12/5/20

Rigidity of Riemannian embeddings of discrete metric spaces

Joint work with M. Eilat.

$$\times C > M$$

if
$$\mathcal{F}$$
: $X \longrightarrow \mathcal{M}$ s.l.
 $\forall a, s \quad d_X(a, s) = d_M(\mathcal{F}(a), \mathcal{F}(b))$

Def:
$$X \in IR^{\circ}$$
 is a net, if $\exists d > 0$
 $\forall x \in IR^{\circ} \quad \exists y \in X \quad |x - y| \in I.$
That I Suppose that $X \in IR^{\circ}$ is het,
and M is a 2D Richmannian with, coupleh
connected, such that
 $X \subseteq M$
Then M is flat and isometric to the
Euclidean plane.
Remarks Works for Artimum, but not Finder
i
Corollary: $X \in IR^{3}$ discrete, not canford
in any affire plane, but carboins a net
Gome 2D plane, Then X does not

• • •

embed in any complete manifold it bus tim.
Riem.
E.g.
$$X = \mathcal{H}^2 \times \{o\} \cup \{(o, 0, 1)\}$$
.
Def: The asymptotic Riemannian dimension
of a discrete metric spear is the animimal
dimension of a firm annian adult in which
its embeds.
E.g. $X = (\mathcal{H}^1 \cup \{o\}) \cup \{(o, 0, 1\})$
has dim 3.
Theorem 2: Let $X \in IR^n$ be a het
 $X \subseteq M$ for some Riemannian M
of dim (M) = N then M is
diffeomorphic to IR^n .
Penarks: 1) If curvation of M has
compact support, then isometric

. Burago-Zvanov 194: True in TT. Michel's conjectur ('91) A simple Ricmannian utld with boundary is determined from boundary distances. M true for shirtly Convex sets in IR Pestor - Uhlman 105 ! True in 20 Bagert-Eumerich 13: M diffeonorphic do IR², ho conjugate points, XEM. Then $\lim_{x \to \infty} \frac{Aren(D(x, y))}{y^2} \ge \Pi$

with equality iff M is flat.

Q1: Metric rigidity of puts in Hadanal manifold.

Plan of Proof 1) Use X CAM bo prove that ho Canjugale points exist. 2) Use large-sale geometry, which is approx. Euclidear. . Why a point of the net is not conjugate to anything in m?

Write L for the set al not K.
L
$$\subseteq IR^n$$

Prote peL, connect it Lappin $\rightarrow \infty$
i prote
p
Pass to a subsequence, you get
a limiting geodesic ray from p,
which is winin iting
Def: (Pun)azi $\subseteq L$, $V \in S^{n-1}$, he
with Phi may it
Proto N ad Par $\rightarrow \infty$

Our Airst goul: 1) limiting ray is debermind by VE 5ⁿ⁻¹. 2) varies continuously with VES" 3) Onto (any ray from p arises this way). Lipschibt function ("L'-mass-bransport") . 1-Lip. on "dual" 60 carres × · upper hourd for A(x,7) . 1-Lir $|f(x) - f(\gamma)| \leq \lambda(x, \gamma)$ lower bound. Example: The Buseman function of a minimitiz geodesic my V: (0,00) -> M, For YEM,

 $B_r(x) = \lim_{t \to \infty} \left[t - d(r(t), x) \right]$ $=\lim_{t\to\infty} \left[d(x(t), r(0)) - d(x(t), x) \right]$ · 1- Lipr Br: M-> IR · If M= IR, Buseman Aurobions are just $f(x) = \langle X, \theta \rangle + c$ QESⁿ⁻¹, CEIR. Rusenan Anchin along a sequence: Mort a point OELEM OEL EM, set $d_p(x) = d(p,0) - d(p,x)$ Claim: L > Pm ~> V then $\forall y \in L$ $d_{Pm}(y) \xrightarrow{m \to \infty} \langle y, v \rangle$

Det ("ideal bounday")
For
$$V \in S^{n-1}$$
, $9 = 1 - 2if$,
 $\partial_V M = \{f: M \rightarrow |R_i| \forall g \in L = \{g_i\}\}$
· A unit speak curve $V: [a_iS] \rightarrow M$
is a transport curve of Φ , if
 $f(r(t)) - f(r(s)) = t - s \forall r, t \in I; s]$
· $Evens - hagdo '91, Feldman - Me (ann '03:$
Two theorsport curves of Φ counot
intersect at an inherial paint, unless
flag coincide
impossible.

Det: 17 Pm ~> V harrowly L > Pm ~> V tharrowly. $q \sim V$ pres dan converges 62 FEDrM ~) Gransport line of f Par coincide. [[m] (Pon-1)

