Analysis 2 Home work 4

March 4, 2019

Due March 27. Questions marked with an asterisk are optional, but highly recommended! Good luck!

1. For any $\epsilon \in [0,1]$, find an upper estimate on the integer *n* such that there exists an approximation of f(x) = |x| on [-1,1] by a polynomial P(x) of degree *n* such that

$$\sup_{x \in [-1,1]} |P(x) - |x|| \le \epsilon.$$

In other words, you need to find an upper estimate on the integer-valued function $n(\epsilon)$. (note, you are not requested to find "the very best possible" estimate — just any one will be good!)

2. a) For any $\epsilon \in [0,1]$, find an upper estimate on the integer n such that there exists an approximation of $f(x) = \log x$ on [1,2] by a polynomial P(x) of degree n such that

$$\sup_{x \in [1,2]} |P(x) - \log x| \le \epsilon.$$

In other words, you need to find an upper estimate on the integer-valued function $n(\epsilon)$.

b) Consider two possible ways of achieving the previous task: via evaluating the proof of the Wejerstrass theorem, and via the Taylor's theorem. Compare the results.

c)* What about the lower estimate on $n(\epsilon)$ — any thoughts?

3. a) Show that

$$\sum_{k=1}^{\infty} \frac{1}{(n+k)!} < \frac{1}{n!}.$$

b) Conclude that e is an irrational number, using Taylor's theorem.

4.* Does there exist an infinitely differentiable real-valued function which is not real-analytic?

5. Recall that a function is called convex on E (which is a subset of a linear space) if for every $x, y \in E$ and every $\lambda \in [0, 1]$, we have $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$. Prove that if a function is twice differntiable, then it is convex if and only if $f''(x) \leq 0$.

6. a) For any real number θ and every integer n, show the de Moivre formula

$$\cos(n\theta) = Re\left(\cos\theta + i\sin\theta\right)^n$$

$$\sin(n\theta) = Im\left(\cos\theta + i\sin\theta\right)^n$$

b) Compute $\cos(7\theta)$ in terms of the trigonometric functions of θ .

7. a) Consider the function $f(x) = (1 - 2x)^2$ on [0, 1] and extend it periodically.

B) Show that the series

$$\frac{1}{3} + \sum_{n=1}^{\infty} \frac{4}{\pi^2 n^2} \cos(2\pi nx)$$

converges uniformly to f. C) Find exactly the value $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

8. Suppose the function f is differentiable and $\frac{1}{2}$ -periodic (i.e., more than just 1-periodic). Show that the Poincare inequality (which we proved in class) holds with a better constant:

$$\int_0^1 f^2(x) dx - \left(\int_0^1 f(x) dx\right)^2 \le \pi^2 \int (f'(x))^2 dx.$$

9. Decompose $f(x) = 1_{[0,\frac{1}{2}]}(x)$ into Fourier series.

10. Find the Fourier transform (on the line) of $f(x) = \frac{\sin x}{x}$.