |X| ≤ M almost
surely, is sub-Gaussian with

∥X∥ψ2 ≤ C∥X∥∞
where C = 1√

ln 2
.
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Next, we present

Example 3.18 (Examples of NON sub-Gaussian random variables). The following random
variables are NON sub-Gaussian:

• Exponential: An exponential random variable is not sub-Gaussian, since

P(|X| ≥ t) ̸≤ e−Ct
2

The probability density function (pdf) of an exponential random variable is:

fX(x) =

{
0 if x < 0

e−x if x ≥ 0
.

And the tail probability is given by:

P(X ≥ t) =

ˆ ∞

t

e−s ds = e−t.

Thus we could see that it violates the definition of sub-Gaussian random variables.

• Poisson: Poisson random variables are not sub-Gaussian.

• Cauchy: Cauchy random variables are not sub-Gaussian.

3.6 General Hoeffding’s inequality and Khinchine’s inequality

Recall the fact that a sum of independent normal random variables Xi is normal. More
precisely, if Xi ∼ N(0, σ2

i ) are independent then

N∑
i=1

Xi ∼ N

(
0,

N∑
i=1

σ2
i

)
. (13)

This property of the normal distribution extends to general sub-Gaussian distributions (see
also Proposition 2.6.1 of [53]):

Proposition 3.19. (Sums of independent sub-Gaussians) Let X1, . . . , XN be independent,
mean zero, sub-Gaussian random variables. Then

∑N
i=1Xi is also a sub-Gaussian random

variable, and ∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
2

ψ2

≤ C

N∑
i=1

||Xi||2ψ2
.
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Proof.

E exp

(
λ

N∑
i=1

Xi

)
=

N∏
i=1

E exp(λXi) (by independence)

≤
N∏
i=1

exp
(
C2∥λXi∥2ψ2

)
= exp

(
λ2K2

)
,

where K2 := C2
∑N

i=1 ∥Xi∥2ψ2
. By equivalence of properties (4) and (5) in Proposition 3.15

and Definition 3.16, we see that the sum
∑N

i=1Xi is sub-Gaussian, and∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
ψ2

≤ C1K.

Remark 3.20. If Xi ∼ N(0, σ2
i ) then ||Xi||2ψ2

= σ2
i , and an equality holds in place of the

inequality above.

Proposition 3.19 is, in fact, nothing but the generalized form of the Hoeffding inequality!

Corollary 3.21. (General Hoeffding’s inequality) Let X1, . . . , XN be independent, mean
zero, sub-Gaussian random variables, and a = (a1, . . . , aN) ∈ RN . Then, for every t ≥ 0, we
have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2

K2|a|2

)
,

where K = maxi ∥Xi∥ψ2.

Proof.

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2

K2|a|2

)
is equivalent to (1) in Proposition 3.15. By Proposition 3.19,∥∥∥∥∥

N∑
1

aiXi

∥∥∥∥∥
2

ψ2

≤ C
N∑
1

∥aiXi∥2ψ2
= C

N∑
1

a2i ∥Xi∥2ψ2
≤ CK2|a|2.

Remark 3.22. Note that in some cases, a tighter version of Hoeffding’s inequality, which is
evident from the argument above, may be useful: if X1, . . . , XN be independent, mean zero,
sub-Gaussian random variables, and a = (a1, . . . , aN) ∈ RN , then, for every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2∑N

1 a
2
i ∥Xi∥2ψ2

)
.
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As an immediate corollary of Hoeffding’s inequality Proposition 3.19 and the equivalence
of the sub-Gaussian properties (2) and (4) in Proposition 3.15, we get:

Theorem 3.23. (Khintchine’s inequality). Let X1, . . . , XN be independent sub-gaussian
random variables with zero means and unit variances, and let a = (a1, . . . , aN) ∈ RN . Prove
that for every p ∈ [2,∞) we have(

N∑
i=1

a2i

)1/2

≤

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
Lp

≤ CK
√
p

(
N∑
i=1

a2i

)1/2

where K = maxi ∥Xi∥ψ2 and C is an absolute constant.

Remark 3.24 (centering). In many results above we impose the assumption EX = 0 for
convenience. But note that this assumption is often non-essential. Indeed, in the case where
X1, X2, . . . , Xn are sub-Gaussian and EXi ̸= 0, we may center Xi by taking Yi = Xi − EXi.
It can be verified (see Lemma 2.6.8 of [53]) that Yi’s are also sub-Gaussian, and

||Yi||ψ2 = ||Xi − E(Xi)||ψ2 ≤ ∥Xi∥ϕ2 + ∥E(Xi)∥ψ2 ≤ C∥Xi∥ψ2 .

3.7 Sub-Exponential Random Variables

When independent random variables are not sub-Gaussian, we can no longer apply Hoeffd-
ing’s inequality to bound the tail probability for their sum. However, there are important
situations when this needs to be done, and is also (as we will see) possible. For example, for
a standard Gaussian random vector X ∈ Rn, that is, a random vector with i.i.d. coordinates
Xi ∼ N (0, 1), consider the random variable |X| – the length of the standard Gaussian ran-
dom vector. We could study |X|2 =

∑n
i=1X

2
i , which is the sum of i.i.d. random variables,

but unfortunately we cannot apply Hoeffding’s inequality: X2
i are not sub-Gaussian. Indeed,

the tails of X2
i decrease only exponentially fast:

P(X2
i ≥ t) = P(|Xi| ≤

√
t) ≈ 2e−

(
√
t)2

2 = 2e−
t
2 .

In this section, we are going to discuss such “sub-exponential” random variables, and study
their properties, which, as it turns out, are also very nice.

Definition 3.25 (Sub-exponential random variable). a random variable X is called sub-
exponential if there exists K > 0 such that

P(|X| > t) ≤ 2e−
t
K

for all t > 0.

Example 3.26 (Examples of sub-exponential random variables).
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• Let X be an exponential random variable, i.e., X has probability density function

fX(t) =

{
0, t < 0

e−t, t ≥ 0

Since P(X > s) = e−s, X is sub-exponential.

• If X ∼ N (0, 1), then X2 is sub-exponential.

Proposition 3.27 (Equivalent definitions of sub-exponential random variables). For a ran-
dom variable X, the following are equivalent (here the non-negative constants Ki differ from
each other at most by an absolute constant factors):

(a) P(|X| ≥ t) ≤ e
− t
K1 , for all t > 0;

(b) (E|X|p)
1
p ≤ K2p for all p ≥ 1;

(c) E(eλ|X|) ≤ eK3λ, for all λ ∈ [0, 1
K3

];

(d) E(e
|X|
K4 ) ≤ 2;

If we further assume EX = 0, then properties (a)-(d) are equivalent to

(e) E(eλX) ≤ eK
2
5λ

2
if |λ| ≤ 1

K5
.

The proof of the proposition is left as an exercise.

Definition 3.28. (ψ1-norm) We define the sub-exponential norm as ∥X∥ψ1 := inf{K > 0 :

P(|X| ≥ t) ≤ 2e−
t
K ,∀t ≥ 0}. Checking that this is a norm is left as an exercise.

Note that a sub-Gaussian random variable is always sub-exponential. But more is true:

Lemma 3.29. A random variable X is sub-Gaussian if and only X2 is sub-exponential, and
in fact ∥X2∥ψ1 = ∥X∥2ψ2

.

Proof. Suppose that X is sub-Gaussian. Then, for all t > 0, P (|X| ≥ t) ≤ 2e−t
2/K for some

constant K > 0. Therefore,

P(X2 ≥ t) ≤ P(|X| ≥
√
t) ≤ 2e−

t
K2 .

Therefore, X2 is sub-exponential. Reversing the calculation above establishes the reverse
implication. The relation between the norms also follows.

More generally,

Lemma 3.30. Suppose that X, Y are sub-Gaussian random variables. Then XY is sub-
exponential, and

∥XY ∥ψ1 ≤ ∥X∥ψ2 · ∥Y ∥ψ2 (14)
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Proof. WLOG, we can assume ∥X∥ψ2 = ∥Y ∥ψ2 = 1, otherwise replace X by X̃ = X
∥X∥ψ2

and

Y by Ỹ = Y
∥Y ∥ψ2

. Note that

∥X̃Ỹ ∥ψ1 ≤ ∥X̃∥ψ2∥Ỹ ∥ψ2

if and only if
∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2 .

Now, using property (d) in Proposition 3.27, we have E(eX2
) ≤ 2,E(eY 2

) ≤ 2. We claim
that

E(e|XY |) ≤ 2.

Indeed, recall Young’s inequality
a2 + b2

2
≥ |ab|

for all real numbers a, b, as follows from the fact that (a − b)2 ≥ 0 and (a + b)2 ≥ 0. Using
this inequality twice, we get:

E(e|XY |) ≤ E e
X2+Y 2

2 ( Young’s inequality)

= E
(
e
X2

2 · e
Y 2

2

)
≤ 1

2
· E(eX2

+ eY
2

) ( Young’s inequality)

=
1

2

(
E eX2

+ E eY 2
)

≤ 2.

Remark 3.31. Note that the constant 1 in Lemma 3.30 can only be there when the definitions
of ∥·∥ψ1 and ∥·∥ψ2 correspond to each other. Above, we used definitions (1) from Proposition
3.15 and (a) from Proposition 3.27.

Lemma 3.30 can also be derived using other equivalent definition of sub-Gaussian and
sub-exponential random variables correspondingly, so long as they match. This is left as a
home work.

Remark 3.32. Analogously to the centering trick of sub-Gaussians, if X is sub-exponential,
then X − EX is also sub-exponential, and

∥X − E(X)∥ψ1 ≤ C · ∥X∥ψ1

for some absolute constant C. (home work)
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3.8 Bernstein’s inequality

The Bernstein inequality for sub-exponential distributions provides a bound on the probabil-
ity that the sum of independent sub-exponential random variables deviates from its expected
value. One may draw a parallel between Bernstein’s inequality and Hoeffding’s inequality,
both in terms of the statement and the proof method. Historically, Berstein’s work was pub-
lished between 1920 and 1930, Chernoff’s paper appeared in 1952, and Hoeffding’s inequality
was published by him in 1963.

Theorem 3.33 (Bernstein’s inequality). Let X = (X1, X2, · · · , Xn) ∈ Rn be a random
vector, where the Xi are independent sub-exponential random variables with EX = 0. Then,
for all t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

−c ·min

 t2

n∑
i=1

∥Xi∥ψ1

,
t

max
i

∥Xi∥ψ1


 .

Here c > 0 is an absolute constant.

Proof. Let K = max
1≤i≤n

∥Xi∥ψ1 . Then, for all t ∈ R, using Markov’s inequality, we see that

P

(
n∑
i=1

Xi ≥ t

)
= P

(
exp

[
λ

n∑
i=1

Xi

]
≥ eλt

)

≤ e−λt · E exp

(
λ

n∑
i=1

Xi

)

= e−λt ·
n∏
i=1

E eλXi .

Since the Xi are centered, property (e) in Proposition 3.27 implies that

E eλXi ≤ ecλ
2∥Xi∥2ψ1

for all λ satisfying |λ| ≤ c/K. So for λ ≤ 1
K
,

E

(
n∑
i=1

Xi ≥ t

)
≤ e−λt ·

n∏
i=1

E eλXi

≤ e−λt ·
n∏
i=1

ecλ
2∥Xi∥2ψ1

= e−λt+cλ
2σ2

,
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where σ2 =
n∑
i=1

∥Xi∥2ψ1
. To minimize the expression in λ under the constraint λ ≤ 1

K
, we take

λ = min{ t
2cσ2 ,

c
K
}. Therefore,

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
min

{
t2

4cσ2
,
ct

2K

})
.

By a similar reasoning, we see that

P

(
n∑
i=1

Xi < −t

)
≤ exp

(
min

{
t2

4cσ2
,
ct

2K

})
.

The theorem then follows from combining the two bounds above.

Applying the Bernstein’s inequality to aiXi, we obtain the following inequality:

Corollary 3.34. Let X = (X1, X2, · · · , Xn) ∈ Rn be a random vector, where the Xi are
independent and sub-exponential, EXi = 0, and a ∈ Rn. Let K = max

i
∥Xi∥ψ1. Then for all

t ≥ 0,

P(|⟨X, a⟩| ≥ t) ≤ 2e
−c·min

{
t2

K2|a|2
, t
K∥a∥∞

}

If a = ( 1
n
, . . . , 1

n
), then we obtain the following inequality:

Corollary 3.35.

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−c ·min

{
t2

K2
,
nt

K

})
.

If the Xi are bounded by a universal constant, then the bound in Bernstein’s inequality
can be further strengthened. For example, see Theorem 2.8.4 in [53].

3.9 Concentration of the norm of a random vector with indepen-
dent sub-Gaussian coordinates

A model application of Bernstein’s inequality is the following inequality:

Theorem 3.36 (Concentration of the norm of a random vector with independent sub–
Gaussian coordinates). Let X = (X1, X2, . . . , Xn) be a random vector, where the Xi are
independent. Suppose that each Xi is sub-Gaussian with the constant at most K > 0, and
EX2

i = 1. Then,
∥X −

√
n∥ψ2 ≤ CK2,

where C is an absolute constant.
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Remark 3.37. Equivalently, the theorem states that

P(|X −
√
n| ≥ t) ≤ 2e−

ct2

K2

i.e. X belongs, with high probability, to a thin shell around the sphere of radius
√
n. This

result holds, and is interesting already when X is Gaussian.

Proof. Since each Xi is sub-Gaussian, we know that X2
i is sub-exponential and so is X2

i − 1.
Furthermore, ∥∥X2

i − 1
∥∥
ψ1

≤ C
∥∥X2

i

∥∥
ψ1

= C ∥Xi∥2ψ2

≤ CK2.

Without loss of generality, we may assumeK ≥ 1. Applying Bernstein’s inequality (Theorem
3.33) to 1

n
|X|2 − 1, we see that for any s > 0

P
(∣∣∣∣ 1n |X|2 − 1

∣∣∣∣ ≥ s

)
≤ e−

cn
K4 min{s,s2},

where we used that K ≥ 1. Note that for all z ≥ 0 and δ > 0, |z − 1| ≥ δ implies |z2 − 1| ≥
max(δ2, δ). Therefore,

P
(∣∣∣∣ 1√

n
|X| − 1

∣∣∣∣ ≥ δ

)
≤ P

(∣∣∣∣ 1n |X|2 − 1

∣∣∣∣ ≥ max(δ2, δ)

)
≤ 2e−

cn
K4 δ

2

Finally, taking t = δ
√
n yields

P
(∣∣|X| −

√
n
∣∣ ≥ t

)
≤ 2e−

ct2

K4 .

3.10 Sub-Gaussian Random vectors

A random vector is called sub-Gaussian if each of its one-dimensional projections is sub-
Gaussian:

Definition 3.38. Let X ∈ Rn be a random vector. Then, we say that X is sub-Gaussian
if for all θ ∈ Sn−1, the random variable ⟨X, θ⟩ is sub-Gaussian. The associated sub-Gaussian
norm ∥·∥ψ2

is defined by
∥X∥ψ2

:= sup
θ∈Sn−1

∥⟨X, θ⟩∥ψ2
.
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We will see that sub-Gaussian random vectors form a rich class which includes many
examples. Firstly, consider the standard Gaussian random vector X =∼ N (0, Id) on Rn:
the random vector whose coordinates Xi are independent standard normal random variables.
Then X is sub-Gaussian since all the ⟨X, θ⟩ ∼ N (0, 1) by (13), and therefore, they are also
sub-Gaussian.

Proposition 3.39 (An example of a sub-Gaussian random vector). Let X ∈ Rn be a random
vector such that X = (X1, · · · , Xn) is a random vector, the coordinates Xi are independent,
EXi = 0 and ∥Xi∥ψ2 ≤ K for K > 0. Then X is a sub-Gaussian random vector and
∥X∥ψ2

≤ c ·K.

Proof. By Proposition 3.19, for any θ ∈ Sn−1,

∥⟨X, θ⟩∥2ψ2
=

∥∥∥∥∥
n∑
i=1

θiXi

∥∥∥∥∥
2

ψ2

≤ C
n∑
i=1

|θi|2 ∥Xi∥2ψ2
≤ C max

1≤i≤n
∥Xi∥2ψ2

= CK2.

This implies the Proposition.

Therefore, the random vector uniformly distributed in {−1, 1}n is sub-Gaussian. Also
the uniform random vector in a cube is sub-Gaussian. More generally, any random vector
whose coordinates are independent and bounded is sub-Gaussian.

Remark 3.40. What if we do not assume independence in general? Let X = (X1, ..., Xn)
and all of its coordinates are K−sub-Gaussian, but possibly dependent. Since ∥ · ∥ψ2 is a
norm, we have

∥⟨X, θ⟩∥ψ2
≤

n∑
i=1

|θi| · ∥Xi∥ψ2
≤ K ·

n∑
i=1

|θi| ≤
√
nK.

In the last passage we used the fact that for any θ ∈ Sn−1,

n∑
i=1

|θi| ≤
√
n

√√√√ n∑
i=1

θ2i =
√
n,

and in fact the equality in the above is attained for θ = (1/
√
n, ..., 1/

√
n). Therefore,

P(|⟨X, θ⟩| ≥ t) ≤ 2e
ct2

nK2 ,

or in other words, X is a
√
nK-sub-Gaussian random vector. The loss of

√
n can be necessary

(as an example, one may consider X = (a, ..., a) where a is a fixed random variable), but it
could be problematic for applications.

In light of Remark 3.40 one may wonder if there is a sub-Gaussian random vector with
the sub-Gaussian constant which does not depend on the dimension but with dependencies
among the coordinates. Below we show one such example:
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Proposition 3.41. The uniform distribution on the sphere X ∼ Unif(
√
nSn−1) is sub-

Gaussian and ∥X∥ψ2
≤ C for some absolute constant C > 0 that does not depend on the

dimension.

Remark 3.42. The normalization
√
nSn−1 is natural because this means that EX2

i = 1 for
all i, so the Propositions 3.39 and 3.41 compare in a natural way.

Proof. For the standard Gaussian random vector g ∼ N(0, Id), the normalized random vector
g

∥g∥ ∼ Unif(Sn−1) (we live this as a home work). Therefore we can represent X =
√
ng
|g| .

Therefore, using the notation Z for the standard normal random variable, we get

P (⟨X, θ⟩ ≥ t) = P
(〈√

ng

∥g∥
, θ

〉
≥ t

)
= P

(√
n

∥g∥
· Z ≥ t

)
= P

({√
n

∥g∥
· Z ≥ t

}
∩
{
∥∥g∥ −

√
n∥ ≥ ct

√
n
})

+ P
({√

n

∥g∥
· Z ≥ t

}
∩
{
∥∥g∥ −

√
n∥ < ct

√
n
})

≤ P (Z ≥ (1− c)t) + e−c
′t2 ≤ 2e−c

′′t2 ,

where in the last passage we used Propositions 11 and 3.36.

3.11 Grothendieck’s inequality

We now apply our results about sub-Gaussian random vectors to deduce the following fact
from linear algebra, which is useful in semi-definite programming (see Vershynin [53]).

Theorem 3.43 (Grothendieck’s inequality). Suppose A is an m×n matrix with real entries
such that for all x, y ∈ {−1, 1}n (set of vectors with coordinates with +1 and −1) we have

|⟨Ax, y⟩| ≤ 1.

Then, for all vectors ui, vj ∈ Sn−1 we have∣∣∣∣∣∑
i,j

aij⟨ui, vj⟩

∣∣∣∣∣ ≤ K,

where K > 0 is an absolute constant.

Proof. First of all, note that the assumption can be equivalently stated as∣∣∣∣∣∑
i,j

aijxiyj

∣∣∣∣∣ ≤ max
i

|xi|max
j

|yj|
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for any collection x1, . . . , xm, y1, . . . , yn. The conclusion appropriately changes to∣∣∣∣∣∑
i,j

aij⟨ui, vj⟩

∣∣∣∣∣ ≤ Kmax
i

|ui|max
j

|vj|.

If we did not wish for an absolute constant, we could take K =
∑

i,j |aij|. However, our
goal is to obtain an absolute constant K (bounded above by 288, following [53]).

Suppose K > 0 is the optimal number for which Grothendick’s theorem holds for any
Hilbert space, and fix a collection of vectors ui, vj ∈ Sn−1 where

∑n
i,j=1 aij⟨ui, vj⟩ = K.

Consider random variables Ui and Vj, given by Ui = ⟨g, ui⟩ and Vj = ⟨g, vj⟩ where
g ∼ N(0, Id). One can show that E(UiVj) = ⟨ui, vj⟩ (which is left as a home work).

By construction, we have

K =
∑
i,j

aij⟨ui, vj⟩ =
∑
i,j

aij E(UiVj) = E
∑
i,j

aijUiVj.

If |Ui| ≤ R and |Vj| ≤ R almost surely for some R > 0, then

K ≤ R2
∑
i,j

aij ≤ R2,

where the last passage follows from the assumption of the Theorem: indeed, if we take all
the coordinates of x and y to be 1, we get

∑
aij ≤ 1.

Write Ui = U+
i + U−

i , where U
+
i = Ui · 1{|Ui|≤R} and U−

i = Ui · 1{|Ui|>R}. Similarly,
decompose Vi = V +

i + V −
i .

Note that |U+
i | ≤ R almost surely. We have

K = E
∑
i,j

aijUiVj = E

(∑
i,j

aijU
+
i V

+
j +

∑
i,j

aijU
+
i V

−
j +

∑
i,j

aijU
−
i V

+
j +

∑
i,j

aijU
−
i V

−
j

)

≤ R2 ·
∑
i,j

aij + E

(∑
i,j

aijU
+
i V

−
j +

∑
i,j

aijU
−
i V

+
j +

∑
i,j

aijU
−
i V

−
j

)

≤ R2 + E

(∑
i,j

aijU
+
i V

−
j +

∑
i,j

aijU
−
i V

+
j +

∑
i,j

aijU
−
i V

−
j

)
.

The first can be bounded using the fact that U+
i , V

+
i ≤ R by construction. For the other

three terms, we use the fact that E |U−
i |2 ≤ 4

R2 and E |V −
j |2 ≤ 4

R2 (which we leave as a home
work). Using Grothendieck’s inequality with the constant K (indeed, by our assumption it
holds with the constant K on any Hilbert space, so we are using it on the space of random
variables with the scalar product E(XY )), and using also the bound E |V +

j |2 ≤ E |Vj|2 ≤ 1,
we get

E
∑
i,j

aijU
−
i V

+
j =

∑
i,j

aij E(U−
i V

+
j ) ≤ K

(
E |U−

i |2
)1/2 (E |V +

j |2
)1/2 ≤ 2K

R
.
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The other two sums can be bounded in the same way. Putting everything together, we get

K ≤ R2 +
6K

R
.

Choosing R = 12 and solving the resulting inequality leads to K ≤ 288.

4 Random Matrices

Definition 4.1. A random N ×n matrix A ∈ RN×n is a matrix drawn in some random way.
We shall use notation 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
aN1 aN2 · · · aNn

 (15)

where the entries aij are random variables.

Example 4.2. Here are some examples of random matrices:

• When aij ∼ N(0, 1) and are independent, A is sometimes called a Gaussian random
matrix;

• More generally, we may consider aij to be independent random variables selected ac-
cording to some distributions;

• We may also consider a symmetric random matrix, by selecting the upper corner entries
independently, and reinforcing the rule aij = aji;

• We may also select one random variable a and fill each entry with it;

• We may select some specific entries randomly independently, while other entries would
have fixed values (for example zeroes);

• another example of a random matrix is a random rotation (selected uniformly from the
compact set of rotations).

We think about the random N × n matrix as about the operator on Rn into RN . We
will study various properties of random matrices assuming that N and n are very large (but
not reaching the infinity limit). This is what is informally called a non-asymptotic random
matrix theory. We will be using the methods of High-dimensional Probability which is only
one out of the myriad of methods and theories that come useful to study random matrices.
We will leave a lot of the relevant methods and questions and theories beyond the scope of
this course.

For convenience we will assume throughout that N ≥ n since most of the properties of a
matrix A which we study can be easily transferred to properties of AT .
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What properties of random matrices can be studied? One example is singular values.
Recall that the singular values of a matrix A ∈ RN×n are given by σi(A) =

√
λi(AAT ),

where λi are the eigenvalues, and we suppose that σ1(A) ≥ · · · ≥ σn(A). Recall that

σ1(A) = ∥A∥ = sup
x∈Sn−1

|Ax|;

σn(A) = inf
x∈Sn−1

|Ax|;

σi(A) = sup
dim(E)=i

inf
x∈S(E)

|Ax|,
(16)

where S(E) denotes the unit sphere in the subspace E. See Vershynin [53] for the details.

Definition 4.3. The condition number of a matrix A is defined as κ(A) = σ1(A)
σn(A)

.

The condition number measures how far a matrix A is from an isometry: indeed, when
A is an isometry, we have κ(A) = 1, and if A stretches the space in some direction then
κ(A) is large. The parameter κ(A) is directly involved in the speed of various algorithms for
solving systems of linear equations, and it is important in many applications to know that a
certain random matrix model has small enough condition number with high probability.

4.1 Norm of a sub-Gaussian random matrix

We start by studying the norm of a class of random matrices.

Theorem 4.4 (Norm of matrices with independent mean zero sub-Gaussian entries). Let
A be an N× n random matrix whose entries aij are independent, mean zero, sub-Gaussian
random variables. Suppose N ≥ n. Then, for any t > 0 we have

∥A∥ ≤ CK(
√
N + t) (17)

with probability at least 1− 2e−t
2
. Here K = maxi,j ∥aij∥ψ2 and C > 0 is some constant.

Proof. According to Theorem 5, let ϵ = 1
4
, we can find an ϵ-net N ⊂ Sn−1 and an ϵ-net

M ⊂ SN−1 where

#N ≤
(
2 + ϵ

ϵ

)n
, #M ≤

(
2 + ϵ

ϵ

)N
. (18)

Note that
sup

x∈Sn−1,y∈SN−1

⟨Ax, y⟩ ≥ sup
x∈N ,y∈M

⟨Ax, y⟩,

since the supremum over a larger set is larger than the supremum over a smaller set. However,

sup
x∈Sn−1,y∈SN−1

⟨Ax, y⟩ · (1− 2ϵ) ≤ sup
x∈N ,y∈M

⟨Ax, y⟩. (19)
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Indeed, suppose x ∈ Sn−1, x̃ ∈ N so that |x−x̃| ≤ ϵ, and y ∈ SN−1, ỹ ∈ M so that |y−ỹ| ≤ ϵ.
We have

|⟨Ax, y⟩ − ⟨Ax̃, ỹ⟩| = |⟨Ax, y⟩ − ⟨Ax, ỹ⟩+ ⟨Ax, ỹ⟩ − ⟨Ax̃, ỹ⟩|
≤ |⟨Ax, y − ỹ⟩|+ |⟨A(x− x̃), ỹ⟩|
≤ 2∥A∥ · ϵ
= 2ε · sup

x∈Sn−1,y∈SN−1

⟨Ax, y⟩,

(20)

which implies (19).
Going back to our aim, we have

P
(
∥A∥ ≥ C · (

√
N + t)

)
= P

(
sup

x∈Sn−1,y∈SN−1

⟨Ax, y⟩ ≥ C · (
√
N + t)

)

≤ P
(

sup
x∈N ,y∈M

⟨Ax, y⟩ ≥ C

2
· (
√
N + t)

)
= P

( ⋃
x∈N ,y∈M

{⟨Ax, y⟩ ≥ C̃ · (
√
N + t)}

)
≤

∑
x∈N ,y∈M

P
(
⟨Ax, y⟩ ≥ C̃ · (

√
N + t)

)
≤ sup

x∈N ,y∈M
P
(
⟨Ax, y⟩ ≥ C̃ · (

√
N + t)

)
· 9n+N .

The first inequality holds because of the inequality (19) and plugging 1− 2ϵ = 1
2
.

It remains to bound the term P
(
⟨Ax, y⟩ ≥ C̃ · (

√
N + t)

)
for fixed x ∈ Sn−1, y ∈ SN−1.

Note that

P
(
⟨Ax, y⟩ ≥ C̃ · (

√
N + t)

)
= P

(∑
ij

aij · xiyj ≥ C̃ · (
√
N + t)

)
. (21)

We claim that
∑

ij aij · xiyj is sub-Gaussian. Indeed,∣∣∣∣∣∑
ij

aij · ∥xiyj∥2ψ2

∣∣∣∣∣ ≤ C ′
∑
ij

|xiyj|2 · ∥aij∥2ψ2

≤ C ′
∑
ij

x2i y
2
j

= C ′

(
n∑
i=1

x2i

)(
N∑
j=1

y2j

)
= C ′.

(22)

The first inequality is because of Hoeffding inequality and the last equality is because x, y
are unit vectors. As a result, we have

P
(
⟨Ax, y⟩ ≥ C̃ · (

√
N + t)

)
≤ 2e−C

′′·(
√
N+t)2 . (23)
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Combining the previous results we have

P
(
∥A∥ ≥ C(

√
N + t)

)
≤ 9n+N · 2e−C′′·(

√
N+t)2 ≤ 2e−t

2

, (24)

provided that C > 0 is selected appropriately.

Corollary 4.5. Under the assumptions of Theorem 3.36 we have ∥A∥ ≤ C
√
N with proba-

bility at least 1− e−N (select t =
√
N). This means that E∥A∥ ≤ C̃

√
N .

Corollary 4.6. A is a n × n symmetric random matrix with the upper corner entries aij
being independent mean zero and K-sub-Gaussian. Then for for all t ≥ 0, we have

∥A∥ ≤ CK(
√
N + t)

with probability at least 1− 4e−t
2
.

Proof. Home work!

4.2 Two-sided bounds for intermediate singular values of tall enough
random matrices

Recall the following notion:

Definition 4.7. X ∈ Rn is called an isotropic random vector in Rn if EX = 0, and for all
θ ∈ Sn−1,

E⟨X, θ⟩2 = 1.

Note some similarity of this notion and the notion of sub-Gaussian random vectors – the
vectors for which ⟨X, θ⟩ is sub-Gaussian for every θ ∈ Sn−1.

Theorem 4.8 (Two-sided bound on sub-Gaussian matrices). Let A be an N × n matrix
whose rows Ai are independent, mean zero, sub-gaussian isotropic random vectors in Rn.
Then for any t ≥ 0 we have

√
N − CK2(

√
n+ t) ≤ σn(A) ≤ σ1(A) ≤

√
N + CK2(

√
n+ t) (25)

with probability at least 1− 2e−t
2
. Here K = maxi ∥Ai∥ψ2

.

Theorem 4.8 is stronger than Theorem 3.36 in the following ways:

• it is more general: for instance, it includes projections composed with matrices from
Theorem 3.36, random matrices whose rows are independent and sampled from the
unit sphere, and much more.

• it is a two-sided bound for all singular values (rather than just an upper bound for
only σ1(A).)
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• If N ≫ n, the bound is more precise, recovering the constant 1 in front of
√
N . Note

also that the taller the matrix, the lesser is the impact of the sub-Gaussian constant.

However, note that Theorem 4.8 only becomes applicable when N ≥ Cn for an appropriate
C > 0 that only depends on K > 0. This is very important to note.

We start the proof by pointing out

Claim 4.9. Let A be an N × n matrix and δ > 0. Suppose that

∥A⊤A− In∥ ≤ max(δ, δ2). (26)

Then
(1− δ)|x| ≤ |Ax| ≤ (1 + δ)|x| for all x ∈ Rn. (27)

The proof of this elementary fact is left as a homework.

Therefore, to establish Theorem 4.8, it is enough to prove that

∥ 1

N
ATA− In∥ ≤ K2max(δ, δ2)

with high probability, where δ = C
(√

n
N
+ t√

N

)
. The proof will be done via the epsilon-net

argument. As a first step, we shall show the point-wise bound, which relies on the Bernstein
inequality which we proved before.

Lemma 4.10. Let A be as in Theorem 4.8. Fix s > 0 and x ∈ Sn−1. Then

P
{∣∣∣∣ 1N |Ax|2 − 1

∣∣∣∣ ≥ s

}
≤ 2e−CN min{ s

2

K4 ,
s
K2 }. (28)

Proof. Consider the random vector

Ax =


⟨AT e1, x⟩
⟨AT e2, x⟩

...
⟨AT eN , x⟩

 . (29)

Note that the coordinates of Ax are independent by assumption. Also, by assumption,
since x ∈ Sn−1, we have ∥⟨AT ei, x⟩∥ψ2 ≤ K. Now, isotropicity implies that E⟨AT ei, x⟩2 = 1.
Thus, 1

N
|Ax|2− 1 is a sum of mean-zero sub-exponential independent random variables with

sub-Gaussian norms bounded by K2

N
. An application of Bernstein’s inequality (Theorem

3.33) thus finishes the proof.
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Proof of Theorem 4.8. Recall that there exists a 1/4-net N ⊂ Sn−1 with #N ≤ 9n such that
for any x ∈ Sn−1 there exists a y ∈ N such that |x− y| ≤ 1

4
, and therefore,

sup
x∈Sn−1

∥
(

1

N
A⊤A− In

)
x∥ ≤ 2max

x∈N

∣∣∣∣ 1N |Ax|2 − 1

∣∣∣∣ . (30)

The above conclusion is obtained in a similar fashion to the argument in the proof of the
Theorem 4.4. Therefore, using the union bound as before, we see:

P
{∥∥∥∥ 1

N
ATA− In

∥∥∥∥ ≥ K2max(δ, δ2)

}
≤ P

{
max
x∈N

∣∣∣∣ 1N ∥Ax∥2 − 1

∣∣∣∣ ≥ 2K2max(δ, δ2)

}
≤ 9n · sup

x∈Sn−1

P
{∣∣∣∣ 1N ∥Ax∥2 − 1

∣∣∣∣ ≥ CK2max(δ, δ2)

}
≤ 2e−Ct

2

,
(31)

where δ = C
(√

n
N
+ t√

N

)
. The last passage follows from plugging (31) into Lemma 4.10.

The result now follows in view of the Claim 4.9.

4.3 Matrix Bernstein Inequality

Theorem 4.11 (Matrix Bernstein Inequality). Let X1, X2, · · · , XN be independent mean-
zero n × n positive definite symmetric random matrices. Suppose ∥Xi∥ ≤ K for all i =
1, 2, . . . , n almost surely (i.e. with probability 1). Then, for all t ≥ 0,

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2n · e−

t2/2

σ2+Kt/3 , (32)

where σ2 = ∥
∑N

i=1 EX2
i ∥. Equivalently,

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2n · e−Cmin{ t

2

σ2
, t
k
}. (33)

Note that ∥
∑N

i=1Xi∥ is the norm of a random matrix and ∥
∑N

i=1 EX2
i ∥ is a norm of a

deterministic matrix.

Is it possible to deduce Corollary 4.6 from Theorem 4.11?
Suppose that

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann
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and we decompose A into N − Cn2 matrices where

X1 =


a11 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , X2 =


0 a12 0 · · · 0
a21 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ,

X3 =


0 0 a13 · · · 0
0 0 0 · · · 0
a31 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , . . .

Then, the statement of Corollary 4.6 follows:

P{∥A∥ ≤ (
√
n+ t)K} ≥ 1− 2e−Ct

2

. (34)

We leave as a homework exercise to check the above consideration.

Theorem 4.12 (Lieb’s Inequality). Let H be an n×n symmetric matrix. Consider f(X) =
tr(eH+logX) to be a function of the symmetric positive definite matrix X. Then f is a concave
on this space:

tr(eH+log X+Y
2 ) ≤ 1

2

(
tr(eH+logX) + tr(eH+log Y )

)
(35)

Recall Jensen’s Inequality (which works also for matrices): if f in concave, then Ef(X) ≤
f(EX). As a result, we get

Corollary 4.13 (Lieb’s Inequality + Jensen’s Inequality). Let H be a fixed n×n symmetric
matrix and Z be a random n× n symmetric matrix. Then we have

E
(
tr
(
eH+Z

))
≤ tr

(
eH+logEeZ

)
(36)

We are now ready to prove Theorem 4.11.

Proof of Theorem 4.11. Denote S =
∑N

i=1Xi, then

∥S∥ = max
i=1,··· ,N

|λiS| = max {λmax(S), λmax(−S)} (37)

Applying Chernoff trick, for all λ ∈ R,

P{λmax(S) ≥ t} = P{eλλmax(S) ≥ eλt}
≤ e−λtEeλλmax(S)

(38)

Using (37), we have P{∥S∥ ≥ t} ≤ 2nP{λmax(S) ≥ t}.
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Our goal is
E eλλmax(S) = Eλmax(e

λS) ≤ E
(
tr(eλS)

)
. (39)

The first equation is by definition 1.5 of functions on matrices, and the following inequality
is because for all non-negative definite matrices A with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,
we have λ1 ≤ λ1 + · · ·+ λn = tr(A).

Applying Theorem 4.12, we get

E
(
tr(eλS)

)
= E

(
tr(e

∑N−1
i=1 λXi+λXN )

)
≤ E

(
tr(e

∑N−1
i=1 λXi+logEeλXN )

)
(applying N times on XN−1, XN−2, . . . )

≤ tr
(
e
∑N
i=1 logEeλXi

)
= tr

(
elog

∏N
i=1 EeλXi

)
= tr

(
N∏
i=1

EeλXi
)
.

The second inequality here follows from conditioning : considering the random matrix X =
λXN and the fixed realization of the matrix H =

∑N−1
i=1 λXi, and then integrating the

expectation.
Now, all that remains is to bound E eλXi .

Lemma 4.14 (Homework). Let X be an n×n symmetric random matrix, EX = 0. Suppose
that E ∥X∥ ≤ K > 0 almost surely, then

E eλX ≤ eg(λ)EX
2

(40)

where g(λ) = λ2/2
1−|λ|K/3 for |λ| ≤ 3/K.

Remark 4.15. Note that the inequality is in the matrix sense (that is, A ≥ 0 if for all
x ∈ Rn, one has ⟨Ax, x⟩ ≥ 0).

We will leave the remaining proof of Theorem 4.11 to homework.

4.4 Non-asymptotic bounds for the smallest singular value of ran-
dom matrices

4.4.1 General discussion about the smallest singular value of a random matrix

Theorem 4.8 implies in particular that for N × n matrices with sub-Gaussian independent
entries aij such that E aij = 0, and E a2ij = 1, with probability ≥ 1− ect

2
, we have

√
N − cK(

√
n− t) ≤ σn(A) ≤ · · · ≤ σ1(A) ≤

√
N + cK(

√
n+ t).
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Keep in mind that this is only meaningful when the matrix is tall enough, that is, N ≥ CKn.
We discussed that in order to have the upper-bound on σ1(A) with high probability for a
random matrix A whose entries are independent, one really needs strong assumptions such
as sub-Gaussian entries, and even to guarantee the bound of order

√
N on average for σ1(A),

the boundedness of E a4ij is required (see e.g. Litvak, Spektor [24]). In sharp contrast, it turns
out that the sub-Gaussian assumption is not necessary for bounding the smallest singular
value

σn(A) = inf
x∈Sn−1

|Ax|

from below, and in fact, much weaker assumptions on the matrix suffice! This phenomenon
was discovered in a series of works of Tikhomirov [49], [50], followed by Rebrova, Tikhomirov
[32], Livshyts [25], Guedon, Litvak, Tatarko [12], Livshyts, Tikhomirov, Vershynin [26], and
others.

Let us investigate how the bound of the type

σn(A) ≥ ♣, (41)

can be proven (on average or with high probability), and what might be required of the
random matrix A for this. For a square n×n matrix A, the condition σn(A) = 0 is equivalent
to A being non-invertible. Therefore, in the case N = n, the condition (41) means that the
matrix A is “well invertible”, and having such an information about a random matrix could
be valuable for applications in various situations.

Let us start by making a naive attempt to use the net argument to bound σn(A) from
below. Let N ⊂ Sn−1 be an ε-net of size

(
3
ε

)n
. Then for all x ∈ Sn−1, there exits y ∈ N

such that |x − y| ≤ ε. That implies that |A(x − y)| ≤ ∥A∥ · ε. By triangle inequality,
|Ax| ≥ |Ay| − ∥A∥ · ε. Taking infimum on both sides, we get

inf
x∈Sn−1

|Ax| ≥ inf
y∈N

|Ay| − ∥A∥ · ε.

Therefore,

P (σn(A) ≤ ♣) = P
(

inf
x∈Sn−1

|Ax| ≤ ♣
)

≤ P
(
inf
y∈N

|Ay| ≤ ♣+ ∥A∥ · ε
)

= P

(⋃
y∈N

{
|Ay| ≤ ♣+ ∥A∥ · ε

})
≤ #N · sup

y∈N
P (|Ay| ≤ ♣+ ∥A∥ · ε) .

In case the assumptions on the random matrix allow us to have a good control of ∥A∥
then this is a promising start! However, as we mentioned earlier, one should not need to
make such strong assumptions in principle. Thus we are going to apply Theorem 2.23 (about
a more involved net argument) instead, in order to aim for a more general result. Theorem
2.23 was valid for all deterministic matrices, so we point out the following Corollary for
random matrices:
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Corollary 4.16. Suppose A is any random matrix, with E ∥A∥2HS <∞. Then for any ε > 0,
there is a net N ⊂ 3

2
Bn

2 \ 1
2
Bn

2 with #N ≤ (C/ε)n such that with probability at least 0.9 we
have for all x ∈ Sn−1 there is some y ∈ N such that

|A(x− y)| ≤
√
10ε ·

√
E ∥A∥2HS√

n
.

Proof. Take the net N from Theorem 2.23. Then for all x ∈ Sn−1 there is some y ∈ N such
that

|A(x− y)| ≤ ε · ∥A∥HS√
n

.

By Markov’s inequality,

P
(
∥A∥2HS ≤ 10E ∥A∥2HS

)
= 1− P

(
∥A∥2HS ≥ 10E ∥A∥2HS

)
≥ 1− 0.1 = 0.9.

This implies that with probability at least 0.9, for all x ∈ Sn−1 there is some y ∈ N such
that

|A(x− y)| ≤ ε ·
√
10E ∥A∥2HS√

n
.

4.4.2 Small ball (or anti-concentration) assumption and the tensorization lemma

In order to apply any kind of net argument, we need to be able to upper bound P(|Ay| ≤ ♣)
for a fixed y ∈ 3

2
Bn

2 \ 1
2
Bn

2 . To this end, we shall now have a discussion about a small ball
(or anti-concentration) assumption for a random variable and for a random vector.

Definition 4.17. Suppose ξ is a random variable. We say that it satisfies a small ball (or
an anti-concentration) assumption if for any z ∈ R, P(|ξ − z| ≤ a) ≤ b for some a > 0,
b ∈ (0, 1).

In other words, ξ does not concentrate around some point z (”small ball”) with too high
probability. Here are some examples:

• if ξ has a bounded density f (say, bounded by some constant K), then for any interval
I with length 2a,

P(ξ ∈ I) =

ˆ
I

f ≤ K|I| = 2aK.

One may let a = 1
4K

, b = 1
2
, and then for any z ∈ R, P(|ξ − z| ≤ a) ≤ b.
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• Consider the symmetric Bernoulli

ξ =

{
1, with probability 1

2
,

−1, with probability 1
2
.

Then for any z ∈ R, P(|ξ − z| ≤ 0.9) ≤ 1
2
.

• If ξ is a sub-Gaussian (in particular, if it is bounded), then it satisfies small ball
estimate for some a, b depending on K (this is left as a home work).

We shall rely heavily on the following Lemma which appears in Rudelson, Vershynin [35].

Lemma 4.18 (Tensorization Lemma). Let ξ1, ξ2, . . . , ξn be independent non-negative random
variables. Fix ε0 > 0, K > 0, and suppose that for any ε ≥ ε0,

P(ξk ≤ ε) ≤ Kε, k = 1, 2, . . . , n.

Then for some constant C > 0

P

(
n∑
j=1

ξ2j ≤ ε2n

)
≤ (CKε)n.

In other words, the length of a random vector with independent coordinates satisfying small
ball satisfies small ball estimate.

Proof. Assume ε ≥ ε0. Using Markov’s inequality and the independence of ξj’s we have:

P

(
n∑
j=1

ξ2j ≤ ε2n

)
= P

(
exp

{
− 1

ε2

n∑
j=1

ξ2j

}
≥ e−n

)

≤ en · E exp

{
− 1

ε2

n∑
j=1

ξ2j

}

= en ·
n∏
j=1

E exp

{
− 1

ε2
ξ2j

}
.

Writing out the expectation and changing variables t = e−s
2
, we get

E exp

{
− 1

ε2
ξ2j

}
=

ˆ ∞

0

P
(
exp

{
− 1

ε2
ξ2j

}
≥ t

)
dt

=

ˆ ∞

0

2se−s
2P (ξj ≤ εs) ds.

Since ε ≥ ε0, if s ≥ 1, then εs ≥ ε0 and P (ξj ≤ εs) ≤ Ksε. If s ≤ 1, then

P (ξj ≤ εs) ≤ P (ξj ≤ ε) ≤ Kε.
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So we can break the integral into two parts and get, for some constant C1 > 0:

ˆ ∞

0

2se−s
2P (ξj ≤ εs) ds ≤

ˆ 1

0

2Kεse−s
2

ds+

ˆ ∞

1

2Kεs2se−s
2

ds ≤ C1Kε.

Combining all of the above and letting C = e · C1, we get

P

(
n∑
j=1

ξ2j ≤ ε2n

)
≤ en · (C1Kε)

n = (CKε)n.

Definition 4.19 (High-dimensional version of the small ball assumption). A random vector
X is called anti-concentrated if there exist a > 0, b ∈ (0, 1) such that for any θ ∈ Sn−1,

P
(
|⟨x, θ⟩| < a

)
< b.

Claim 4.20 (Home work). Let X be a random vector with independent entries. If for each
i = 1, 2, . . . , n, P(|Xi| < a) < b, then there is some constant C such that for any θ ∈ Sn−1,

P
(
|⟨x, θ⟩| < a

)
< Cb.

The following Lemma is a slightly stronger version of Lemma 4.18, whose proof we leave
as a home work.

Lemma 4.21. Suppose A is an N × n random matrix with independent rows A⊤ei, i =
1, 2, · · · , N , and suppose for any θ ∈ Sn−1,

P
( ∣∣⟨A⊤ei, θ⟩

∣∣ < a
)
< b.

Then for any x ∈ Sn−1,

P
(
|Ax| ≤ c

√
N
)
≤ e−c1N ,

where c, c1 > 0 only depend on a and b.

We point out also the following

Corollary 4.22 (Claim 4.20 combined with Lemma 4.21). Suppose A is an N × n random
matrix with independent entries aij. If for all i, j and some a > 0, b ∈ (0, 1),

P(|aij| < a) < b,

then for any x ∈ Sn−1,

P
(
|Ax| ≤ c

√
N
)
≤ e−c1N ,

where c, c1 > 0 only depend on a and b.
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4.4.3 The smallest singular value of tall random matrices

We are finally ready to establish our first bound on the smallest singular value of a random
matrix. So far, we will require the strong assumption that N ≥ Cn. The statement below
appears as Proposition 1 in Livshyts [25].

Proposition 4.23 (Tall matrices with possibly dependent columns). Let A be an N × n
random matrix whose rows AT ei are independent. Given a > 0 and b ∈ (0, 1), suppose that
for every row A⊤ei and any θ ∈ Sn−1,

P
(
|⟨A⊤ei, θ⟩| < a

)
< b.

Also assume that
E ∥A∥2HS =

∑
i,j

E a2ij ≤ KNn

for some K > 0. Then there exist C1 ≥ 1, and c2, c3 > 0 which only depend on a, b and K
such that whenever N ≥ C1n then

P
(
σn(A) ≤ c2

√
N
)
≤ 0.2.

Consequently, Eσn(A) ≥ c3
√
N .

Proof. Since E ∥A∥2HS ≤ KNn, applying Corollary 4.16 with ε = 1/4, we get that there is
a net N such that with probability at least 0.9 for any x ∈ Sn−1, there is some y ∈ N such
that

|A(x− y)| ≤
√
10ε

√
KNn√
n

= C̃
√
N.

We use the net argument to upper bound the probability

P
(
σn(A) ≤ c2

√
N
)
= P

(
inf

x∈Sn−1
|Ax| ≤ c2

√
N

)
≤ P

(
inf
y∈N

|Ay| ≤ c̃2
√
N

)
+ 0.1

≤ #N · sup
x∈Sn−1

P
(
|Ay| ≤ c̃2

√
N
)
+ 0.1.

By Corollary 4.16 we have #N ≤ eCn for some constant C > 0. By Lemma 4.21, we have

sup
x∈Sn−1

P
(
|Ay| ≤ c̃2

√
N
)
≤ e−c1N .

Hence if N ≥ C1n for C1 ≥ 1 large enough, we are able to conclude that

P
(
σn(A) ≤ c2

√
N
)
≤ ecn · e−c1N + 0.1 ≤ 0.2.
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Proposition 4.23 should be compared with Theorem 4.8: while it only discusses the
smallest singular value, the assumptions on the matrix are a lot less demanding. Keep in
mind also that Theorem 4.8 implies sharpness of the estimate in the Proposition 4.23 at least
in many important situations. In both cases the assumption N ≥ Cn is crucial. Soon we
will see that the situation is quite different for square matrices, and the related results are
far more complicated.

Let us formulate a corollary of Proposition 4.23 combined with Claim 4.20:

Corollary 4.24. Let A be an N × n random matrix with the following properties:

1. All entries are independent;

2. The entries are Uniformly Anti-Concentrated (UAC), that is, there exist a > 0 and
b ∈ (0, 1) such that P(|aij| ≤ a) ≤ b;

3. E ∥A∥2HS ≤ K ·Nn.

If N ≥ Cn for an appropriate C ≥ 1 that depends on a and b, then Eσn(A) ≥ C1

√
N.

What if we want this estimate to hold with high probability rather than on average, that
is, would it be possible to prove

P(σn(A) ≤ C
√
N) ≤ e−GN

in place of
P(σn(A) ≤ C

√
N) ≤ 0.1?

Turns out, this is possible! Analyzing the proof, one may note that the 0.1 error in the
probability estimate came from the fact that our net only works with constant probability
(as was obtained in Corollary 4.16 using Markov’s inequality). But it is possible to construct
a net with similar properties which would in fact work well with high probability! We discuss
this construction below.

4.4.4 A net construction which works with high probability for matrices with
independent columns

Theorem 4.25 (Livshyts [25]). Fix n ∈ N , ϵ ∈ (0, 0.1). Then there exists a net N ⊂
3
2
Bn

2 \ 1
2
Bn

2 with #N ≤ (50
ϵ
)n such that whenever we consider an N × n random matrix A

with independent columns then with probability at least 1− e−5n, the following holds: for all
x ∈ Sn−1, there exists y ∈ N such that |A(x− y)| ≤ 10√

n
·
√

E∥A∥2HS
One should compare Theorem 4.25 to Corollary 4.16. On one hand, the probability in

the new result is much larger: 1 − e−5n >> 0.9 when n → ∞. On the other hand, we pay
by requiring the matrix to have independent columns.

Before we discuss the proof of Theorem 4.25, we state the following improvement of
Corollary 4.24:
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Corollary 4.26. Let A be an N × n random matrix with the following properties

1. All entries are independent

2. The entries are Uniformly Anti-Concentrated (UAC).

There exists a > 0, b ∈ (0, 1) such that P (∥aij∥ ≤ a) ≤ b

3. E ∥A∥2HS ≤ K ·Nn

This implies that if N ≥ Cn, then P(bn)(A) ≤ C
√
N) ≤ e−Cn

Corollary 4.26 follows from Theorem 4.25 verbatim as Corollary 4.24 follows from Corol-
lary 4.16, so we leave the details to the reader.

4.5 Proof of Theorem 4.25.

Recall that earlier, we constructed a net on the sphere which was a subset of the cubic lattice
net. Here, inspired by Rebrova and Tikhimorov [32], we will instead cover the sphere by
coordinate boxes, that is, sets of the form [a1, b1]× [a2, b2]× · · · × [an, bn].

Step 1: Cover the sphere by coordinate boxes and consider the associated random
rounding. Up to translation, a coordinate box P is determined by the lengths of its sides
α1, α2, . . . , αn ∈ [0, 1], or in other words, a coordinate box

P = [0, α1]× ...× [0, αn]

is determined by the vector α = (α1, . . . αn).

Fix also a parameter κ ≥ 1.
Consider

Ωκ = {α ∈ Rn : αi ∈ [0, 1] ∀i and
n∏
i=1

αi ≥ κ−n}

This is the “set of admissible parallelepipeds”, a set of coordinate boxes that fit inside the
cube with volume no smaller than κ.
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Lemma 4.27. Fix κ ≥ 1, ϵ ∈ (0, 0.1), α ∈ Ωκ, and consider Pα = [0, α1] × · · · × [0, αn].
Then, there exist y1, . . . , ym ∈ 1.4Bn

2 so that Sn−1 ⊂
⋃m
i=1(yi +

ϵ√
n
P ) and m ≤ (10

ϵ
κ)n.

This fact is proved by considering

Fα =

(
ϵα1√
n
Z× ...× ϵαn√

n
Z
)
∩
(
3

2
Bn

2 \ 1

2
Bn

2

)
, (42)

and letting yi to be the centers of the lattice boxes forming Fα. The details are left as a
home work.

Remark 4.28. Compare with the corresponding statement about covering the sphere with
the cubes: the size of the net is κn larger.

Using the net from the Lemma 4.27 and the random rounding construction, we deduce
the following.

Lemma 4.29. Pick an α ∈ Ωκ. Let A be any N × n matrix. There exists a finite set
Fα ⊂ 3

2
Bn

2 \ 1
2
Bn

2 satisfying #Fα ≤ (10κ
ϵ
)n, such that for all x ∈ Sn−1, there is y ∈ Fα with

|A(x− y)| ≤ ε√
n

√√√√ n∑
i=1

α2
i |Aei|

2.

Keep in mind here that Aei are columns of A and |Aei| are lengths of columns. Recall that
we earlier proved this when all α1 = α2 = . . . = αn, in which case we get

∑n
i=1 α

2
i |Aei|

2 =
∥A∥2HS.

Proof. Consider Fα as in (42). By Lemma 4.27, the size of this net is appropriate, and we
have the covering

Sn−1 ⊂
m⋃
i=1

(yi +
ϵ√
n
P ).

Fix x ∈ Sn−1 and consider a box P from this covering which contains x. Construct an
“α-associated random rounding” ηx, that is, a random vector ηx which takes values in the
vertices of P , such that the coordinates of ηx are independent and E ηx = x.

58



Then, considering the expected value with respect to the randomness of the random
rounding, we get, as before,

E |A(ηx − x)|2 = E
N∑
i=1

⟨AT ei, ηx − x⟩2

≤ ϵ2

n

n∑
i=1

α2
i · |Aei|2,

by the same reasoning as in the proof of Theorem 2.23, in the equation (8). Therefore, by
Markov’s inequality, for all x ∈ Sn−1, there exists y ∈ Fα such that

|A(x− y)| = ϵ√
n

√√√√ n∑
i=1

α2
i · |Aei|2.

Note that we can indeed guarantee that y ∈ Fα because we know that y takes values in the
vertices of one of the boxes forming the net Fα.

This inspires us to formulate the following definition:

Definition 4.30 (A proxy for the Hilbert Schmidt Norm). Let A be an N × n matrix. We
define a functional that will serve as a proxy for the squared Hilbert-Schmidt norm by

Bκ(A) := min
α∈Ωκ

n∑
i=1

α2
i · |Aei|2.

Note that Bκ(A) ≤ ∥A∥2HS =
∑n

i=1 |Aei|2. Therefore, using Lemma 4.29 we can extend
Theorem 2.23 as follows:

Corollary 4.31. Fix κ ≥ 1 and ϵ ∈ (0, 0.1). Let A be an N × n matrix. Then there exists a
net F ⊂ 3

2
Bn

2 \ 1
2
Bn

2 such that for all x ∈ Sn−1 there exists y ∈ F with

|A(x− y)| ≤ ϵ√
n

√
Bκ(A),

such that #F ≤
(
10κ
ϵ

)n
.

Unfortunately, however, Corollary 4.31 is useless! Indeed, the value of the vector α which
gives the minimum in Bκ(A) depends on the matrix A, and therefore the net in Corollary
4.31 depends on the matrix. In order to apply this to study random matrices, we would like
to consider the union of all the nets associated with the admissible boxes in Ωκ, but there is
infinitely many of them! However, it turns out that we can discretize the set Ωκ, and only
consider finitely many nets which would “represent” all the possible nets. We will then be
able to construct our desired net as a union of those representative nets.
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Step 2: “Nets on nets ” Next, we would like to switch the quantifiers in the previous
statement: in place of the net that depends on the matrix, we need to have a fixed net,
which serves all matrices. For that purpose we shall consider a net on the set of admissible
nets.

Lemma 4.32 (nets on nets). There exist absolute constants C,C ′, C ′′ > 0 such that for any
κ > 1 and µ ∈ (0,

√
n) there exists a collection F ⊂ Ωκ1+µ of cardinality

max

((
C

µ

)n−1

, (C ′µ)
C′′n
µ2

)
, (43)

such that for any α ∈ Ωκ there exists a β ∈ F such that for all i = 1, ..., n we have α2
i ≥ β2

i .
In particular, for any N × n matrix A, we have

Bκ(A) ≥ min
β∈F

n∑
i=1

β2
i |Aei|2.

Proof. Consider a transformation T : Rn → Rn given by

Tα =

...,
√

log | 1
αi
|

n log κ
, ...

 .

Denote B = Bn
2 ∩ {xi ≥ 0∀i = 1, ..., n}. Then, by definition of Ωκ we have

TΩκ = B,

and
T−1 ((1 + µ)B) = Ωκ1+µ .

Note that this mapping is a bijection on Ωκ as well as on Ωκ1+µ .
Consider a lattice covering N of the boundary of B with translates of µ√

n
Bn

∞. In each

cube x+ µ√
n
Bn

∞ from this covering, pick such a vertex v(x) that for all y ∈ x+ µ√
n
Bn

∞, and

for all i = 1, ..., n, one has yi ≤ v(x)i. Define S = {v(x) : x ∈ N}. Note that S ⊂ (1 + µ)B,
and that

#S = #N ≤ min

((
C

µ

)n−1

, (C ′µ)
C′′n
µ2

)
.

Note that the power n− 1 comes from the fact that we are covering the sphere rather than
the ball.

Let F = T−1S ⊂ Ωκ1+µ . For every α ∈ Ωκ let a = Tα ∈ B. Then take the b ∈ S ⊂
(1 + µ)B such that a2i ≤ b2i ; consider β ∈ F defined as β = T−1b. Since T is coordinate-vise
decreasing, we have, for all i ∈ {1, ..., n}, the inequality α2

i ≥ β2
i , as desired.
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Finally, we deduce the result about a net which serves all deterministic matrices.

Theorem 4.33 (A net for deterministic matrices). Fix n ∈ N, ϵ ∈ (0, 1
10
), κ ≥ 1 Consider

any S ⊂ Sn−1. There exists a net N ⊂ 3
2
Bn

2\1
2
Bn

2 , such that for any N × n matrix A, the
following holds: for every x ∈ S there exists y ∈ N such that

|A(x− y)| ≤ 100√
n

√
Bκ(A),

and

#N ≤
(
50κ log κ

ϵ

)n
.

Proof. Let µ = 2 and consider a net β1, β2, . . . , βm on Ωκ with m ≤ 5n, as was described in
Lemma 4.32. For each βi, we consider a box Pβi , and the lattice net Fi generated by ϵ√

n
PBi .

By Lemma 4.27 applied with α = βi, for all x ∈ Sn−1, there exists y ∈ Fi such that

|A(x− y)| ≤ ϵ√
n

√√√√ n∑
j=1

(βji )
2|Ajej|2.

By Lemma 4.32,

min
i

n∑
j=1

(βji )
2|Ajej|2 ≤ Bκ(A).

Therefore, if we consider our net to be N = ∪mi=1Fi, the conclusion follows.

Note that Theorem 4.33 improves upon Theorem 2.23 since Bκ(A) ≤ ∥A∥2HS. It turns
out that when the matrix A is random and it has independent columns, this improvement is
really crucial, since Bκ(A) has strong large deviation properties, while ∥A∥2HS is only larger
than a multiple of its average with constant probability (as follows from Markov’s inequality).
We explore these strong properties in our next step.
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Step 3: Large deviation of Bκ. Note that if y1, . . . , yn ≥ 0 are fixed and we constrain∏n
i=1 ai = C1 for some constant C1 > 0, then the quantity

∑
i aiyi is minimized precisely

when ai =
C2

yi
for all i and some constant C2 > 0. This inspires our next proof.

Lemma 4.34. Let A be an N × n matrix with independent columns. Fix κ ≥ 1. It holds
that

P
{
Bκ(A) ≥ 10E ∥A∥2HS

}
≤ (Cκ)−2n,

for some absolute constant C > 0.

Proof. For all i ∈ {1, . . . , n}, define the random variables Yi := |Aei| and

ai :=

√
min

{
1,

EY 2
i )

Y 2
i

}
.

Let a be a vector with coordinates ai. We note that

P
{
Bκ(A) ≥ 10E ∥A|∥2HS

}
= P

{
min
α∈Ωκ

n∑
i=1

α2
iY

2
i ≥ 10E ∥A∥2HS

}

≤ P

{
n∑
i=1

a2iY
2
i ≥ 10E ∥A∥2HS

}
+ P{a ̸∈ Ωκ}

= P

{
n∑
i=1

min

{
1,

EY 2
i )

Y 2
i

}
Y 2
i ≥ 10E ∥A∥2HS

}
+ P{a ̸∈ Ωκ}

≤ P

{
n∑
i=1

EY 2
i ≥ 10E ∥A∥2HS

}
+ P

{
n∏
i=1

EY 2
i

Y 2
i

≤ κ−2n

}

≤ (Cκ)−2n E
n∏
i=1

Y 2
i

EY 2
i

= (Cκ)−2n,

where the last inequality follows by noting
∑

i EY 2
i = E ∥A∥2HS (and therefore, the first

summand is zero), and by applying Markov’s inequality to the second term.

|A(x− y)| ≤
c
√

E ∥A∥2HS√
n

,

where c > 0 is an absolute constant.

Proof of Theorem 4.25. The assertion follows by applying Lemma 4.34 and Theorem 4.33
with κ = 5.

Remark 4.35 (Important remark). Suppose ϵ = 0.1 and κ = 3. Then the net described in
Theorem 4.25 is roughly of order 200n whereas the usual ϵ−net would be of order roughly
30n. Note furthermore that the net from Theorem 4.25 cannot be smaller than of size 2n,
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because each box in the net has as many as 2n vertices, and the net is formed by the vertices
of many such boxes. Often this aspect does not matter.

However, suppose S ⊂ Rn is a “small set” which can be covered by m ϵ−balls, where
m ≤ 1.01n. So S is in this sense a lot smaller than the whole sphere (which, like we said,
would require 30n balls). Then S can also be covered by parallelepipeds and one can constrict
a net on S with properties like the ones in Theorem 4.25. And furthermore, for any γ > 0
one can have a net F near S of size #F ≤ (1+γ)nm (recall that m is the number of ϵ−balls
covering S), and such that for any x ∈ S one has y ∈ F so that with probability at least
1− e−cn one has

|A(x− y)| ≤
C(γ)ϵ

√
E ∥A∥2HS√
n

.

Here the assumptions on A are the same as in Theorem 4.25. For the full statement and the
details, see Livshyts [25].

At the first glance, this may seem surprising: how could one guarantee a net made out
of vertices of some boxes of size less than, say 1.2n, if there is 2n vertices already for one
box? The trick is that a lot of the vertices could be “dismissed” from this construction. This
requires some further ideas and technicalities which we leave beyond the scope of this course.
See the details in [25], particularly in Lemma 3.10.

4.6 The smallest singular value of square random matrices

The above concentration results for the smallest singular value of A rely upon taking the
number of rows of A to be sufficiently large relative to the number of columns. Having
N ≥ Cn allowed the term

sup
x∈Sn−1

P(|Ax| ≤ ♣) ≤ e−cN

compensate for the eC1n factor coming from the union bound applied over the ϵ-net. The
standard ϵ-net argument no longer works if A is a square matrix, even if one imposes addi-
tional strong assumptions on the matrix – it doesn’t even work for Gaussian random matrices.
However, when an idea does not work, it might be a good strategy to find a way to still
apply it to make at least some progress.

In what follows we describe a foundational idea of Rudelson and Vershynin about a
decomposition of the sphere. Instead of using an ϵ-net to cover the whole sphere Sn−1, we
can construct an ϵ-net of prescribed size ecn for a “small but well spread” subset S ⊆ Sn−1.
“Small” in this context means that the set has a small covering number, and “well spread”
means that its complement is in some sense predictable and controllable using different ideas.
The smallest singular value can then be analyzed by noticing that

P
(

inf
x∈Sn−1

|Ax| ≤ ♣
)

≤ P
(
inf
x∈S

|Ax| ≤ ♣
)
+ P

(
inf
x∈Sc

|Ax| ≤ ♣
)
,

and considering the infima infx∈S |Ax| and infx∈Sn−1 |Ax| separately.
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Definition 4.36. For all δ > 0 define the set

Sparse(δ) :=
{
x ∈ Sn−1 : #{i : xi = 0} ≥ δn

}
.

In other words, the set Sparse(δ) is the intersection of Sn−1 with the union of all coordinate
sub-spaces of dimension δn.

The following Lemma is a crucial fact about sparse vectors: the set of sparse vectors can
be covered by a relatively small number of ϵ-balls.

Lemma 4.37. For all ϵ > 0 and δ ∈ (0, 1/2) one has

Sparse(δ) ⊂
m⋃
i=1

(yi + ϵBn
2 ),

where m ≤ ϵ−c1δ log
1
δ
n+c2 and c1, c2 > 0 are absolute constants.

Proof. Suppose for simplicity that δn is an integer (the proof works along similar lines either
way). There are

(
n
δn

)
sub-spaces in Rn of dimension δn. Note, using Stirling’s formula:(

n

δn

)
=

n!

(δn)!(n− δn)!
= C

nne−n

(δn)δne−δn((n− δn)n−δne−n+δn
≤ enδ log

1
δ
+c,

where in the last passage one may use elementary calculus, see e.g. [58].
We deduce that

m ≤
(
3

ϵ

)δn(
n

δn

)
≤ ϵ−δneH(δ)n = ϵ−δne−(δ log δ+(1−δ) log(1−δ))n ≤ ϵ−δne2δ log(

1
δ
)n+c,

which yields the conclusion.
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4.6.1 Rudelson–Vershynin decomposition of the sphere

As we discussed earlier, we want to decompose the unit sphere into two disjoint subsets, one
of which would have a small covering. Sparse vectors are a good candidate for this first set.
However, that is not enough: the set of sparse vectors has measure zero, and removing it
does not achieve much... So instead we will do a net argument on the set of vectors which
are close to sparse vectors. These are called compressible vectors. Here is the formal

Definition 4.38 (the Rudelson-Vershynin decomposition of the sphere). For all δ > 0 and
ρ > 0, define the compressible vectors to be the set

Comp(δ, ρ) = {x ∈ Sn−1 : d(x, Sparse(δ)) ≤ ρ}
= {x ∈ Sn−1 : ∃ y ∈ Sparse(δ) s.t. |x− y| ≤ ρ},

and the incompressible vectors to be their complement

Incomp(δ, ρ) = Sn−1 \ Comp(δ, ρ).

Lemma 4.37 implies:

Lemma 4.39. For all c ∈ [0, 1] and ϵ ∈ [0, 1] there exist δ > 0 and ρ > 0 such that

Comp(δ, ρ) ⊂
m⋃
i=1

(y + ϵBn
2 )

where m ≤ ρ
ϵ
ecn ≤ ec1n, with c depending on ϵ and δ, and c1 depending on ϵ, ρ, δ.

The following claim follows from Lemma 4.39 and Remark 4.35:

Claim 4.40. For any c ∈ [0, 1] there exist ϵ ∈ (0, 1
4
), δ, ρ ∈ (0, 1), and an ϵ-net N ⊂

3
2
Bn

2 \ 1
2
Bn

2 with #N ≤ ecn, such that the following holds. Let A be an N × n random
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matrix with independent columns. With probability at least 1 − ecn, one has that for all
x ∈ Comp(δ, ρ), there exists y ∈ N such that

∥A(x− y)∥ ≤
C
√

E ∥A∥2HS√
n

.

Here C > 0 depends only on C, δ, ρ.

The Claim above will be useful for us when we estimate the infimum of |Ax| over the
set of compressible vectors. But for the time being, let us discuss how the smallest singular
value of square random matrices actually behaves, and state some relevant results.

4.6.2 Survey of results regarding the smallest singular value of square random
matrices

Theorem 4.41 (Rudelson-Vershynin). Let A be an n× n random matrix with entries that
are iid, K-sub-Gaussian, mean-zero, and variance-one. For all ϵ > 0 one has

P
{
σn(A) ≤

ϵ√
n

}
≤ Cϵ+ e−c1n,

where C and c1 are positive constants depending only on K.

In the analogous setting for tall matrices N ≥ Cn, we established that Eσn(A) ≥ c̃
√
N ,

which tends to infinity. Theorem 4.41 states something quite different for square matrices:
the smallest singular value turns out to be of order 1√

n
on average, and in fact this estimate

is sharp (up to an absolute constant), see Rudelson, Vershynin [36], Tatarko [44]. Let us
consider two key examples which demonstrate the sharpness also of the probability estimate
in Theorem 4.41.

Example 4.42. Suppose the entries of A are i.i.d. distributed as standard Gaussian random
variables. Szarek [43] and Edelman [8] proved that for all ϵ > 0 one has

P
{
σn(A) ≤

ϵ√
n

}
≤ ϵ.

Note that this implies P{σn(A) = 0} = 0, and this phenomenon would more generally be true
for any random matrix whose entries have continuous distribution, even without the mean
zero assumption, see Tikhomirov [51].

Example 4.43. Suppose the entries aij are i.i.d. symmetric Bernoulli random variables
with parameter 1/2, i.e. aij ∼ Unif{−1, 1}. What can be said about the invertibility of A?
One has for instance

P{σn(A) = 0} ≥ P {two rows are the same or two columns are the same}
≥ (n2 + o(1))2−n.
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A conjecture of Erdős stated that this bound is sharp up to a polynomial error. This conjecture
was essentially resolved by Tikhomirov, who proved that

P{σn(A) = 0} ≤ (2 + o(1))−n.

This shows that for random matrices with independent discrete entries, one generally expects
to have

P{σn(A) = 0} = e−n.

Combining the terms in Examples 1 and 2 shows that the probability estimate in Theorem
4.41 is natural.

Following the result from Theorem 4.41, Rebrova and Tikhomirov were able to relax the
sub-Gaussian assumption, instead considering uniformly anti-concentrated random variables.

Theorem 4.44 (Rebrova-Tikhomirov [32]). Let A be a random matrix, whose entries aij
are zero-mean, unit variance, and i.i.d. If aij are uniformly anti-concentrated (UAC), i.e.,
P(aij < a) < b for fixed a > 0, b ∈ (0, 1), then for every ε > 0,

P
(
σn(A) ≤

ε√
n

)
≤ cε+ e−c1n,

where c, c1 are constants that depend on a and b.

The proof technique for Theorem 4.44 uses a more clever ε-net argument than The-
orem 4.41, which depends on the norm of the matrix. In particular, every assumption
including E(aij) = 0, E(a2ij) = 1, and UAC are used in the net construction. A further
generalization of the result investigates removing the assumption that the entries are all
identically distributed, zero-mean, and unit variance.

Theorem 4.45 (Livshyts [25]). Let A be a random matrix, whose entries aij are independent.
If E ∥A∥2HS ≤ Kn2, and aij are uniformly anti-concentrated (UAC), i.e., P(aij < a) < b for
fixed a > 0, b ∈ (0, 1), then for every ε > 0,

P
(
σn(A) ≤

ε

n

)
≤ cε+

c1√
n
, (44)

where c, c1 are constants that depend on a and b. Moreover, if the rows of A are i.i.d., then

P
(
σn(A) ≤

ε√
n

)
≤ cε+ e−c1n, (45)

where c, c1 are constants that depend on a and b.

Remark 4.46. The polynomial bound from (44), while easier to prove, is a strictly weaker
bound than the exponential bound of (45), which recovers the bound from Theorem 4.44
for the i.i.d. case. Recovering the exponential bound (45) requires an additional tool called
the “Least Common Denominator” (LCD) of vectors. If one only cares about the limit as
n→ ∞, this is unimportant, however, in the case of square matrices, we may care about the
conservatism of this bound. The proof of the polynomial bound (44), is worked out in the
next subsection.
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In a future result, Livshyts, Tikhomirov, and Vershynin were able to prove the same
exponential bound without the i.i.d. row assumption.

Theorem 4.47 (Livshyts, Tikhomirov, Vershynin [26]). Let A be a random matrix, whose
entries aij are independent. If E ∥A∥2HS ≤ Kn2, and aij are uniformly anti-concentrated
(UAC), i.e., P(aij < a) < b for fixed a > 0, b ∈ (0, 1), then for every ε > 0,

P
(
σn(A) ≤

ε

n

)
≤ cε+ e−c1n,

where c, c1 are constants that depend on a and b.

The proof of Theorem 4.47 requires the use of the “randomized LCD”, similar to the
LCD used in the proof of Theorem 4.45.

Arbitrary aspect ratios We briefly state some results for matrices of arbitrary aspect
ratios. Consider the random matrix A, of dimension N × n, with i.i.d., zero mean, and unit
variance entries aij. Consider the case N ≥ n, but possibly not N >> n.

Theorem 4.48 (Rudelson, Vershynin [37]). If aij are sub-Gaussian, then for every ε > 0,

P(σn(A) ≤ ε(
√
N + 1−

√
n)) ≤ (cε)N−n+1 + e−c1n,

for constants c, c1.

Theorem 4.49 (Livshyts). If aij are UAC, then for every ε > 0,

P(σn(A) ≤ ε(
√
N + 1−

√
n)) ≤

(
cε log

1

ε

)N−n+1

+ e−c1n,

for constants c, c1 dependent on a and b.

4.7 Proof of Theorem 4.45 Part 1

Recall the statement of the theorem. Let A be a random matrix, whose entries aij are
independent. If E ∥A∥2HS ≤ Kn2, and aij are uniformly anti-concentrated (UAC), i.e.,
P(aij < a) < b for fixed a > 0, b ∈ (0, 1), then for every ε > 0,

P
(
σn(A) ≤

ε

n

)
≤ cε+

c1√
n
,

where c, c1 are constants that depend on a and b.
To prove this result, we will need to use additional tools to separately handle the com-

pressible and incompressible vectors from the Rudelson-Vershynin decomposition of the
sphere from Definition 4.38. Recall the following definitions of sparse vectors, compress-
ible vectors (close to sparse), and incompressible vectors (far from sparse). For δ, ρ > 0,

Sparse(δ) =
{
x ∈ Sn−1 : #{i : xi = 0} ≥ δn

}
,

Comp(δ, ρ) = {x ∈ Sn−1 : ∃ y ∈ Sparse(δ) s.t. |x− y| ≤ ρ},
Incomp(δ, ρ) = Sn−1 \ Comp(δ, ρ).
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4.7.1 Compressible Vectors

After taking the Rudelson-Vershynin decomposition of the sphere, we first consider the com-
pressible vectors in Comp(δ, ρ). The following Lemma bounds the behavior of the compress-
ible vectors.

Lemma 4.50 (Compressible vectors). Let A be a random matrix, whose entries aij are
independent. If E ∥A∥2HS ≤ Kn2, and aij are uniformly anti-concentrated (UAC), i.e.,
P(aij < a) < b for fixed a > 0, b ∈ (0, 1), then for every ε > 0,

P
(

inf
x∈Comp(δ,ρ)

|Ax| ≤ ε√
n

)
≤ P

(
inf

x∈Comp(δ,ρ)
≤ c

√
n

)
≤ e−c̃n

Proof. Let N be a net from Claim 4.40, such that N ⊂ 3
2
Bn

2 \ 1
2
Bn

2 , #N ≤ ec1n, and with
probability e−c1n, there exists a y ∈ N such that

|A(x− y)| ≤ C E ∥A∥2HS√
n

≤ C̃
√
n,

since E ∥A∥2HS ≤ Kn2, with C̃ = C
√
K. This implies that

P
(

inf
x∈Comp(δ,ρ)

|Ax| ≤ ε√
n

)
≤ P

(
inf
x∈N

|Ax| ≤ C̃
√
n

)
.

However, since #N ≤ ec1n and N ⊂ 3
2
Bn

2 \ 1
2
Bn

2 ,

P
(
inf
x∈N

|Ax| ≤ C̃
√
n

)
≤ #N sup

x∈ 3
2
Bn2 \

1
2
Bn2

P
(
|Ax| ≤ C̃

√
n
)

≤ ec1n sup
x∈ 3

2
Bn2 \

1
2
Bn2

P
(
|Ax| ≤ C̃

√
n
)
.

Finally, by the UAC assumption and the Tensorization lemma 4.18 (which we can use by

independence), P
(
|Ax| ≤ C̃

√
n
)
≤ e−c

′n, which implies that

P
(
inf
x∈N

|Ax| ≤ C̃
√
n

)
≤ ec1ne−c

′n ≤ e−c̃n,

if c1 > 0 is chosen small enough.

Remark 4.51. We used all the assumptions from the Theorem statement, including:

• Independent columns, which were used to constrct the net;

• E ∥A∥2HS ≤ Kn2, which crucially ensured that |A(x− y)| ≤ C̃
√
n;

• Independent rows and uniform anti-concentration, which were used to ensure that

supx∈ P
(
|Ax| ≤ C̃

√
n
)
≤ e−c

′n.
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4.7.2 Incompressible Vectors

While the result for the compressible vectors followed immediately from previous results, we
will need to use different tools to handle the case of incompressible vectors in Incomp(δ, ρ).
The following Example demonstrates some crucial behavior of incompressible vectors which
will be useful for bounding their behavior.

Example 4.52 (An incompressible vector). Consider the vector x =
(

1√
n
, 1√

n
, . . . , 1√

n

)
∈

Sn−1. It is clear to see that for any δ > 0, any y ∈ Sparse(δ) is such that

|x− y| ≥ ∥x− y∥∞ ≥ 1√
n
,

since y has at least one zero element. Thus, x is in Incomp(δ, 1√
n
). The vector is “spread”,

in the sense that there are many nonzero elements where |xk| = 1√
n
.

Example 4.52 provides some intuition for how an incompressible vector behaves. In what
follows, we will try to find some characterization of this behavior, where incompressible
vectors will similarly have a substantial subset of coordinates where |xk| ∼ 1√

n
.

Lemma 4.53 (Incompressible vectors are spread). For every x ∈ Incomp(δ, ρ), for δ, ρ > 0,
there exists a subset of indices σ ⊂ {1, . . . , n} with #σ ≥ 1

2
ρ2δn such that for every k ∈ σ,

ρ√
2n

≤ |xk| ≤
1√
δn
.

Proof. Let x ∈ Incomp(δ, ρ), and consider σ1, σ2 ⊂ {1, . . . , n} such that

σ1 :=

{
k : |xk| ≤

1√
δn

}
, σ2 :=

{
k : |xk| ≥

ρ√
2n

}
.

We would like to show that the cardinality of σ = σ1 ∩ σ2 is controlled, i.e., that #σ ≥ cn
for some c. First, since x ∈ Sn−1, |x| = 1, and thus,

1 = |x|2 =
n∑
k=1

|xk|2 ≥
∑
k∈σ∁

1

|xk|2 ≥
∑
k∈σ∁

1

∣∣∣∣ 1√
δn

∣∣∣∣2 ≥ #σ∁
1

1

δn
.

Thus, #σ∁
1 ≤

√
δn, so #σ1 ≥ n− δn. Next, consider the following projection operator Pσ,

Pσ(x) = (y1, y2, . . . , yn), yk =

{
xk k ∈ σ

0 k /∈ σ
.

Let y = Pσ∁
1
(x). Since #σ1 ≥ n − δn, this implies that y ∈ Sparse(δ). But since x ∈

Incomp(δ, ρ), |x− y| ≥ ρ. Note that

|Pσ∁
2
(x)|2 =

∑
k:|xk|≤ ρ√

2n

|xk|2 ≤ n

∣∣∣∣ ρ√
2n

∣∣∣∣2 = ρ2

2
, and |Pσ1(x)|2 = |x− y|2 ≥ ρ2,
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which implies that

|Pσ(x)|2 ≥ |Pσ1(x)|2 − |Pσ∁
2
(x)|2 ≥ ρ2

2
.

On the other hand,

|Pσ(x)|2 ≤ #σmax
k∈σ

|xk|2 ≤
1

δn
#σ,

and therefore, #σ ≥ δnρ
2

2
.

Lemma 4.54 (Invertibility via distance). Let A be a random matrix, let Xj = Aej be the
columns of A, and Hj = span{Xi : i ̸= j}. Then for every δ, ρ ∈ (0, 1

2
), ε > 0,

P
(

inf
x∈Incomp(δ,ρ)

|Ax| ≤ ρε√
n

)
≤ 1

δn

n∑
j=1

P(dist(Xj, Hj) < ε).

Proof. Let x ∈ Incomp(δ, ρ), and let Xk = Aek be the k-th column of A. Note that for any
vector a, and any subspace (passing through the origin) H, dist(a,H) = inf{|a − h| : h ∈
H} ≤ |a− 0| = |a|, since 0 ∈ H. Thus, since Ax is a vector, and Hk is a subspace,

|Ax| ≥ max
k=1,...,n

dist(Ax,Hk) = max
k=1,...,n

dist

(
n∑
j=1

xjXj, Hk

)
.

Note that by definition of Hk, Xj ∈ Hk unless j ̸= k. Thus, dist(Xj, Hk) = 0 for every j ̸= k,
so those components vanish, and

|Ax| ≥ max
k=1,...,n

dist (xkXk, Hk) = max
k=1,...,n

|xk| dist(Xk, Hk). (46)

Let pk := P(dist(Xk, Hk) ≤ ε). Consider the event U where σ1 = {k : dist(Xk, Hk) > ε}
contains more than (1− δ)n elements. Then, using Markov’s inequality,

P(U∁) = P(#σ∁
1 ≥ δn) ≤ 1

δn
E(#σ∁

1) =
1

δn
E#{k : dist(Xk, Hk) ≤ ε}

=
1

δn
E

n∑
k=1

1{dist(Xk,Hk)≤ε} =
1

δn

n∑
k=1

pk. (47)

Let σ2(x) = {k : |xk| ≥ ρ√
n
}. Note that ∥Pσ2(x)∁(x)∥

2
2 =

∑
k:|xk|≤ ρ√

n
|xk|2 ≤ n

∣∣∣ ρ√n ∣∣∣2 = ρ2.

This implies that σ2(x) has at least δn elements, since otherwise we would have |x − y| =
|Pσ2(x)∁(x)| ≤ ρ for sparse vector y = Pσ2(x)(x), contradicting the incompressibility of x.

Next, suppose U occurs, and consider any x ∈ Incomp(δ, ρ). We have that

#σ1 +#σ2(x) > (1− δ)n+ δn = n,
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which implies that σ1 ∩ σ2(x) ̸= ∅. Let k ∈ σ1 ∩ σ2(x), then, using (46),

|Ax| ≥ |xk| dist(Xk, Hk) >
ρ√
n
ε,

using |xk| ≥ ρ√
n
from σ2(x) and dist(Xk, Hk) > ε from σ1. We have shown that U =⇒

{infx∈Incomp(δ,ρ) |Ax| ≥ ρε√
n
}, or equivalently, that {infx∈Incomp(δ,ρ) |Ax| ≤ ρε√

n
} =⇒ U∁, so

P
(

inf
x∈Incomp(δ,ρ)

|Ax| ≤ ρε√
n

)
≤ P(U∁) =

1

δn

n∑
k=1

pk,

which follows from (47).

Lemma 4.54 reduces the problem from dealing with the incompressible vectors to finding
an estimate of the following form

P(dist(X,H) ≤ ε) ≤ cε+
c1√
n
,

where X is a random vector with independent UAC entries, and H is the span of n − 1
independent random vectors with independent UAC entries.

4.7.3 Distance Theorem

Recall that our goal is to prove the following ‘distance’ theorem

Theorem 4.55 (Distance theorem). Let X be a random vector with uniformly anti-concentrated
(UAC) entries . Let H be the span of n − 1 independent random vectors with independent
UAC entries. Then

P (dist(X,H) ≤ ε) ≤ cε+
c1√
n
. (48)

Remark 4.56. We remark that 4.55 bounds the probability of the distance to the subspace
by cε + c1√

n
, but one can in fact improve the bound to cε + e−c1n using more sophisticated

techniques [26].

As motivation for our next theorem, we note that the distance betweenX andH is exactly
the length of the component of X that is orthogonal to H. In particular dist(X,H) = ⟨x, n⟩,
where n is the normal unit vector of H.

Theorem 4.57 (Rogozin’s Theorem). Let v = (v1, · · · , vn) be a random vector with inde-
pendent UAC entries, say

sup
z∈R

P (|vi − z| < a) < b. (49)
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Then for any u ∈ Rn and any ε > ca∥u∥∞

sup
z∈R

P (|⟨u, v⟩ − z| < ε) ≤ Cε

|u|
, (50)

where C, c depend only on a and b.

Corollary 4.58. Let c1, c2 > 0 and let u be a random vector satisfying

#{i : |ui| ≥
c1√
n
} ≥ c2n.

If v is a random vector with independent UAC entries then for all ε > c√
n
one has

sup
z∈R

P[|⟨u, v⟩ − z| < ε] ≤ c2ε.

Proof. Let σ := {i : |ui| ≥ c1√
n
}. By assumption |σ| ≥ c2n. Note that we may write

⟨u, v⟩ = R +
∑

i∈σ uivi, where R =
∑

i ̸∈σ uivi. Therefore by Theorem 4.57

sup
z∈R

P (|⟨u, v⟩ − z| < ε) = sup
z∈R

P

(∣∣∣∣∣∑
i∈σ

uivi − (z −R)

∣∣∣∣∣ < ε

)

= sup
z∈R

ER P

(∣∣∣∣∣∑
i∈σ

uivi − (z −R)

∣∣∣∣∣ < ε

)

≤ ER sup
z∈R

P

(∣∣∣∣∣∑
i∈σ

uivi − (z −R)

∣∣∣∣∣ < ε

)

= sup
y∈R

P

(∣∣∣∣∣∑
i∈σ

uivi − y

∣∣∣∣∣ < ε

)
≤ cε√∑

i∈σ u
2
i

= c̃ε,

whenever ε ≥ supi∈σ |ui| ≥ c1√
n
.

Using Corollary 4.58 we will show that

sup
z∈R

P (|⟨X,n⟩ − z| < ε) ≤ Cε+
c1√
n

Where X = Aej and n is the the unit normal to span(Aej : i ̸= j). This, however, will
require that n is incompressible.

Lemma 4.59 (Random normal is incompressible). Let H = span(Aei : i ̸= j), where A is
a matrix satisfying the assumptions of Theorem 4.45. Let n ⊥ H be a unit vector. Then n
is incompressible with probability 1− e−cn.
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Proof. Note that the condition n ⊥ H is equivalent to the condition B⊤n = 0, where
B = [Ae1, · · · , Aej−1, Aej+1, · · · , Aen]. Then

P(n ∈ Comp(δ, ρ)) ≤ P
(

inf
x∈Comp(δ,ρ)

|B⊤x| = 0

)
≤ e−cn,

where the exponential failure probability follows from the net-argument for compressible
vectors, as done in Lemma 4.50.

This lemma, in conjunction with Corollary 4.58, will give us the distance theorem with
X = Aei and H = span(Aej : j ̸= i).

4.7.4 Proof of the first part of Theorem 4.45

Recall that A has independent UAC entries and satisfies E ∥A∥2HS ≤ Kn2. Therefore

P
(
σn(A) ≤

ε√
n

)
≤ P

(
inf

x∈Comp(δ,ρ)
|Ax| < ε√

n

)
+ P

(
inf

x∈Incomp(δ,ρ)
|Ax| < ε√

n

)
,

≤ e−c1n + P
(

inf
x∈Incomp(δ,ρ)

|Ax| < ε√
n

)
,

≤ e−c1n +
1

δn

n∑
i=1

P(dist(Aei, H) < ε).

Note that in the first line we used the Rudelson-Vershynin decomposition of the sphere,
in the second line we used Lemma 4.50, and in the third line we used Lemma 4.54. Next we
have that

P (dist(Aei, H) < ε) ≤ P (|⟨Ae, n⟩| ≤ ε) ,

≤ e−c1n + P (|⟨Ae, n⟩| ≤ ε, n ∈ Incomp(δ, ρ)) ,

≤ e−c1n + sup
u s.t.

#{i : |ui|≥c1/
√
n}≥c2n

P(|⟨Aei, u⟩| ≤ ε),

≤ e−c1n + cε+
c2√
n
.

Note that in the second line we used Lemma 4.59, in the third line we used the fact that
incompressible vectors are spread, and in the fourth line used Rogozin’s theorem. Plugging
this estimate in our bound for the smallest singular value yields

P
(
σn(A) ≤

ε√
n

)
≤ e−c1n +

(
e−c1n

δ
+
cε

δ
+

c2
δ
√
n

)
, (51)

≤ c′ε+
c′′√
n
. (52)
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5 Gaussian Random Processes

Recall that a random vector is a collection of n random variables, forming a vector (i.e.
x = (x1, · · · , xn)) . A random walk is a sequence of random variables (i.e. {x1, x2, . . . } ).
In 1-D a random process is a collection of random variables indexed by “time”. Examples
include

{Xt : t ∈ R}, {Xt : t ≥ 0}, {Xt : t ∈ [a, b]}.

5.1 Basic Concepts and Examples

Example 5.1 (Brownian Motion). A brownian motion {Xt : t ≥ 0} is a random process
having the following properties:

1. For all s ≥ t ≥ 0 the random variable Xs − Xt is distributed as the normal variable
N(0, t− s). This is known as having “gaussian increments”.

2. The function f(t) = Xt is continuous in t almost surely.

3. For γ ≤ τ ≤ t ≤ s the increments Xs −Xt and Xτ −Xγ are independent.

We will be interested in high dimensional random processes (i.e. random processes where
“time” is a subset of Rn).

Example 5.2 (Ocean temperature). To represent the temperature of the ocean as a random
process we can take T ⊂ Rn and for t ∈ T let Xt denote the temperature at t.

Example 5.3 (Random Projection). Let g ∼ N(0, Id) be a standard gaussian vector. In
other words g = (g1, . . . , gn) where the cooordinates gi are independent standard normal
gaussians. Then for t ∈ T ⊂ Rn we define Xt := ⟨g, t⟩.

We now recall the definition of a gaussian random vector. Given a non-negative definite
n × n matrix A, and a vector b ∈ Rn, we define the random variable X ∼ N(b, A) whose
law has density e⟨A(x−b),x−b⟩ · cn, where cn is chosen so that the density integrates to 1.

Remark 5.4. (Homework) Let X ∼ N(0,Σ) be a random gaussian vector where Σ =
AA⊤. Then there exists g ∼ N(0, Idn) such that Xi = ⟨g, ui⟩ for some u1, . . . , un ∈ Rn. Note
that the coordinates of X may be dependent.

Definition 5.5. The covariance matrix Σ of a random vector X ∈ Rn is the n × n matrix
with entries

Σij = E[(X − EXi)(X − EXj)].

Remark 5.6. If X has independent entries then Σ is a diagonal matrix.
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As a cool fact (HW), we remark that the distribution of a Gaussian vector X ∼ N(0,Σ)
is uniquely determined by its covariance matrix. In general, knowing that a random vector
belongs to a certain class of vectors (say Poisson or Exponential) and knowing its covariance
matrix are not enough to recover its distribution.

Definition 5.7 (Covariance Function). Let {Xt : t ∈ T} be a “mean zero” random process
(i.e. E[Xt] = 0 for all t ∈ T ). We define Σ: T × T → R according to

Σ(t, s) = E[XtXs].

Σ is known as the covariance function and is the random process analogue to the covariance
matrix.

Definition 5.8 (Gaussian Random Process). Let T ⊂ Rn. A random process {Xt : t ∈ T}
is called a Gaussian Random Process (GRP) if for every finite subset T0 ⊂ T , the vector
(Xt)t∈T0 is a gaussian vector. An equivalent characterization is that for every finite subset
T0 ⊂ T and vector (at)t∈T0 the linear combination

∑
t∈T0 atXt is a gaussian random variable.

This equivalence is because the projection of a gaussian vector in any direction is a normal
random variable, and a random vector whose projection in every direction is a normal random
variable must be a gaussian vector. (HW) A gaussian random process is determined by its
covariance function.

Definition 5.9 (“Canonical GRP”). Let T ⊂ Rn and let g ∼ N(0, Idn). For every t ∈ T
define Xt = ⟨g, t⟩. Then {Xt : t ∈ T} is known as a Canonical Gaussian Process. Note
that this is indeed a Gaussian Random Process since, by the definition of Xt, each Xt is the
projection of a gaussian vector and therefore a normal random variable and therefore any
linear combination of a finite number of Xt is a normal random variable.

Lemma 5.10 (All GRP are canonical). Let Yt be a mean zero Gaussian Random Process.
Then there exists T ⊂ Rn such that Yt = ⟨g, t⟩ for all t ∈ T , where g ∼ N(0, 1).

5.2 Slepian’s Inequality

In applications, it is useful to have a uniform control on a random process {Xt : t ∈ T}, i.e.
to have a bound on E supt∈T Xt.

For some processes, this quantity can be computed exactly. For example, if {Xt : t ∈ T}
is a standard Brownian motion, then by reflection principle, we have E supt≤t0 Xt =

√
2t0/π

for every t0 ≥ 0. For general random processes, even if they are Gaussian, the problem is
emphatically nontrivial.

The first general bound we will prove is Slepian’s comparison inequality for Gaussian
processes. Intuitively, it states that the faster the process grows (in terms of the magnitude
of the increments), the farther it gets.

Theorem 5.11 (Slepian’s Inequality). Let {Xt : t ∈ T}, {Yt : t ∈ T} be mean zero
gaussian processes indexed by T . Suppose that for all s, t ∈ T it holds that
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EX2
t = EY 2

t , E(Xt −Xs)
2 ≤ E(Yt − Ys)

2.

Then for all τ ∈ R it follows that

P
[
sup
t∈T

Xt ≥ τ

]
≤ P

[
sup
t∈T

Yt ≥ τ

]
, (53)

and thus
E sup

t∈T
Xt ≤ E sup

t∈T
Yt. (54)

Remark 5.12 (Homework). Instead of the Gaussian processes {Xt : t ∈ T} and {Yt : t ∈
T}, it suffices to prove the above inequality for the Gaussian random vectors X and Y in
Rn. Furthermore, it suffices to prove for the case when X and Y are independent. Hence,
Theorem 5.11 is equivalent to Theorem 5.19 which will be proved later.

Then the inequalities (53) and (54) are equivalent to

P
[
sup
i≤n

Xi ≥ τ

]
≤ P

[
sup
i≤n

Yi ≥ τ

]
, E sup

i≤n
Xi ≤ E sup

i≤n
Yi,

where the first inequality always guarantees the second since

Emax
i≤n

X2
i =

ˆ ∞

0

P
(
max
i≤n

X2
i ≥ τ

)
dτ ≤

ˆ ∞

0

P
(
max
i≤n

Y 2
i ≥ τ

)
dτ = Emax

i≤n
Y 2
i

by the tail formula for non-negative random variables.

5.2.1 Gaussian Interpolation

The proof of Slepian’s inequality will be based on the technique of Gaussian Interpolation
which is described as follows.

Definition 5.13 (Gaussian Interpolation). For any pair of independent Gaussian random
vectors X, Y ∈ Rn, not necessarily standard, define a Gaussian random vector Z(u) in Rn

that continuous interpolates between Z(0) = Y and Z(1) = X:

Z(u) :=
√
u X +

√
1− u Y, u ∈ [0, 1].

Remark 5.14 (Homework). The covriance matrix of Z(u) interpolates linearly between the
covariance matrices of Y and X. Namely, if Σ (X) is the covariance matrix for X and Σ (Y )
is the covariance matrix for Y , then

Σ (Z(u)) = uΣ (X) + (1− u)Σ (Y )
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Consider the indicator function for vector x = (x1, · · · , xn)

f(x) := 1{maxi xi<τ}

which satisfies E f(Z(1)) = P (maxi≤nXi < τ) and E f(Z(0)) = P (maxi≤n Yi < τ). Now, if
we can show

E f(Z(1)) ≥ E f(Z(0))

then inequality (53) can be concluded. Our goal now shifts to study how the quantity
E f(Z(u)) changes as u increases from 0 to 1. We approach this goal by starting with the
following identity which is a version of integration by parts in Gaussian expectations.

Lemma 5.15 (Gaussian integration by parts). Let X ∼ N(0, 1). Then for any differentiable
function f : R → R we have

E f ′(X) = EXf(X) (55)

Proof. It suffices to argue for the case when f has bounded support, and this identity then
can be extended to general functions by a standard approximation argument. By density of
standard normal and Integration by parts, we have

E f ′(X) =

ˆ
R
f ′(t)

1√
2π
e−t

2/2dt = 0 +

ˆ
R
tf(t)

1√
2π
e−t

2/2dt = EXf(X)

as claimed, where the zero term comes from the fact that f(t)e−t
2/2 has limits equal to zero

when t goes to both positive and negative infinity if f has bounded support.

Corollary 5.16 (Homework: Multivariate Gaussian Integration by parts). Let X ∼ N(0,Σ).
Then for any differentiable function f : Rn → R, we have

EXf(X) = Σ E∇f(X),

where ∇f(X) is the n-dimensional gradient vector with entries E ∂if(X).

Lemma 5.17 (Gaussian Interpolation). Consider two independent Gaussian random vectors
X ∼ N(0,ΣX) and Y ∼ N(0,ΣY ). Define the interpolation Gaussian vector

Z(u) :=
√
uX +

√
1− uY, u ∈ [0, 1]. (56)

Then for any twice-differentiable function f : Rn → R, we have

d

du
E f(Z(u)) =

1

2

n∑
i,j=1

(
ΣX
ij − ΣY

ij

)
E

∂2f

∂xi∂xj
(Z(u)), (57)

where ΣX
ij stands for the (i, j) entry of ΣX .

78



Proof. By the (multivariate) chain rule, we have

d

du
E f(Z(u)) =

n∑
i=1

E
∂f

∂xi
(Z(u))

dZi
du

=
1

2

n∑
i=1

E
∂f

∂xi
(Z(u))

(
Xi√
u
− Yi√

1− u

)
,

where the second equality is from the definition (56) of Z(u). Now break this sum into two,
and first compute the contribution of terms containing Xi. To this end, we condition on Y
and express

n∑
i=1

1√
u
EXi

∂f

∂xi
(Z(u)) =

n∑
i=1

1√
u
EXigi(X),

where

gi(X) =
∂f

∂xi

(√
uX +

√
1− uY

)
.

Apply the multivariate Gaussian integration by parts (Corollary 5.16), we have

EXigi(X) =
n∑
j=1

ΣX
ij E

∂gi
∂xj

(X) =
n∑
j=1

ΣX
ij E

∂2f

∂xi∂xj
(X)

(√
uX +

√
1− uY

)√
u,

where the second equality is by definition of gi. Substituting this back into the previous
equation gives

n∑
i=1

1√
u
EXi

∂f

∂xi
(Z(u)) =

n∑
i,j=1

ΣX
ij E

∂2f

∂xi∂xj
(Z(u)).

Taking expectation of both sizes with respect to Y , we remove the conditioning on Y . Similar
discussion works for the contribution of terms containing Yi, and that should yield

n∑
i=1

1√
1− u

EXi
∂f

∂xi
(Z(u)) =

n∑
i,j=1

ΣY
ij E

∂2f

∂xi∂xj
(Z(u)).

Combining these two equalities, together with the first line of the proof, gives the desired
relation (57).

5.2.2 Proof of Slepian’s Inequality

We are ready to establish the key lemma in proving Slepian’s inequality which is also known
as a preliminary functional form of Slepian’s inequality.

Lemma 5.18 (Slepian ’s inequality: functional form). Consider two mean-zero independent
Gaussian random vectors X and Y in Rn. Assume that for all i, j = 1, · · · , n, we have

EX2
i = EY 2

i and E(Xi −Xj)
2 ≤ E(Yi − Yj)

2. (58)
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Consider a twice-differentiable function f : Rn → R such that

∂2f

∂xi∂xj
≥ 0 for all i ̸= j.

Then
E f(X) ≥ E f(Y ).

Proof. The assumptions (58) imply that the entries of the covariance matrices ΣX and ΣY

of X and Y satisfy

ΣX
ii = ΣY

ii and ΣX
ij ≥ ΣY

ij , for all i, j = 1, · · · , n,

where for the second relation we used ab = (a2 + b2 − (a − b)2)/2. Applying Lemma 5.17
with our assumptions gives

d

du
E f(Z(u)) =

1

2

n∑
i,j=1

(
ΣX
ij − ΣY

ij

)
E

∂2f

∂xi∂xj
(Z(u)) ≥ 0

by assumptions, where Z(u) is the Gaussian interpolation we defined in (56). This means
E f(Z(u)) increases in u. But Z(0) = Y and Z(1) = X by the way we constructed the
interpolation, hence E f(X) = E f(Z(1)) ≥ E f(Z(0)) = E f(Y ) as desired.

Eventually, now we are ready to prove Slepian’s inequality (53) in it’s equivalent form
which is in terms of random vectors rather than random processes.

Theorem 5.19 (Slepian’s inequality: random vector). Let X and Y be two mean zero
independent Gaussian random vectors in Rn. Suppose that for all s, t ∈ T it holds that

EX2
i = EY 2

i , E(Xi −Xj)
2 ≤ E(Yi − Yj)

2.

Then for every τ ∈ R we have

P
[
max
i≤n

Xi ≥ τ

]
≤ P

[
max
i≤n

Yi ≥ τ

]
. (59)

Consequently,
Emax

i≤n
Xi ≤ Emax

i≤n
Yi. (60)

Proof. Let h : R → [0, 1] be a twice-differentiable non-increasing approximation to the
indicator function of the interval (−∞, τ) satisfying

h(x) ≈ 1(−∞,τ).

Define the function f : Rn → R by f(x) = h(x1) · · ·h(xn) for any x = [x1, · · · , xn] ∈ Rn,
then

f(x) ≈ 1{maxi xi<τ}
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To apply the functional form of Slepian’s inequality, we need to check the assumption for f .
Note that, for every i ̸= j, we have

∂2f

∂xi∂xj
= h′(xi)h

′(xj)
∏

k ̸∈{i,j}

h(hk).

The first two factors are non-positive and the other are non-negative by assumption. So the
second mixture derivative of f is always non-negative. Hence we can apply the key Lemma
above to conclude that

E f(X) ≥ E f(Y ).

Now, by approximation, we have

P
(
max
i≤n

Xi < τ

)
= E1{maxi≤nXi<τ} ≈ E f(X) ≥ E f(Y ) ≈ E1{maxi≤n Yi<τ} = P

(
max
i≤n

Yi < τ

)
which implies (59). And relation (60) follows from (59) as we discussed before.

5.2.3 The Sudakov-Fernique Inequality

In theorem 5.11, Slepian’s inequality has two assumptions on the random processes {Xt :
t ∈ T} and {Yt : t ∈ T}: the equality of variances and the dominance of increments. It turns
out that, even if we drop the assumption on the equality of variances, we will still be able to
obtain the inequality on expectations. This more pratically useful result is due to Sudakov
and Fernique.

Theorem 5.20 (Sudakov-Fernique Inequality). Let {Xt : t ∈ T} and {Yt : t ∈ T} be two
mean zero Gaussian processes. Assume that, for all t, s ∈ T , we have

E(Xt −Xs)
2 ≤ E(Yt − Ys)

2.

Then
E sup

t∈T
Xt ≤ E sup

t∈T
Yt.

Proof. It is enough to prove this theorem for Gaussian random vectorsX and Y in Rn, just as
we did for Slepian’s inequality. We again deduce the result form the Gaussian Interpolation
lemma 5.17. But this time, instead of choosing a function f(x) that approximates the
indicator function of {maxi xi < τ}, we want f(x) to approximate maxi xi.

To this end, let β > 0 be a parameter and define the function

fβ(x) :=
1

β
log

n∑
i=1

eβxi .

One can check (Homework!) that this function is twice differentiable and

fβ(x) → max
i≤n

xi as β → ∞.
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Substitute f(x) into the Gaussian interpolation formula and simplifying the expression shows
that (Homework!)

d

du
E f(Z(u)) ≤ 0, for all u.

The proof can then be completed in just the same way as the proof of Slepian’s inequality.

5.2.4 Application of Sudakov-Fernique Inequality to Gaussian Random Matri-
ces

Theorem 5.21. Let A be an m× n matrix with entries (aij) such that aij are independent
and aij ∼ N (0, 1). Then we have

E∥A∥ ≤
√
m+

√
n.

Remark 5.22. Note ∥ · ∥op = σ1(A). This is consistent with our past results as we have
proved that sub-Gaussian ensures P (∥A∥ ≥ t(

√
m+

√
n)) ≤ e−cm with m ≥ n. But here we

see that the constant is 1, i.e., E∥A∥ ≤ C (
√
m+

√
n) with C = 1.

Proof of Theorem 5.21. Let A be an m× n matrix with entries (aij) such that aij are inde-
pendent and aij ∼ N (0, 1). Then

∥A∥ = sup
x∈Sn−1

|Ax| = sup
y∈Sm−1

x∈Sn−1

⟨Ax, y⟩ = max
t=(x,y)
t∈T

T=Sn−1×Sm−1

Xt,

since if we have a ∈ Rm, then |a| = sup
y∈Sm−1

⟨a, y⟩. Here we have Xt as a random Gaussian

process, indeed, if we fix x and y, then ⟨Ax, y⟩ is a Gaussian random variable. If A has all
the Gaussian entries, then all rows of A are Gaussian processes, i.e.,

Ax =

 ⟨A⊤e1, x⟩
...

⟨A⊤em, x⟩


with A⊤ei ∼ N (0, Id) and A⊤ei are all independent. Thus, Ax is a vector with independent
coordinates and each of them is Gaussian, so Ax is Gaussian, and ⟨Ax, y⟩ is a Gaussian
random variable. The idea of the proof is that we can apply Sudakov-Fernique Inequality 5.20
to find Yt indexed by Sm−1 × Sn−1 which is also Gaussian, then compare Xt to Yt to get the
upper bound of E∥A∥ = E supXt ≤ E supYt and find the increment by estimating from
above of E (Xt −Xs)

2.
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Let t = (u, v) ∈ Sn−1 × Sm−1 and let s = (w, z) ∈ Sn−1 × Sm−1. Then

E (Xt −Xs)
2 = E (⟨Au, v⟩ − ⟨Aw, z⟩)2

= E

(∑
i,j

aij (uivj − wizj)

)2

=
∑
i,j

Ea2ij (uivj − wizj)
2

=
∑
i,j

(uivj − wizj)
2

= ∥u⊗ v − w ⊗ z∥2HS
HW

≤ |u− w|2 + |v − z|2.

Recall that for independent and mean zero ξ1, . . . , ξk, we have E (
∑
ξl)

2 =
∑

Eξ2l so here
aij (uivj − wizj) are independent and mean zero. We can conclude that

E|Xuv −Xwz|2 ≤ |u− w|2 + |v − z|2.

In fact, we can construct Yt with t ∈ Sn−1 × Sm−1 such that

E|Yuv − Ywz|2 ≤ |u− w|2 + |v − z|2.

Indeed, consider Yuv = ⟨g, u⟩+ ⟨h, v⟩ where h ∼ N (0, Idm), g ∼ N (0, Idn), h, g are indepen-
dent, and (u, v) ∈ Sn−1 × Sm−1. Note that here Yuv is a Gaussian random process, then by
definition

E|Yuv − Ywz|2 = E |⟨g, u⟩+ ⟨h, v⟩ − ⟨g, w⟩ − ⟨h, z⟩|2

= E⟨g, u− w⟩2 + E⟨h, v − z⟩2 (by independence and mean zero)

= |u− w|2 + |v − z|2

since if X ∼ N (0, Id), we have ⟨x, θ⟩ ∼ N (0, |θ|2).
By the results above, we can conclude that E|Xt −Xs|2 ≤ E|Yt − Ys|2. Since Xt and Yt are
Gaussian, by Sudakov-Fernique Inequality 5.20, we have

E∥A∥2op = E sup
t∈Sn−1×Sm−1

Xt ≤ E sup
t∈Sn−1×Sm−1

Yt

= E sup
u∈Sn−1

v∈Sm−1

(⟨g, u⟩+ ⟨h, v⟩)

= E sup
u∈Sn−1

⟨g, u⟩+ E sup
v∈Sm−1

⟨h, v⟩

= E|g|+ E|h|
Cauchy

≤
√

E|g|2 +
√
E|h|2

=
√
n+

√
m
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as E|g|2 = E

(
n∑
i=1

g2i

)
= n and g ∼ N (0, Id).

Definition 5.23 (Sub-Gaussian Random Process). For Xt with t ∈ T and metric d on T,
we say that the random process Xt is sub-Gaussian if for some constant K ≥ 0,

∥Xt −Xs∥ψ2 ≤ K · d(t, s),

i.e., all increments are sub-Gaussian random vectors.

Note that Gaussian random process are sub-Gaussian.

Theorem 5.24 (Dudley’s Inequality). Suppose Xt with t ∈ T is mean zero random process
on the metric (T, d) and it is sub-Gaussian with some constant K. Then

E sup
t∈T

Xt ≤ CK
∑
j∈Z

2−j
√

logN (T, d, 2−j),

where logN (T, d, 2−j) is the metric entropy, i.e., N (T, d, 2−j) is the smallest number of balls
of radius 2−j required to cover T in metric d.

Remark 5.25. If T is compact, there is K ∈ Z such that for all j ≤ K, we have N (T, d, 2−j) =
1 such that all summands are zero.

Example 5.26. Let T = Sn−1 ⊂ Rn and let d be the Euclidean metric. For any ϵ > 0, we

have N(Sn−1, d, ϵ) ≤
(
3
ϵ

)n−1
. Then

C
∑
j∈Z

2−j
√

logN (Sn−1, d, 2−j) = C
∑
j≥0

2−j
√

(n− 1) (log 2j · 3)

= c′
√
n
∑
j≥0

√
j
2−j

= c′′
√
n.

In conclusion, we have E supXt ≤ c
√
n if Xt is 1-sub-Gaussian. Dudley’s Inequality 5.24

is applicable to random walks on Hamming cube.

6 The Semigroup method

The semigroup method is a powerful method to prove interesting “isoperimetric-type” in-
equalities.
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6.1 Basic definitions and set up

Definition 6.1 (Markov Process). Consider Xt as a random process on time T ⊂ R. A
Markov process is a stochastic process with the property that

P
(
Xtn ≤ xn |Xtn−1 , Xtn−2 , . . . , Xt1

)
= P

(
Xtn ≤ xn |Xtn−1

)
,

where xn ∈ R and Xt ∈ R, i.e., this stochastic process “does not see the past”.

Recall the conditional probability is P(A |B) = P(A∩B)
P(B)

, and the conditional expectation

E(X |Y ) of random variables X and Y is also a random variable which is the best prediction
of X given some behavior of Y . Suppose X has density function fX and Y has density
function fY . Then (X, Y ) has joint density fXY , we can define the conditional density as

fX |Y (x | y) = fXY (x,y)
fY (y)

, so E (X |Y = y) =
´∞
−∞ x · fX |Y (x | y) dx which is a number that

depends on y. If let y be vary, then we get a random variable.

Definition 6.2 (Conditional Expectation). Consider X on σ-algebra F0. Consider F ⊂ F0

as another σ-algebra. The conditional expectation of X with respect to F , E (X | F), is
such an L1 random variable/vector that E (X | F) ∈ F , so that all events that relates to
the random variable are sets of σ-algebra F , i.e., {E (X | F) < t} ∈ F . And for any event
A ∈ F ,

E (X · 1A) = E (E (X | F) · 1A) , i.e.,

ˆ
A

X dP =

ˆ
A

E (X | F) dP.

If Y is another random vector, then the conditional expectation of X with respect to Y is

E (X |Y ) := E (X |σ(Y )) ,

where σ(Y ) is the σ-algebra generated by Y .

Definition 6.3 (Alternative Definition of Markov Process). Consider Xt ∈ Rn with t ≥ 0
as a random process. Assume for any bounded measurable function f : Rn → R and for any
times t, s > 0, there is a bounded measurable function Psf : Rn → R such that

E (f(Xt+s) | {Xz}z≤t) = Psf(Xt), (61)

i.e., the behavior of Xt+s only depends on Xt and no earlier times.

Homework: find an example of a non-Markov process.

Definition 6.4 (Markov Semigroup). Suppose Ps is an operator on bounded measurable
functions such that

f : Rn → R Ps−−→ Psf : Rn → R

as defined in (61). Ps is what we called a Markov semigroup.
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Definition 6.5 (Stationary measure of a Markov Process). Consider Xt on Rn as a Markov
process indexed by T ⊂ R+. A measure µ on Rn is called a stationary measure of Xt if for
any bounded measurable function f : Rn → R, we have

ˆ
f dµ =

ˆ
Pt · f dµ.

Here the semigroup {Ptf}t≥0 is a collection of functions that describes some evolution
of a function in time. We say the measure is stationary whatever the evolution it is, the
average of the function does not change.

Remark 6.6. Consider initial random vector X0 ∼ µ where µ is a stationary measure. Then

Ef(Xt) = E (E (f(Xt) |X0))

= EPtf(X0)

=

ˆ
Ptf dµ (as X0 ∼ µ)

=

ˆ
f dµ (by stationary)

= Ef(X0).

Hence, for any function f that has a stationary measure, we have Ef(Xt) = Ef(X0).
If f = 1Ω, then P(Xt ∈ Ω) = P(X0 ∈ Ω). In other words, if X0 ∼ µ with stationary µ, then
for any t ≥ 0, Xt ∼ µ.

6.2 Properties

Lemma 6.7. Let µ be a stationary measure of a Markov process Xt indexed by t ≥ 0. Then
the following hold for all p ≥ 1, α, β ∈ R, bounded measurable function f, g:

1. ∥Ptf∥Lp(µ) ≤ ∥f∥Lp(µ) (contraction).

2. Pt is a linear operator, i.e. Pt(αf + βg) = αPtf + βPtg (linearity).

3. Pt+sf = PtPsf µ-a.s. (semigroup property).

4. Pt1 = 1 µ-a.s. (conservativeness).

Proof. 1. Suppose X0 ∼ µ, we have

ˆ
(Ptf)

pdµ = Eµ(E(f(Xt)|X0)
p)) ≤ Eµ(E(f(Xt)

p|X0))) =

ˆ
(f)pdµ,

where we have used Jensen’s inequality.
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2. Linearity follows similarly as

Pt(αf +βg) = E(αf(Xt)+βg(Xt)|X0) = αE(f(Xt)|X0)+β E(g(Xt)|X0) = αPtf +βPtg,

where we have used the linearity of conditional expectation.

3. For the semigroup property, we have

Pt+sf = E(f(Xt+s)|X0) = E(E(f(Xt+s)|{Xr}r≤t)|X0) = E(Psf(Xt)|X0) = PtPsf,

where the third equality is based on markovianity.

4. Conservativeness follows Ps1 = E(1|X0) = 1.

Remark 6.8. If Xt has a stationary measure µ, then the above lemma is true for all f ∈
L1(µ), not only for bounded measurable functions f . From now on, we will assume the Ptf
is defined in this manner for every f ∈ L1(µ).

Remark 6.9. Not every Markov process has a stationary measure; the questions of existence
are complicated. We will consider concrete examples when things work well, the stationary
measure exists and has nice properties, and we will explain the existence in these examples.

Definition 6.10 (Variance). Let µ be a stationary measure and f ∈ L2(µ). The variance is
defined as

Varµ(f) :=

ˆ
f 2dµ−

(ˆ
fdµ

)2

= Eµ f 2 − (Eµ f)2. (62)

Note, by Cauchy’s inequality, that V arµ(f) ≥ 0.

Lemma 6.11. Let µ be a stationary measure of a Markov process Xt and f ∈ L2(µ). Then
Varµ(f) decreases in t ≥ 0

Proof. Note that

Varµ(Ptf) =

ˆ
(Ptf −

ˆ
Ptfdµ)

2dµ =

ˆ
(Ptf −

ˆ
fdµ)2dµ =

ˆ
(Pt(f −

ˆ
fdµ))2dµ

(63)

≤
ˆ

(f −
ˆ
fdµ)2dµ = Varµ(f). (64)

Here we use the definition of stationary measure for the second equality, linearity and con-
servativeness for the third equality and contraction for the fourth. Also we have

ˆ
(Pt(f −

ˆ
fdµ))2dµ =

ˆ
(Pt−sPs(f −

ˆ
fdµ))2dµ ≤ Varµ(Psf) (65)

Hence, we get Varµ(Ptf) ≤ Varµ(Psf) for all t ≥ s ≥ 0.
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Remark 6.12. Varµ(f) measures how far is f from a constant, as

Varµ(C) =

ˆ
C2dµ− (

ˆ
Cdµ)2 = C2 − C2 = 0.

Therefore, variance is a measure of the distance of the function to a constant function. The
fact that it decreases along the semi-group means that the function Ptf becomes closer and
closer to a constant function – namely, to the function

´
fdµ (since this integral is preserved).

Soon we will see that in some nice situations, not only does the variance decrease, but it
decreases all the way to zero, and Ptf →

t→∞

´
fdµ; however, this is not necessarily the case

for an arbitrary Markov process.

Definition 6.13 (Generator of Markov process). Given a Markov process Xt with stationary
measure µ on Rn. For every f ∈ L2(µ), the generator L is defined as

L f := lim
t→0

Ptf − f

t
. (66)

Here, L is an operator on functions from L2(µ) for which this limit makes sense. L is called
the Generator associated with Xt.

Remark 6.14. L is a linear operator, since Ptf is linear.

Remark 6.15 (Important). One can in fact define the Markov semigroup using a given linear

operator L . Indeed, d
dt
Ptf = limδ→0

Pt+δf−Ptf
δ

= limδ→0 Pt(
Pδf−f
δ

) = PtL f. Equivalently,
d
dt
Ptf = limδ→0

PδPtf−Ptf
δ

= L Ptf.

Corollary 6.16.
L Ptf = PtL f. (67)

Consider the following PDE: 
d

dt
(Ptf) = L (Ptf),

P0f = f,

when L is fixed, Ptf can then be defined as a solution of the above PDE. When the linear
operator L is such that the PDE methods allow to conclude existence, probabilistic methods
also provide a way of solving this PDE.

Example 6.17 (Finite state space). Let (Xt)t∈R+ be a Markov process with values in a finite
state space Xt ∈ {1, . . . , d}. Such processes are typically described in terms of their transition
rates λij ≥ 0 for i ̸= j:

P[Xt+δ = j | Xt = i] = λijδ + o(δ) for i ̸= j.

Evidently, the transition rates λij describe the infinitesimal rate of growth of the probabil-
ity of jumping from state i to state j (informally if Xt = i then the probability that Xt+dt = j
is λijdt).
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Let us organize the transition probabilities qtij = P[Xt = j | X0 = i] and rates λij into
matrices Qt = (qtij)1≤i,j≤d and Λ = (λij)1≤i,j≤d respectively where we define the diagonal
entries of Λ as λii = −

∑
j ̸=i λij ≤ 0. Then

lim
t→0

qtij − q0ij
t

= λij

for every 1 ≤ i, j ≤ d (the diagonal entries λii were chosen precisely to enforce the law
of total probability

∑
j qtij = 1). In particular, we have

L f(i) = lim
t→0

1

t

d∑
j=1

λijf(j) = (Λf)i

where we identify the function f with the vector (f(1), . . . , f(d)) ∈ Rd. We therefore con-
clude that the generator of a Markov process in a finite state space corresponds precisely to the
matrix of transition rates. The Kolmogorov equation now reduces to the matrix differential
equation (semigroup)

d

dt
Qt = QtΛ, Q0 = I.

This differential equation is the basic tool for computing probabilities of finite state space
Markov processes. The solution is in fact easily obtained as Qt = etΛ from which we readily
see why Pt and L must commute.

Example 6.18 (Heat semigroup). Suppose the generator L = ∆ be the Laplace operator
and u : Rn → R.

∆u =
n∑
i=1

∂iiu = tr(∇2u). (68)

Here, ∂iiu is the partial derivative and ∇2u is the Hessian matrix. We have Dom =
L2(Rn) ∩ C2(Rn). Pick f ∈ Dom, the heat semigroup is defined as{

∂t(Ptf) = ∆(Ptf),

P0f = f.

There exists a solution and this defines a Markov process. Then, what is the invariant mea-
sure? We have the condition

´
Rn Ptfdµ =

´
Rn fdµ, i.e.,

d
dt
(
´
Rn Ptfdµ) = 0 =

´
Rn

d
dt
(
´
Rn Ptfdµ =´

Rn ∆(Ptf)dµ.
For Lebesgue measure on Rn, for all g ∈ C2(Rn) such that ∆g ∈ L1(Rn), we have´

Rn ∆gdx = 0. Indeed, recall Green’s formula: for measurable u, v, we haveˆ
u∆vdx = −

ˆ
⟨∇u,∇v⟩dx.

By taking u = 1 and ∇u = 0, we got
´
∇vdx = 0. The conclusion is: Lebesgue measure is

stationary for the heat semigroup.
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Example 6.19 (Heat semigroup on the circle/torus). Consider a nice enough one dimen-
sional function f : [−π, π] → R (2π periodic). Then we have the PDE{

∂t(Ptf) = ∆(Ptf)

P0f = f

Then the stationary measure is uniform on circle.

Example 6.20 (Main example: Ornstein–Uhlenbeck semigroup). Firstly, Ornstein–Uhlenbeck
operator is defined as a second order linear operator on nice enough function on Rn following:

L u = ∆u− ⟨∇u, x⟩

Ornstein–Uhlenbeck semigroup is defined as: d
dt
(Ptf) = L (Ptf), P0f = f . The question

here is: What is the stationary measure for this process? Observe thatˆ
Ptfdµ =

ˆ
fdµ, (69)

d

dt

ˆ
Ptfdµ = 0, (70)

ˆ
d

dt
(Ptf)dµ =

ˆ
L (Ptf)dµ = 0. (71)

The answer is the Gaussian measure!!!

dγ =
1√
2π

n exp−
|x|2

2
dx, (72)

ˆ
uL vdγ = −

ˆ
⟨∇u,∇v⟩dγ, (73)

for nice enough u, v. Plug in u = 1 and
´

L vdγ = 0, we have
´

L (Ptf))dµ = 0. Hence we
got the conclusion: Gaussian measure is stationary for the Ornstein–Uhlenbeck process. The
proof of 73 is left as homework (use first order gaussian integration by parts twice). It could
also be proved by using Green’s formula.

Definition 6.21 (Reversibility of semigroups). A Markov semigroup Pt with stationary
measure µ is called reversible if:ˆ

f · Ptg dµ =

ˆ
Ptf · g dµ

for all f, g ∈ Dom(Pt).

The name of reversibility indicates that if we assume our Markov process Xt is such that
X0 ∼ µ as we usually do, then

E(f(X0)E(g(Xt)|X0)) = E(g(Xt)E(f(X0)|Xt))

where E(f(X0)E(g(Xt)|X0)) =
´
fPtgdµ, and E(g(Xt)E(f(X0)|Xt)) =

´
Ptfgdµ. One can

show that, left as homework, Ptf(x) = E(f(Xt)|X0 = x) = E(f(X0)|Xt = x). That is to say,
time goes in both directions in the same way.
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Definition 6.22 (Ergodicity). A Markov semigroup semigroup Pt is called ergodic if for all
f ∈ Dom(Pt),

Ptf
L2→
t→∞

Eµ f =

ˆ
fdµ

Here, Ptf
L2→
t→∞

= C = Eµ f , since
´
Ptfdµ =

´
fdµ for all t. In particular,

´
cdµ =´

P∞fdµ =
´
fdµ.

Remark 6.23. Recall that for all Markov semigroup, the Var(Ptf) decreases as t → ∞. If
Pt is ergodic, that is equivalent to Var(Ptf) → 0.

Definition 6.24 (Dirichlet form of semigroups). Assume Xt is a Markov process with a
stationary measure µ and generator L , i.e., ∂t(Ptf) = L Ptf , and P0f = f . The Dirichlet
form E is defined by:

E(f, g) := −
ˆ
fL g dµ

Example 6.25 (Dirichlet form of Heat semigroup). Recall that Heat semigroup is L = ∇
on Rn, then ∂t(Ptf) = ∇(Ptf) and P0f = f , and the stationary measure µ is the Lebesgue
measure because it satisfies the integral by parts:

´
u∆vdx = −

´
⟨∇u,∇v⟩dx, in particular,´

∇vdx = 0, then we have:

E(f, g) = −
ˆ
f∇gdx =

ˆ
⟨∇u,∇v⟩dx

Remark 6.26. Notice that one can show the Heat semigroup is reversible: given f and g:´
Ptfgdµ =

´
gPtfdµ.

Proof left as homework.

Theorem 6.27 (Abstract Theorem). Pt is a reversible and ergodic markov semigroup with
stationary measure µ, fix a constant c ≥ 0, the followings are all equivalent:

1. For all f ∈ Dom(Pt), Varµ(f) ≤ cE(f, f) (Poincare inequality).

2. Pt is “Hypercontractive”. That is,

ˆ
Rn

(
Ptf −

ˆ
Rn
fdµ

)2

dµ ≤ e−
t
c

ˆ
Rn

(
f −
ˆ
Rn
fdµ

)2

dµ

for all t ≥ 0 and f ∈ Dom(Pt). This is the same as Varµ(Ptf) ≤ e
t
c Varµ(f).

3. E(Ptf, Ptf) ≤ e−
2t
c E(f, f).

4. For all f , there exists a constant κ(f) such that
√

Varµ(Ptf) ≤ κ(f)e−
t
c .

5. for all f , there exists a constant k(f) such that E(Ptf, Ptf) ≤ k(f)e−
2t
c
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Before the proof, we need to cover the following example.

Example 6.28 (Ornstein–Uhlenbeck semigroup). Recall L u = ∆u−⟨∇u, x⟩, where u : Rn →
R is an appropriate function here. The semigroup Pt is defined as: ∂t(Ptf) = L (Ptf),
P0f = f , given f ∈ Dom(Pt).

Lemma 6.29. A very nice and concrete representation for the Ornstein-Uhlenbeck semi-
group:

1. Ptf(x) = E f(e−tx +
√
1− e−2tZ), where Z ∼ N (0, Id) is the Ornstein-Uhlenbeck

semigroup, such that it satisfies ∂t(Ptf) = L (Ptf), P0f = f , which is true because we
can check: when t = 0, P0f = E f(x), when t→ ∞, P∞f = E f(z) =

´
fdγ.

2. Pt is ergodic.

3. Pt is reversible.

4. γ is the stationary measure.

Claim 6.30. This claim of second order integration by parts is used in the following proof.
For all f , g, ˆ

gL f dγ = −
ˆ
⟨∇f,∇g⟩ dγ.

In particular, the Dirichlet form is given by E(f, g) = −
´
⟨∇f,∇g⟩dγ.

Proof of Claim 6.30. By Green’s formula, we have
ˆ
Rn
g∆f dγ = cn

ˆ
Rn

∆f · ge
−|x|2

2 dx

= −cn
ˆ
Rn

〈
∇f,∇

(
ge

−|x|2
2

)〉
dx

= −
ˆ
Rn
⟨∇f,∇g⟩cne

−|x|2
2 dx+

ˆ
Rn
gcn⟨∇f, x⟩e

−|x|2
2 dx

= −
ˆ
Rn
⟨∇f,∇g⟩dγ +

ˆ
Rn
g⟨∇f, x⟩ dγ.

Therefore,
ˆ
Rn
gL f dγ =

ˆ
Rn
g∆f dγ −

ˆ
Rn
g⟨∇f, x⟩ dγ = −

ˆ
Rn
⟨∇f,∇g⟩ dγ.

Proof of Lemma 6.29. Proof of Property 4. Let f ∈ Dom(Pt). Then,

d

dt

ˆ
Ptfdγ =

ˆ
∂t (Ptf) dγ =

ˆ
L (Ptf) dγ.
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Here, if we let g = 1, then

ˆ
L fdγ = −

ˆ
⟨∇f, 0⟩dγ = 0.

Thus, d
dt

´
Ptfdγ = 0, implying that

´
Ptfdγ =

´
fdγ and Pt is constant in time.

Proof of Property 1. We want to show that Ptf(x) = E f(e−tx+
√
1− e−2tz) satisfies

the following {
∂t(Ptf) = L (Ptf)

P0t = f.

By direct calculation, we see that P0f(x) = E f(x) = f(x). Next, by the chain rule, we
have

∂t(Ptf) = ∂t E f(e−tx+
√
1− e−2tZ)

= E ∂tf(e−tx+
√
1− e−2tZ)

= E
〈
∇f(e−tx+

√
1− e−2tZ),−e−tx+ (1− e−2t)−1/2e−2tZ

〉
=

ˆ
Rn

〈
∇f(e−tx+

√
1− e−2tz),−e−tx+ (1− e−2t)−1/2e−2tz

〉
dγ(z).

Using Claim 6.30, we see that

ˆ
Rn

〈
∇f(e−tx+

√
1− e−2tz),−e−tx+ (1− e−2t)−1/2e−2tz

〉
dγ(z)

=

ˆ
Rn

〈
∇f(e−tx+

√
1− e−2tz),−e−tx

〉
dγ(z) +

ˆ
Rn
e−2t∆f(e−tx+

√
1− e−2tz) dγ(z)

= −
〈
∇x

[ˆ
Rn
f(e−tx+

√
1− e−2tz)dγ(z)

]
, x

〉
+∆x

[ˆ
Rn
f(e−tx+

√
1− e2tz) dγ(z)

]
= L E f(e−tx+

√
1− e−2tZ).

Proof of Property 3. For t = 0, note that

ˆ
Rn
f(P0g) dγ =

ˆ
Rn
fg dγ =

ˆ
Rn
g(P0f) dγ

Furthermore, applying Gaussian integration by parts, we see that

d

dt

ˆ
Rn
fPtg dγ =

ˆ
Rn
fL (Ptg) dγ = −

ˆ
Rn
⟨∇f,∇(Ptg) ⟩dγ.

Similarly,
d

dt

ˆ
gPtfdγ = −

ˆ
⟨∇g,∇Ptf⟩ dγ
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Now, via a change of variable, we see thatˆ
Rn
⟨∇f,∇(Ptg)⟩ dγ =

ˆ
Rn

ˆ
Rn
e−t⟨∇f(x),∇g(e−tx+

√
1− e−2tz)⟩ dγ(z)dγ(x)

=

ˆ
Rn

ˆ
Rn
cn

e−t√
1− e−2t

e
− (ξ−e−tx)2

2(1−e−2t) ⟨∇f(x),∇g(ξ)⟩ dξ dγ(x)

=

ˆ
Rn

ˆ
Rn
e−t⟨∇g(x),∇f(e−tx+

√
1− e−2tz)⟩ dγ(z)dγ(x)

=

ˆ
Rn
⟨∇g,∇(Ptf)⟩ dγ

Hence,

⟨f, Ptg⟩L2(γ) =

ˆ t

0

d

dτ

[
⟨f, Pτg⟩L2(γ)

]
dτ =

ˆ t

0

d

dτ

[
⟨g, Pτf⟩L2(γ)

]
dτ = ⟨Ptf, g⟩L2(γ).

Therefore, Pt follows accordingly.
Proof of Property 2. Indeed, by the Bounded Convergence Theorem, note that

Ptf = E f(e−t +
√
1− e−2tZ)

L2−→
t→∞

E f(Z).

Remark 6.31. For the students who have background in stochastic partial differential equa-
tion, when Xt is a Markov process, dXt = −Xtdt +

√
2dBt where Bt is Brownian motion.

Then Xt is the Ornstein-Uhlenbeck semigroup.

Lemma 6.32 (Hypercontactivity). Let {Pt} be the Ornstein-Ulhenbeck semigroup. Then,
the following hold:

1. ∇Ptf = e−tPt∇f , where Pt∇f = (Pt∂1f, . . . , Pt∂nf). Here the ∂if denote the partial
derivatives of f and ∇f = (∂1f, . . . , ∂nf).

2.
´
|∇Ptf |2 dγ ≤ e−2t

´
|∇f |−2 dγ.

Proof. 1. Recall that Ptf = E f(e−tx+
√
1− e−2tZ). Then, the chain rule yields that

∂i(Ptf) = E ∂xif
(
e−tx+

√
1− e−2tZ

)
= e−t E ∂if

(
e−tx+

√
1− e−2tZ

)
= e−tP (∂if).

2. Note thatˆ
Rn

|∇Ptf |2 dγ = e−2t

ˆ
Rn

∑
1≤i≤n

|Pt∂if |2 dγ = e−2t
∑

1≤i≤n

ˆ
|Pt∂if |2 dγ

≤ e−2t
∑

1≤i≤n

ˆ
Rn

|∂if |2 dγ

= e−2t

ˆ
Rn

|∇f |2 dγ,

where we have used
´
|Ptg|2dγ ≤

´
g2dγ.
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Theorem 6.33 (Gaussian Poincaré Inequality). Let f ∈ L 2(Rn) ∩ C2(Rn). Then,

Varγ(f) =

ˆ
Rn
f 2dγ −

(ˆ
Rn
f dγ

)2

≤ Eγ |∇f |2 =
ˆ
Rn

|∇f |2 dγ,

where γ is Gaussian measure.

Proof. Let Pt be the Ornstein-Uhlenbeck semigroup. Then, note that
´
Rn f

2dγ =
´
(P0f)

2dγ

and
(´

Rn fdγ
)2

= (P∞f)
2 since ergodicity of {Pt} implies that P∞f =

´
f dγ. Since γ is a

probability measure, the Fundamental Theorem of Calculus implies that

Varγ(f) =

ˆ
Rn
(P0f)

2dγ −
ˆ
Rn
(P∞f)

2 dγ =

ˆ
Rn
(P0f)

2 − (P∞f)
2 dγ

= −
ˆ
Rn

ˆ ∞

0

∂

∂t
(Ptf)

2 dt dγ(x)

= −
ˆ ∞

0

ˆ
Rn

∂

∂t
(Ptf)

2 dγ(x) dt

= −
ˆ ∞

0

ˆ
Rn

2Ptf · L (Ptf) dγ(x) dt

= −
ˆ ∞

0

ˆ
Rn

2Ptf · L (Ptf) dγ(x) dt

Applying Gaussian integration by parts, we obtain

−2

ˆ ∞

0

ˆ
Rn
Ptf · L (Ptf) dγ(x) dt = 2

ˆ ∞

0

ˆ
Rn

⟨∇Ptf,∇Ptf⟩ dγ dt

= 2

ˆ ∞

0

ˆ
Rn
e−2t |Pt∇f |2 dγ dt

≤ 2

ˆ ∞

0

ˆ
Rn
e−2t |∇f |2 dγ dt

=

ˆ
Rn

|∇f |2 dγ.

Remark 6.34. When is the Gaussian Poincaré inequality sharp? - It is when we use the hy-
percontactivity. The step we used

´
|Ptg|2 ≤

´
g2dγ was the only step we used the inequality.

In hypercontactivity, the equality is achieved when g is a constant, that is to say, Ptg = g
is constant. That is, when all of ∂if in Gaussian Poincaré inequality are constant or f is a
linear function. f(x) = ⟨x, θ⟩ where θ ∈ Rn.

Indeed,

Varγ⟨x, θ⟩ =
∑

θ2i Varγ(xi) = |θ|2 =
ˆ
Rn

|∇⟨x, θ⟩|2 dγ.
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