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Rigidity of Riemannian embeddings of
discrete metric spaces

Joint work with M Eilat

M complete connected Riemannian
manifold

M as a metric
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Given a metric space X finite Kornhalle

he write that
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Folklore result X finik metric space
non branching Then FM din n L
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what about countable metric spaces



DEI X EIR is a net if Fr o

Vere IR Fitr Ix yl Ef

4mi Suppose that X EIR is net
and M is a 21 Riemannian uld coupkh
connected such that

X G M
Then M is flat and isometric f the
Euclidean plane

Remarks Wyks fav Riemann sub rot finder

Corollary XE 1123 discrete not contained
in any affine plane but contains a net
some 8D plane Then X does not

it 6 d



embed in any complehumanitil at fu din
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Def The asymptotic Riemannian dimensin

of a discrete metric span is the minimal

dimension of a Riemannian nfld in which
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has dim 3

Theorem 2 let XEIR be a net
X M for some Riemannian M

I din n n then M is

diffeomorphic to 112

Remarks 1 If curvature of M has

compact support then isometric



Go 112

2 Works for als for some

non Euclidean spaces

Det A discrete subset XEN is

metrically rigid if V itdimlml din.tn

X NT NT is isometric

fo m

A net in 112 is medically rigid as

well as random instance of a Poisson
process

or a quasi net
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Hopf 48 extended Morse and Hedlund

A Riemannian metric in IT without
conjugate points is flat



Burago Ivanov 94 True in Tl

Michel's conjecture 81

A simple Riemannian infld with boundary

is determined from boundary distances
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true for shinhly Convex sets in IR

Peston Uhlman 05 True in 2b

Bangert Emmerich 13 M diffeomorphic to
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with equality if M is flat
Metric rigidity of nets in Hadanal
manifold

Q How to formulate and prove
a finitary version

Plan of proof

1 Use X Gm to prove that ho

G jugote points exist

g Use large scale geometry which

is approx Euclidean

Why a point of the net is not
conjugate 6 anything in m

funk in n din



Write L for the net at a.tk

EIR
M

Pick peL connect it Pm no
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Pass 6s a subsequence you get

a limiting geodesic ray frow p
which is wininiting
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Our first goal
1 limiting ray is determined

by ve S

2 varies continuously with arts

3 Dnf

any ray fron p arises this way

Lipschitz function L mass transport
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Example The Busemam function of a minimiting

geodesic ray 8 forex M
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If M HI Buseman functions are
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Rrsenan function
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Mark a point 0 EL EM set
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Det tidal boundary
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is a transport curve of f if
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Two transport canes at f cannot

intersect at an interim path unless

they coincide
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Hence coincide
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