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@ There is a unique minimizer f € WOI’Q(Q).
@ It solves the differential equation

Af—i—)\%,ﬂf =0inQ
f =0in09Q.

o f(z)sin(Ayq - t) describes a vibrating membrane with the boundary
fixed at 012.
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p-Sobolev is homogeneous w.r.t rescaling é — % + % =0
C is not related to (2.
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Variational Equation

If f minimizes the quotient
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take any ¢ and replace f by f + &g,

V(S +eg)lllz o IVl
If+egllz = lIfl2

Take derivative with respect to € at € = 0:

/@U@%v¢@mx+g@/jum@mx:o

which means
Af+Xaf=0
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Estimates of Eigenvalues

Lord Rayleigh conjectured

Among all membranes §2 of a fixed volume, the ball minimizes the funda-
mental frequency A2 .

Polya-Szego principle

f — f* the symmetric decreasing rearrangement of f

IVl < NIV flllp and [/l = [ f]lq-

The equality case is delicate (Brothers-Ziemer result)

Faber-Krahn inequality

)‘ILQ > /\p,Q*

equality holds only for balls.



—1/n
6t =cnp ([ IVeflmae)
'99, Zhang - The affine Sobolev Inequality

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

16, Nguyen - New approach to the affine Polya-Szego principle...



—1/n
ot = cnp ([ IVell5de) = nprolp )
'99, Zhang - The affine Sobolev Inequality

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

16, Nguyen - New approach to the affine Polya-Szego principle...



—1/n
ol =g ([ IVell5a) = cnprollmy )
'99, Zhang - The affine Sobolev Inequality

V£l = Ef = Call £l =
'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

'16, Nguyen - New approach to the affine Polya-Szego principle...




—1/n
Erf = cnp ( / IIstII;”dé) = Vol (IS ) V/7

Sn—1

'99, Zhang - The affine Sobolev Inequality
V£l = Ef = Call £l =
'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities
Fll 22
n—p
'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

IV Flllp = Ef = Cpn

'16, Nguyen - New approach to the affine Polya-Szego principle...



—1/n
ol =g ([ IVefl5"a) = caprvolmy )
'99, Zhang - The affine Sobolev Inequality
V£l = Ef = Cull £l =

n
3

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities
Fll 22

n—p
'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

IIVFlllp = Enf = Cpn

&I <ES

'16, Nguyen - New approach to the affine Polya-Szego principle...



—1/n
ol =g ([ IVell5a) = caprolmy) e
'99, Zhang - The affine Sobolev Inequality

NVFllle = &f = Cull Fll 2

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities
fll e

n—p
'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

VIl = Ef = Con

&I <ES

'16, Nguyen - New approach to the affine Polya-Szego principle...

Equality case (Brothers-Ziemer result)



1/p —1/n
195l = ([ 195@pae) | &= ([ 1veflrac)

S(K) = IIVxx| | SAEK) = vol(I°K) ™" = Eaxc |
Sobolev
1V £lllp > Cnpll £l 22, Epf 2 Cupllf 22
Isoperimetric Petty-Projection
S(K) > ey vol(K) % SAK) > ¢, vol(K) "%
IVF Il < IVl N 1 ]

Ap,ﬂ 2> )‘p,Q* J ? J




Can we develop the theory of affine Rayleigh quotients?



Can we develop the theory of affine Rayleigh quotients?
Wang and Xiao 2015, Xiao and N. Zhang 2016 (affine capacity)



Can we develop the theory of affine Rayleigh quotients?

Wang and Xiao 2015, Xiao and N. Zhang 2016 (affine capacity)
Schindler, Tintarev 2018, (p = 2).



Question

Can we develop the theory of affine Rayleigh quotients?
Wang and Xiao 2015, Xiao and N. Zhang 2016 (affine capacity)
Schindler, Tintarev 2018, (p = 2).

The affine Rayleigh quotient
Enll
FEW,P(Q) £l




Question

Can we develop the theory of affine Rayleigh quotients?
Wang and Xiao 2015, Xiao and N. Zhang 2016 (affine capacity)
Schindler, Tintarev 2018, (p = 2).

The affine Rayleigh quotient

il > inf &F Cop
rewer@) Iflly — rewiw) [1fll 22




Can we develop the theory of affine Rayleigh quotients?
Wang and Xiao 2015, Xiao and N. Zhang 2016 (affine capacity)
Schindler, Tintarev 2018, (p = 2).

The affine Rayleigh quotient

il > inf &F Cop
rewer@) Iflly — rewiw) [1fll 22

Observation

Wy P(Q) = {f: Q= R| &f < o}
is the correct space to work with affine Rayleigh quotients
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Properties
o )\éT(Q) = )\ﬁﬂ for every T' € SL,(R).

Q )\ﬁQ < Apq equality only for balls delicate!

The affine Faber-Krahn inequality

)\ﬁg > )\;)‘}]E ( E ellipsoid of same volume) equality only for ellipsoids.
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Q Laplacian Af = div(VY)
@ p-Laplacian A, f =div(VH(Vf)), H(x) = %|x|p.

© Wulff p-Laplacian A, i f = div(VHk (V)), H(x) = Shi ().

AL f = Ay, (f)

" 1/n
= — r,IIe
G (vol(Hgf)) ]

Q It is affine invariant A;f‘(f oT) = (A;,“f) oT on T~HQ).
@ If f is radial then AZlf = A, f.
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The Equation

A -2 :
AZf+ N|fIP7f =0 in Q.

© f is a minimizer for A = )\ﬁﬂ if and only if f is a solution of the
affine PDE.

@ The solutions are always bounded and belongs to C1%(Q) and to
Che(Q) if 902 is O,

© The solution can be taken positive.

Q It is log-concave (if € is convex)

© We don't know if the eigenvalue is simple.



The case p = 1 and () convex

(1,1)




The case p = 1 and () convex

For p = 1, the extremal function can be taken to be the characteristic
function of a convex set K.



The case p = 1 and €2 convex

For p = 1, the extremal function can be taken to be the characteristic
function of a convex set K.

Classical Cheeger set

VAL, S0)
1

inf 7

rewdr@) Iflle K< vol(K)



The case p = 1 and €2 convex

For p = 1, the extremal function can be taken to be the characteristic
function of a convex set K.

Classical Cheeger set
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Open Question

Q is in John position if and only if

)\A _)\.A
lim RN =17
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Other Open Questions

© Brunn-Minkowski type inequality for )\ég

@ Uniqueness of the affine Cheeger set

© Are all minimizers of )\“1‘}9 characteristic functions?
© Continuity with respect to all involved parameters
© Uniqueness of the affine eigenfunctions

O Higher eigenvalues? Spectral gap?
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