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Angle sums in a triangle

@ In a triangle, the sum of angles is constant.

@ In a tetrahedron (more generally, in a simplex), it is not
constant.

@ What are the maximal and minimal values? Answered by
Hohn (1953) and Perles and Shephard (1967).

@ What are the average values? (Will be discussed below).
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Angles at vertices

Definition of angles at vertices

e Consider a simplex S = [Xp, X1, ..., Xy] in RY.
e Ball: B(Xp,e) ={y e R?: |y — Xo|| <&}
@ Internal angle at vertex Xj:

. Volg(B(Xp,e) N S)
(%o, 3) = im0 (B %, )

@ Normalization: Angle of the full space is 1, angle of the
half-space is 1/2.

@ Angle sum at vertices:




Maximal angle sum at vertices

Theorem (Hohn, Perles-Shephard)

For every d-dimensional simplex we have

0 < 0o(S) < (strict for d > 3).

N| =

Idea of proof

@ Assume Xy = 0 is the origin.

o Take a random direction U (uniformly distributed on S9~1).
@ Project the simplex onto the hyperplane U*.

@ Probability that Xy = 0 is inside the projection is
26(Xo, S).

200(S) is the probability that the projection is a (d — 1)-
dimensional simplex.

e 0o(S) <1/2.
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Angles at faces

o Let S =[Xo, Xi,...,Xy] be a simplex in R€.

@ Take some k-dimensional face, for example F =
[Xo, X1, ..., Xk

@ Take some point in the relative interior of F, for example
mi=25(Xo+ ...+ Xk).

@ Tangent cone at F:

T(F,S)={ycR?:m+4eycs$, ife>0issmall}.
@ Angle of S at F:

. Voly(B(m,e) N T(F,S))
210 VolyB(m, ¢) '




Angle sums at faces: relations

Definition

@ Angle sum at k-dimensional faces:

a(S)= D B(F.9).
FeFi(S)
@ 0o(S) is the sum of angles at vertices.
@ 01(S) is the sum of “dihedral” angles at edges.
o O'd_l(S) = (d+ 1)/2

Theorem (Gram-Euler relation)

00(S) — 01(S) + ... £ a4.1(S) = (1)

There exist more general Poincaré relations for simplicial poly-
topes (related to Dehn-Sommerville relations).



Maximal and minimal values

Theorem (Hohn, Perles-Shephard)

@ Maximal values: For j =0,...,d — 2 we have

1/d
Segpmap)l(ices OJ(S) N 5 (_j) i
@ Minimal values: For j =0,... [(d — 3)/2] we have

min  0;(S) =0.
Séesimplices

@ Minimal values: For j =[(d —1)/2],...,d — 2 we have

i mw)zécw+4y3)+lcw+aya)
Sesimplices 7

d—j 2\ d—j




Average values: angles at vertices

Let Xp,..., Xy bei.i.d. and uniform on the sphere S~!. Then,

(é, for d = 3;

O ford =4

_ 25411 B
EO'O(S) = 7340032 ° for d= 5,

1 113537407 _ 2144238917 o
6 T 48384000 — Tiatoosson?r OF d =6

\ooo

Rational for odd d. Polynomial of 72 with rational coefficients
for even d. )

Similar formulas exist for points uniformly distributed in the ball,
for instance Eog(S) = 45 for d = 3.
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Beta distributions

Definition
d-dimensional beta distribution has Lebesgue density
r¢+p+1 8
p (1 - ||X||2> Lji<1y- (1)
i (B +1)

Parameter: 5 > —1.

@ For = 0: uniform distribution on the ball.
@ For # | —1: uniform distribution on the sphere.

@ For § — +4o00: normal distribution.

Properties

@ Orthogonal projection of beta distribution is again beta.

@ Restriction to beta to affine subspace is again beta.




Beta simplices

Consider n points Xi,..., X, having beta distribution with

parameter 3 > —1 in R"1.

Expected sum of internal angles of the simplex [X, .

its k-vertex faces:

e]]mk(ﬁ) = ]Eak—l([XI; 000

, Xa]).

.., Xp] at

.

Explicit formula for J, «(5)?




Beta simplices
Theorem [K]

Let n >3 and k € {1,...,n}. For all @ > n— 3 we have

a—n+1 n\ [T7/?
Tk (—) = ( >/ can (cos x)*"!
2 k —7/2 2
1 X n—k
(5 - \/—1/ Coct (cos y)_a_ldy) dx,
0

where ¢z :=T(8+ 3)/(v/7 (8 +1)).

For integer or half-integer (3: either rational, or a polynomial
in 772 over Q. The latter sometimes simplifies to a rational
multiple of 727,
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Beta prime distribution

d-dimensional beta prime distribution has Lebesgue density

r(s) AN d
P (1 : c R
(oD L) L x

Parameter: 5 > d/2. )
e For § = (d+1)/2: Cauchy distribution.

@ Generalization of the Student distribution. )
Let J,(3) be the expected sum of internal angles of the beta
prime simplex. An explicit formula for J, x(3) exists.




Beta polytopes

@ Beta polytope Pf,d is a convex hull of n points with beta
distribution in R¢.

@ Beta prime polytope ISEd is a convex hull of n points with
beta prime distribution in R¢.

v
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Expected face numbers of beta polytopes

Theorem [K, Thale, Zaporozhets]

The expected number of k-dimensional faces of a beta polytope
Pﬁd can be expressed through two types of quantities:

@ Expected internal angle sums: J, «(5) and

@ Expected external angle sums: I, x(5):

— 1
Efk(Pf,d) =2 Z Hn;d—25(26 + d)«]]d—2s,k+1 (ﬁ + s+ 5) 5
s=0

For integer or half-integer [3: Either rational or polynomial in
72 with rational coefficients.

Similarly for beta prime polytopes. |
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Poisson zero cell

Poisson hyperplane process
On the space of hyperplanes there is a unique (up to constant)
measure invariant under isometries. Consider Poisson point pro-
cess with this intensity (infinitely many hyperplanes thrown at
random in RY).

V.




Poisson zero cell and beta prime polytopes

@ Consider points dual to these hyperplanes.

@ Points form a PPP with intensity ||x|| =971

@ Limit of ,E’,Sffjl)/z as n — oo.
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Poisson zero cell: Expected f-vector

For all ¢ € {1,...,d} such that d — / is even, we have
]Eﬁz(zd)

(d g) [ d— E](1+( 1)2X2)(1+(d—3)2x2),,_

== ()1 ()

v

For odd d — /: a more complicated formula exists. Even and
odd codimensions are related by Dehn-Sommerville relations.




Angles in half-spaces

v

@ Let Uy,...,U, be uniform on the upper half-sphere in
RdJrl_
@ Their positive hull is a random cone C,,.

o Cross-section of C, is beta prime polytope P\ d+1)/2

@ Explicit formulas for the expected angle, number of faces,
etc. exist. )




Typical Voronoi cell

@ Consider a Poisson point process P, P,, ... with intensity
1in RY.

@ Voronoi cell of P;: the set of points whose distance to P;
is smaller than to P; for all j # .

@ Typical Voronoi cell: a cell chosen uniformly at random
from all cells in a large window.

@ Explicit description: cell of 0 in a Poisson process to which
we added O.

4

Source: Wikipedia
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Typical Voronoi cell

@ Let V, be the typical Voronoi cell in R9.
o Meijering (1953):

9672 14472 4872
Ef(Vs) = 2 EA(Vs) = —— ER(Vs) =2+ <

@ Miles (1970): Formula for Efy(V,).

Foralld € Nand k € {1,...,d} such that dk is even, we have

Efy_k(Va) = d° (d) (ﬁr(g)> Res (o (siny)*—dy) ™ .

k F(%) x=0 (sin x)d*+1

Either rational, or polynomial in 7 over Q, or gm™.




Spherical tessellations

Theorem [K, Thale]

Explicit formulas exist for the expected f-vector of the

@ spherical Poisson zero cell;

@ typical cell of the spherical Voronoi tessellation.
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Hyperbolic tessellations

Theorem [Godland, K., Thale]
Explicit formulas exist for the expected f-vector of the
@ hyperbolic Poisson zero cell;

@ typical cell of the hyperbolic Voronoi tessellation.
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Beta® polytopes

Definition

Beta*-polytope is the convex hull of the Poisson process with
intensity c(||x||> — 1)~” on the complement of the unit ball.

v

Claim [Godland, K., Thale]
Hyperbolic cells reduce (by duality) to beta* polytopes.
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Final slide

Thank you for your attention! J
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