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Angle sums in a triangle

In a triangle, the sum of angles is constant.

In a tetrahedron (more generally, in a simplex), it is not
constant.

What are the maximal and minimal values? Answered by
Höhn (1953) and Perles and Shephard (1967).

What are the average values? (Will be discussed below).
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Angles at vertices

Definition of angles at vertices

Consider a simplex S = [X0,X1, . . . ,Xd ] in Rd .

Ball: B(X0, ε) = {y ∈ Rd : ‖y − X0‖ ≤ ε}.
Internal angle at vertex X0:

β(X0, S) = lim
ε↓0

Vold(B(X0, ε) ∩ S)

Vold(B(X0, ε))
.

Normalization: Angle of the full space is 1, angle of the
half-space is 1/2.

Angle sum at vertices:

σ0(S) =
d∑

i=0

β(Xi , S).
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Maximal angle sum at vertices

Theorem (Höhn, Perles-Shephard)

For every d-dimensional simplex we have

0 < σ0(S) ≤ 1

2
(strict for d ≥ 3).

Idea of proof

Assume X0 = 0 is the origin.

Take a random direction U (uniformly distributed on Sd−1).

Project the simplex onto the hyperplane U⊥.

Probability that X0 = 0 is inside the projection is
2β(X0, S).

2σ0(S) is the probability that the projection is a (d − 1)-
dimensional simplex.

σ0(S) ≤ 1/2.
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Angles at faces

Definition

Let S = [X0,X1, . . . ,Xd ] be a simplex in Rd .

Take some k-dimensional face, for example F =
[X0,X1, . . . ,Xk ].

Take some point in the relative interior of F , for example
m := 1

k+1
(X0 + . . . + Xk).

Tangent cone at F :

T (F , S) = {y ∈ Rd : m + εy ∈ S , if ε > 0 is small}.

Angle of S at F :

β(F , S) = lim
ε↓0

Vold(B(m, ε) ∩ T (F , S))

VoldB(m, ε)
.
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Angle sums at faces: relations

Definition

Angle sum at k-dimensional faces:

σk(S) =
∑

F∈Fk (S)

β(F , S).

σ0(S) is the sum of angles at vertices.

σ1(S) is the sum of “dihedral” angles at edges.

σd−1(S) = (d + 1)/2.

Theorem (Gram-Euler relation)

σ0(S)− σ1(S) + . . .± σd−1(S) = (−1)d−1.

Remarks

There exist more general Poincaré relations for simplicial poly-
topes (related to Dehn-Sommerville relations).
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Maximal and minimal values

Theorem (Höhn, Perles-Shephard)

Maximal values: For j = 0, . . . , d − 2 we have

max
S∈simplices

σj(S) =
1

2

(
d

j

)
.

Minimal values: For j = 0, . . . , [(d − 3)/2] we have

min
S∈simplices

σj(S) = 0.

Minimal values: For j = [(d − 1)/2], . . . , d − 2 we have

min
S∈simplices

σj(S) =
1

2

(
[(d + 1)/2]

d − j

)
+

1

2

(
[(d + 2)/2]

d − j

)
.
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Average values: angles at vertices

Theorem [K]

Let X0, . . . ,Xd be i.i.d. and uniform on the sphere Sd−1. Then,

Eσ0(S) =



1
8
, for d = 3;
539

288π2 − 1
6
, for d = 4;

25411
7340032

, for d = 5;
1
6

+ 113537407
48384000π4 − 2144238917

1141620480π2 , for d = 6;

. . .

Rational for odd d . Polynomial of π−2 with rational coefficients
for even d .

Remark

Similar formulas exist for points uniformly distributed in the ball,
for instance Eσ0(S) = 401

2560
for d = 3.
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Beta distributions

Definition

d-dimensional beta distribution has Lebesgue density

Γ
(
d
2

+ β + 1
)

π
d
2 Γ (β + 1)

(
1− ‖x‖2

)β
1{‖x‖<1}. (1)

Parameter: β > −1.

Examples

For β = 0: uniform distribution on the ball.

For β ↓ −1: uniform distribution on the sphere.

For β → +∞: normal distribution.

Properties

Orthogonal projection of beta distribution is again beta.

Restriction to beta to affine subspace is again beta.
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Beta simplices

Notation

Consider n points X1, . . . ,Xn having beta distribution with
parameter β ≥ −1 in Rn−1.

Expected sum of internal angles of the simplex [X1, . . . ,Xn] at
its k-vertex faces:

Jn,k(β) = Eσk−1([X1, . . . ,Xn]).

Question

Explicit formula for Jn,k(β)?
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Beta simplices

Theorem [K]

Let n ≥ 3 and k ∈ {1, . . . , n}. For all α ≥ n − 3 we have

Jn,k
(
α− n + 1

2

)
=

(
n

k

)∫ +π/2

−π/2
cαn

2
(cos x)αn+1

(
1

2
+
√
−1

∫ x

0

cα−1
2

(cos y)−α−1dy

)n−k

dx ,

where cβ := Γ(β + 3
2
)/(
√
π Γ(β + 1)).

Remark

For integer or half-integer β: either rational, or a polynomial
in π−2 over Q. The latter sometimes simplifies to a rational
multiple of π−2m.
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Beta prime distribution

Definition

d-dimensional beta prime distribution has Lebesgue density

Γ(β)
√
π Γ
(
β − 1

2

) (1 + ‖x‖2
)−β

, x ∈ Rd .

Parameter: β > d/2.

Remarks

For β = (d + 1)/2: Cauchy distribution.

Generalization of the Student distribution.

Result

Let J̃n,k(β) be the expected sum of internal angles of the beta
prime simplex. An explicit formula for J̃n,k(β) exists.
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Beta polytopes

Definition

Beta polytope Pβ
n,d is a convex hull of n points with beta

distribution in Rd .

Beta prime polytope P̃β
n,d is a convex hull of n points with

beta prime distribution in Rd .
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Expected face numbers of beta polytopes

Theorem [K, Thäle, Zaporozhets]

The expected number of k-dimensional faces of a beta polytope
Pβ
n,d can be expressed through two types of quantities:

Expected internal angle sums: Jn,k(β) and

Expected external angle sums: In,k(β):

Efk(Pβ
n,d) = 2

∞∑
s=0

In,d−2s(2β + d)Jd−2s,k+1

(
β + s +

1

2

)
.

Remark

For integer or half-integer β: Either rational or polynomial in
π−2 with rational coefficients.

Similarly for beta prime polytopes.
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Poisson zero cell

Poisson hyperplane process

On the space of hyperplanes there is a unique (up to constant)
measure invariant under isometries. Consider Poisson point pro-
cess with this intensity (infinitely many hyperplanes thrown at
random in Rd).
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Poisson zero cell and beta prime polytopes

Consider points dual to these hyperplanes.

Points form a PPP with intensity ‖x‖−d−1.

Limit of P̃
(d+1)/2
n,d as n→∞.

16



Poisson zero cell: Expected f -vector

Theorem [K]

For all ` ∈ {1, . . . , d} such that d − ` is even, we have

Ef`(Zd)

=
πd−`

(d − `)!
[xd−`](1 + (d − 1)2x2)(1 + (d − 3)2x2) . . .

= πd−`
(
d

`

)
[xd−`]

( x

sin x

)d+1

.

For odd d − `: a more complicated formula exists. Even and
odd codimensions are related by Dehn-Sommerville relations.
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Angles in half-spaces

Let U1, . . . ,Un be uniform on the upper half-sphere in
Rd+1.

Their positive hull is a random cone Cn.

Cross-section of Cn is beta prime polytope P̃
(d+1)/2
n,d .

Explicit formulas for the expected angle, number of faces,
etc. exist.
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Typical Voronoi cell

Consider a Poisson point process P1,P2, . . . with intensity
1 in Rd .

Voronoi cell of Pi : the set of points whose distance to Pi

is smaller than to Pj for all j 6= i .

Typical Voronoi cell: a cell chosen uniformly at random
from all cells in a large window.

Explicit description: cell of 0 in a Poisson process to which
we added 0.

Source: Wikipedia
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Typical Voronoi cell

Let Vd be the typical Voronoi cell in Rd .

Meijering (1953):

Ef0(V3) =
96π2

35
, Ef1(V3) =

144π2

35
, Ef2(V3) = 2 +

48π2

35
.

Miles (1970): Formula for Ef0(Vd).

Theorem [K]

For all d ∈ N and k ∈ {1, . . . , d} such that dk is even, we have

Efd−k(Vd) = dd

(
d

k

)(√
π Γ(d

2
)

Γ(d+1
2

)

)k

Res
x=0

(∫ x

0
(sin y)d−1dy

)d−k
(sin x)d2+1

.

Either rational, or polynomial in π over Q, or qπm.
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Spherical tessellations

Theorem [K, Thäle]

Explicit formulas exist for the expected f -vector of the

spherical Poisson zero cell;

typical cell of the spherical Voronoi tessellation.
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Hyperbolic tessellations

Theorem [Godland, K., Thäle]

Explicit formulas exist for the expected f -vector of the

hyperbolic Poisson zero cell;

typical cell of the hyperbolic Voronoi tessellation.
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Beta∗ polytopes

Definition

Beta∗-polytope is the convex hull of the Poisson process with
intensity c(‖x‖2 − 1)−β on the complement of the unit ball.

Claim [Godland, K., Thäle]

Hyperbolic cells reduce (by duality) to beta∗ polytopes.
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Final slide

Thank you for your attention!
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