Affirmative Resolution of Bourgain's Slicing Problem using Guan's Bound

Boaz Klartag

Weizmann Institute of Science

Joint work with Joseph Lehec

Online Asymptotic Geometric Analysis & GAFA seminars Tel Aviv University, January 2025

Boaz Klartag

Resolution of Bourgain's Slicing Problem using Guan's Bound

Question (Bourgain '86)

Consider a convex body $K \subseteq \mathbb{R}^n$ of volume one. Does there exist a hyperplane $H \subseteq \mathbb{R}^n$ such that

 $Vol_{n-1}(K \cap H) \geq c$,

for a universal constant c > 0?

 The context of Bourgain's seemingly innocent question: the maximal function operator *M_K* associated with a centrally-symmetric convex body *K* ⊆ ℝⁿ. Bourgain proved

$$\|M_{\mathcal{K}}\|_{L^{2}(\mathbb{R}^{n})\to L^{2}(\mathbb{R}^{n})}\leq C.$$

- Much mathematics was developed around this question, culminating in an **affirmative answer** in K.-Lehec, 2024.
- We are still waiting for a short and sweet proof...

Bourgain's Slicing Problem

Theorem (K.-Lehec '24, building upon Guan '24)

Consider a convex body $K \subseteq \mathbb{R}^n$ of volume one. Then there exists a hyperplane $H \subseteq \mathbb{R}^n$ such that

 $Vol_{n-1}(K \cap H) \ge c$,

for a universal constant c > 0.

 The context of Bourgain's seemingly innocent question: the maximal function operator *M_K* associated with a centrally-symmetric convex body *K* ⊆ ℝⁿ. Bourgain proved

$$\|M_{\mathcal{K}}\|_{L^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)}\leq C.$$

- Much mathematics was developed around this question, culminating in an **affirmative answer** in K.-Lehec, 2024.
- We are still waiting for a short and sweet proof...

The Busemann-Petty problem from the 1950s

It was explained by Milman and Pajor '89 (in the centrally-symmetric case) that the Slicing Theorem implies:

Theorem (corrected Busemann-Petty conjecture)

Let $K, T \subseteq \mathbb{R}^n$ be centered convex bodies such that

 $Vol_{n-1}(K \cap \theta^{\perp}) \leq Vol_{n-1}(T \cap \theta^{\perp})$ for all $\theta \in S^{n-1}$.

Then $Vol_n(K) \leq C \cdot Vol_n(T)$, for some universal constant C > 0.

- Busemann and Petty proved the above with C = 1 if T = -T and the convex body K is, say, a Euclidean ball.
- In the 1950s, they conjectured that C = 1 for all K = -K. This turns out to be true if $n \le 4$ and false if $n \ge 5$. (Lutwak '88, Zhang, Gardner - Koldobsky - Schlumprecht '90s)
- Fails already for the cube and Euclidean ball in high dimensions. We lose a factor of $\approx \sqrt{e/2}$ (Ball '86).

$SL_n(\mathbb{R})$ -invariant ways to measure "size"

Given a convex body $K \subseteq \mathbb{R}^n$ we may consider:

- Its volume.
- 2 The determinant of its covariance matrix $Cov(K) \in \mathbb{R}^{n \times n}$,

$$\operatorname{Cov}_{ij}(K) = \int_{K} x_i x_j \frac{dx}{\operatorname{Vol}_n(K)} - \int_{K} x_i \frac{dx}{\operatorname{Vol}_n(K)} \int_{K} x_j \frac{dx}{\operatorname{Vol}_n(K)}.$$

Determined by the volume of the **Legendre ellipsoid of** inertia of K, which has the same 2^{nd} moments as K.

Definition (Isotropic constant)

For a convex body $K \subseteq \mathbb{R}^n$ we define

$$L_{K} = \left(\frac{\det \operatorname{Cov}(K)}{Vol_{n}(K)^{2}}\right)^{1/(2n)}$$

• We have $L_{\mathcal{K}} = L_{\mathcal{T}(\mathcal{K})}$ for any invertible, affine map \mathcal{T} .

Isotropic position and volume of slices

 K ⊆ ℝⁿ is an isotropic convex body if it's centered and its Legendre ellipsoid is a ball, i.e., Cov(K) ∈ ℝ^{n×n} is scalar.

Theorem (Volumes of slices – Hensley '80, Fradelizi '99)

Let $K \subseteq \mathbb{R}^n$ be an isotropic convex body. Then for any two hyperplanes $H_1, H_2 \subseteq \mathbb{R}^n$ through the origin,

$$\frac{\operatorname{Vol}_{n-1}\left(K\cap H_{2}\right)}{\operatorname{Vol}_{n-1}(K\cap H_{1})} \leq \sqrt{6}.$$

In fact, $Vol_{n-1}(K \cap H_i) \sim L_K^{-1} \cdot Vol_n(K)^{(n-1)/n}$.

• Proven using the Brunn-Minkowski inequality.

• For any convex $K \subseteq \mathbb{R}^n$, we have $L_K \ge L_{B^n} \ge c$.

Theorem (K.-Lehec '24, building upon Guan '24)

For any convex $K \subseteq \mathbb{R}^n$ we have $c \leq L_K \leq C$.

Isotropic position and volume of slices

 K ⊆ ℝⁿ is an isotropic convex body if it's centered and its Legendre ellipsoid is a ball, i.e., Cov(K) ∈ ℝ^{n×n} is scalar.

Theorem (Volumes of slices – Hensley '80, Fradelizi '99)

Let $K \subseteq \mathbb{R}^n$ be an isotropic convex body. Then for any two hyperplanes $H_1, H_2 \subseteq \mathbb{R}^n$ through the origin,

$$\frac{\operatorname{Vol}_{n-1}\left(K\cap H_{2}\right)}{\operatorname{Vol}_{n-1}(K\cap H_{1})} \leq \sqrt{6}.$$

In fact, $c \leq Vol_{n-1} (K \cap H_i) / Vol_n(K)^{(n-1)/n} \leq C$.

• Proven using the Brunn-Minkowski inequality.

• For any convex $K \subseteq \mathbb{R}^n$, we have $L_K \ge L_{B^n} \ge c$.

Theorem (K.-Lehec '24, building upon Guan '24)

For any convex $K \subseteq \mathbb{R}^n$ we have $c \leq L_K \leq C$.

What are the values of these universal constants?

- The numerical values that our proof yield are very large.
- Perhaps the extremal cases (with/without central symmetry) are:

$$L_{[0,1]^n} = \frac{1}{\sqrt{12}}, \qquad L_{\Delta^n} = \frac{(n!)^{1/n}}{(n+1)^{(n+1)/(2n)}\sqrt{n+2}} \approx \frac{1}{e}.$$

Relations to classical conjectures

- If L_K is maximized for the simplex Δ^n , then the Mahler volume-product conjecture follows (the non-symmetric case, proven in 2D by Mahler, 1939). See K. '18.
- If among centrally-symmetric bodies, L_K is maximized for the cube, then the Minkowski lattice conjecture follows (proven in 2D by Minkowski, 1901). See Magazinov '18.

More consequences of the Slicing Theorem

From Milman-Pajor '89, K.-Milman '05 and the Slicing Theorem:

Theorem (Sylvester problem)

Let $K \subseteq \mathbb{R}^n$ be a convex body. Select n + 2 random points, i.i.d uniformly in K. Write p(K) for the probability for a **convex position**. Then,

$$c/\sqrt{n} \leq (1-p(K))^{1/n} \leq C/\sqrt{n}.$$

Theorem (Steiner symmetrization of most of a convex body)

For any convex body $K \subseteq \mathbb{R}^n$ there exists a convex $T \subseteq K$ with

 $Vol_n(T) \ge 0.9 \cdot Vol_n(K)$

such that $\forall \varepsilon > 0$, after $\lfloor \varepsilon n \rfloor$ Steiner symmetrizations of T, we reach \tilde{T} with Banach-Mazur distance to a Euclidean ball:

$$d_{BM}(\tilde{T}, B^n) \leq C(\varepsilon).$$

Theorem (V. Milman, '80s)

Let $K \subset \mathbb{R}^n$ be a centered convex body. Then there exists an ellipsoid $\mathcal{E} \subset \mathbb{R}^n$, with $Vol_n(\mathcal{E}) = Vol_n(K)$, such that

 $Vol_n(K \cap C\mathcal{E})/Vol_n(K) \geq c^n$.

 Quite a few consequences: reverse Brunn-Minkowski, Bourgain-Milman inequality, Quotient of Subspace and also

$$\max\{N(K,\mathcal{E}),N(\mathcal{E},K)\} \leq e^{Cn}.$$

Corollary (Slicing thm + Paouris large deviation estimate '05)

Let $K \subset \mathbb{R}^n$ be a centered convex body. Then its normalized **Legendre ellipsoid** $\mathcal{E} \subset \mathbb{R}^n$, with $Vol_n(\mathcal{E}) = Vol_n(K)$, satisfies

 $Vol_n(K \cap C\mathcal{E})/Vol_n(K) \geq 1 - e^{-\sqrt{n}}.$

Previous bounds for the isotropic constant

Write $L_n = \sup_{K \subset \mathbb{R}^n} L_K$. Trivial bound $L_n \leq C\sqrt{n}$. Better bounds:

- n^{1/4} · log n using sub-Gaussian processes and K-convexity, Bourgain '91.
- $n^{1/4}$ using covariance of exponential tilts $e^{x \cdot y} 1_K(x)$, Paouris LDP and Bourgain-Milman, K. '05.
- $n^{1/4}$ via thin shell and Eldan's stochastic localization, covariance of $e^{x \cdot y t|x|^2/2} \mathbf{1}_{\mathcal{K}}(x)$, Lee-Vempala '16.
- $e^{C\sqrt{\log n \cdot \log \log n}}$ using growth regularity of the covariance process, Chen '20.
- log⁴ n and log^{2.223...} n by combining the above with spectral analysis, K.-Lehec '22, Jambulapati-L.V. '22.
- √log n by an improved Lichnerowicz inequality, using Bochner's formula, K. '23.
- log log n using self-controlled growth estimates for the covariance process, analysis of 3-tensors, Guan '24.

Convex bodies with large isotropic constant

Write λ_K for the uniform probability measure on *K*. By using **Milman ellipsoid** and covering numbers:

Proposition (essentially from Bourgain, K., Milman '04)

Let $K \subseteq \mathbb{R}^n$ satisfy $L_K \ge L_n/2$. Let $E \subseteq \mathbb{R}^n$ be any subspace of $\dim(E) \ge n/4$. Denote $\mu = (Proj_E)_*\lambda_K$. Then,

$$L_{\mu} \geq \boldsymbol{c} \cdot \boldsymbol{L}_{\boldsymbol{n}}.$$

- The measure projection of λ_K is a log-concave measure: it has density e^{-H} where H : ℝⁿ → ℝ ∪ {+∞} is convex.
- Prékopa-Leindler inequality: Log-concavity is preserved under convolution, push-forward by linear maps, weak limits. Also pointwise products.
- The isotropic constant of a log-concave μ is

$$L_{\mu} = \boldsymbol{e}^{-\operatorname{Ent}(\mu)/n} \cdot \det \operatorname{Cov}(\mu)^{1/(2n)}$$

where $\operatorname{Ent}(\mu) = -\int_{\mathbb{R}^n} f \log f$, with *f* being the density of μ .

Entropy vs. Covariance? Analyze using heat flow!

• Log-concave measures include uniform measures on convex bodies and Gaussian measures.

Theorem (Slicing thm + Ball '86 (and K. '05 for non-even μ))

For any log-concave probability measure μ in a finite dimensional linear space,

$$1/\sqrt{2\pi e} \leq L_{\mu} \leq C.$$

(Equality on the left-hand side is classical, attained for Gaussians.)

 How may we analyze the isotropic constant? A suggestion from Ball-Nguyen '13 is to use:

The heat flow in \mathbb{R}^n

It preserves log-concavity, it increases the covariance linearly, and it is great with entropy, too!

Boaz Klartag

Entropy production along the heat flow

Definition

A log-concave probability measure μ in \mathbb{R}^n is **isotropic** if it is centered with $Cov(\mu) = Id$.

(this is one of two common normalizations in the literature)

• For an isotropic, log-concave μ in \mathbb{R}^n and for s > 0 denote

 $\mu_{\mathbf{S}} = \mu * \gamma_{\mathbf{S}}$

where γ_s is a Gaussian of mean zero and $Cov(\gamma_s) = s \cdot Id$.

De Bruijn's identity (from Stam's paper '59)

$$\frac{d}{ds}$$
Ent $(\mu_s) = \frac{1}{2}J(\mu_s).$

Here, the density of μ_s is $\exp(-\psi_s)$, and the Fisher information is

$$J(\mu_{\mathcal{S}}) = \int_{\mathbb{R}^n} |\nabla \psi_{\mathcal{S}}|^2 d\mu_{\mathcal{S}} = \int_{\mathbb{R}^n} \operatorname{Tr}[\nabla^2 \psi_{\mathcal{S}}] d\mu_{\mathcal{S}}.$$

Probabilistic interpretation: conditional covariance

By differentiating a Gaussian convolution,

$$abla^2 \psi_{\boldsymbol{s}}(\boldsymbol{y}) = rac{\mathrm{Id}}{\boldsymbol{s}} - rac{\mathrm{Cov}(\boldsymbol{p}_{\boldsymbol{s},\boldsymbol{y}})}{\boldsymbol{s}^2}$$

where, with ρ the log-concave density of $\mu,$

$$p_{s,y}(x) = \frac{\gamma_s(x-y)\rho(x)}{(\rho*\gamma_s)(y)}$$

We have $Cov(p_{s,y}) \leq s \cdot Id$. By Prékopa, as μ_s is log-concave.

Let $X \sim \mu$ and $Z \sim N(0, \text{Id})$ be independent random vectors.

Observation 2

• The measure μ_s is the law of $X + \sqrt{s}Z$.

•
$$\nabla^2 \psi_s(X + \sqrt{s}Z) = \frac{\mathrm{Id}}{s} - \frac{1}{s^2} \cdot \mathrm{Cov}(X|X + \sqrt{s}Z).$$

n=1, s=1soint density g(x) = f(x)

÷Χ

Application of the probabilistic interpretation

Lemma (super-additivity)

Let X, Y, Z_1, Z_2 be independent, $Z_1, Z_2 \sim N(0, Id)$. Then,

$$\begin{split} & \mathbb{E}\mathrm{Cov}(X+Y|X+Y+\sqrt{s}(Z_1+Z_2)) \\ & \geq \mathbb{E}\mathrm{Cov}(X+Y|X+\sqrt{s}Z_1,Y+\sqrt{s}Z_2) \\ & = \mathbb{E}\mathrm{Cov}(X|X+\sqrt{s}Z_1) + \mathbb{E}\mathrm{Cov}(Y|Y+\sqrt{s}Z_2) \end{split}$$

• Recall that $J(\mu_s) = n/s - s^{-2} \cdot \mathbb{E} \operatorname{Tr} \left[\operatorname{Cov}(X|X + \sqrt{s}Z) \right]$. Thus, by integrating the derivative of $\operatorname{Ent}(\mu_s)$ we get:

The Shannon-Stam inequality ('48 –'59)

Let *X*, *Y* be independent random vectors in \mathbb{R}^n and $0 < \lambda < 1$. Then

$$\operatorname{Ent}\left(\sqrt{\lambda}X + \sqrt{1-\lambda}Y\right) \geq \lambda \cdot \operatorname{Ent}(X) + (1-\lambda) \cdot \operatorname{Ent}(Y).$$

Equality iff Gaussians with proportional covariance matrices.

The Shannon-Stam inequality in the log-concave case

Particularly simple behavior in the i.i.d, log-concave case:

Proposition (Ball-Nguyen '13)

If X and Y are i.i.d and log-concave in \mathbb{R}^n , then,

$$\operatorname{Ent}(X) \leq \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}}\right) \leq \operatorname{Ent}(X) + 2n.$$

- Proof idea: $f(0) \sim e^{-\text{Ent}(X)}$ and $(f * f)(0) = \int f^2 \ge 2^{-n} f(0)$.
- Using a stochastic proof of Shannon-Stam in Lehec '13:

Theorem (reformulation of Eldan and Mikulincer '20)

If X and Y are i.i.d and log-concave in \mathbb{R}^n , with law μ , then,

$$2n \ge \operatorname{Ent}\left(rac{X+Y}{\sqrt{2}}
ight) - \operatorname{Ent}(X) \ \ge c \int_0^\infty s \cdot \int_{\mathbb{R}^n} \left|
abla^2 \psi_s - \int_{\mathbb{R}^n}
abla^2 \psi_s d\mu_s \right|^2 d\mu_s ds.$$

Guan's Bound

- Last month, Qingyang Guan from CAS in Beijing posted a paper on arXiv.
- It solved Bourgain's slicing problem up to log log n, improving upon √log n, using:

Proposition (Guan '24)

Consider an isotropic, log-concave probability measure μ in \mathbb{R}^n . Write $e^{-\psi_s}$ for the density of $\mu_s = \mu * \gamma_s$. Then for s > 0,

$$\int_{\mathbb{R}^n} \left| \mathrm{Id} - \boldsymbol{s} \cdot \nabla^2 \psi_{\boldsymbol{s}} \right|^2 \boldsymbol{d} \mu_{\boldsymbol{s}} \leq \boldsymbol{Cn}/\boldsymbol{s}^2,$$

where C > 0 is a universal constant.

- Proved with intricate bootstrap using $\int \text{Tr} f_k(\nabla^2 \psi_s) d\mu_s$, the improved Lichnerowicz inequality, and 3-tensor analysis.
- This provided the missing link in an approach to Bourgain's slicing problem we discussed with Lehec in 2022.

Boaz Klartag

Focusing on the conditional covariance matrix

Let us change variables t = 1/s. This slightly helps us focus on isotropicity of μ .

Time reversal s = 1/t

• Consider the **covariance matrix**: $A_0 = \text{Id}$ and for t > 0,

$$A_t = \operatorname{Cov}(X|X + \sqrt{s}Z) = \operatorname{Cov}(X|tX + \sqrt{t}Z) \le \operatorname{Id}/t.$$

(helpful to think of $tX + W_t$ where $(W_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R}^n)

2 Moreover,
$$\frac{d}{dt}\mathbb{E}A_t = -\mathbb{E}A_t^2 \le -(\mathbb{E}A_t)^2 \implies \mathbb{E}A_t \le \frac{\mathrm{Id}}{1+t}$$
.

The de Brujin identity:

$$\operatorname{Ent}(\mu) = -\frac{1}{2} \int_0^\infty \operatorname{Tr}\left[\frac{\operatorname{Id}}{1+t} - \mathbb{E}A_t\right] dt + \frac{n}{2} \log(2\pi e).$$

• Guan's bound:
$$\mathbb{E}|A_t|^2 \leq Cn$$
.

• Eldan-Mikulincer: $\int_0^\infty (1+t) \cdot \mathbb{E} |A_t - \mathbb{E} A_t|^2 dt \leq Cn.$

Suppose that $\mathbb{E}A_t \ge c \cdot \mathrm{Id}/(1+t)$ for $t \ge C$

Following Eldan-Mikulincer:

• Integration by parts using $\frac{d}{dt}\mathbb{E}A_t = -\mathbb{E}A_t^2$ gives

$$\int_0^\infty (1+t)\mathbb{E}\left|\frac{\mathrm{Id}}{1+t}-A_t\right|^2 dt = \int_0^\infty \mathrm{Tr}\left[\frac{\mathrm{Id}}{1+t}-\mathbb{E}A_t\right] dt.$$

In both integrals, the contribution of t ∈ [0, C] is at most Cn.
From (1) and Eldan-Mikulincer stability, Slicing follows from:

$$\int_0^\infty (1+t) \left| \frac{\mathrm{Id}}{1+t} - \mathbb{E} A_t \right|^2 dt \leq \bar{C} n$$

3 Positive-definite matrices: from the "Suppose", for $t \ge C$,

$$(1+t)\left|\frac{\mathrm{Id}}{1+t}-\mathbb{E}A_t\right|^2\leq (1-c)\cdot\mathrm{Tr}\left[\frac{\mathrm{Id}}{1+t}-\mathbb{E}A_t\right].$$

From (3) and (1) we obtain (2).

Using Guan's bound and Milman's ellipsoid

We still need to obtain $\mathbb{E}A_t \ge c \cdot \mathrm{Id}/(t+1)$ for $t \ge C$.

Start with "worse possible" μ = λ_K. By Milman ellipsoid, for any subspace E ⊆ ℝⁿ with dim(E) ≥ n/4,

$$L_n \leq c' \cdot L_{(Proj_E)_*\mu}.$$

- ② For $t = t_0 = c$ we have Tr $\mathbb{E}A_{t_0} \ge n/2$. Indeed, $A_0 = \text{Id}$ and hence from Guan's bound, $\mathbb{E}\text{Tr}[A_t] \ge 1 Cn \cdot t$ for all *t*.
- 3 A third of the eigenvalues of $\mathbb{E}A_{t_0}$ are at least 1/4. Indeed, this follows from (2) as $\mathbb{E}A_{t_0} \leq \text{Id}$ and all e.v. are in [0, 1].
- Solution Thus there exists a subspace E with dim $(E) \ge n/3$ and

$$\mathbb{E} A_{t_0, (Proj_E)_* \mu} \geq Proj_E \cdot \mathbb{E} A_{t_0} \cdot Proj_E \geq \mathrm{Id}/4.$$

■ Denote $\tilde{A}_t = A_{t,(Proj_E)*\mu}$. Then $\mathbb{E}\tilde{A}_t \ge \tilde{c} \cdot \mathrm{Id}/t$ for $t \ge t_0$. Indeed, the matrix $t \cdot \mathbb{E}\tilde{A}_t$ is increasing, since $\frac{d}{dt}\mathbb{E}\tilde{A}_t = -\mathbb{E}\tilde{A}_t^2 \ge -\mathbb{E}\tilde{A}_t/t$. Hence $L_{(Proj_E)*\mu} < Const$.

Boaz Klartag

The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let $K \subseteq \mathbb{R}^3$ be <u>convex</u> and open. Let $f : K \to \mathbb{R}$ be C^1 -smooth, with $\int_K f = 0$. Then,

$$\int_{\mathcal{K}} f^2 \leq C_{\mathcal{P}}(\mathcal{K}) \cdot \int_{\mathcal{K}} |\nabla f|^2$$

where $C_P(K) \leq (9/16) \cdot Diam^2(K)$.

- The smallest possible C_P(K) is the Poincaré constant of K or the inverse spectral gap for the Neumann laplacian.
- Proof: Estimate $\int_{K \times K} |f(x) f(y)|^2 dx dy$ via segments.
- In high dimensions, bounds for the Poincaré constant via the diameter are usually inadequate.

The Kannan-Lovász-Simonovits (KLS) conjecture

• It is conjectured that up to a universal constant, the Poincaré inequality is **saturated by linear functions**.

Conjecture (KLS '95)

Let $X \in \mathbb{R}^n$ be a log-concave random vector. Then,

 $\|\operatorname{Cov}(X)\|_{op} \leq C_P(X) \leq C \cdot \|\operatorname{Cov}(X)\|_{op}.$

 An equivalent formulation of KLS due to Cheeger '70, Buser '82 and Ledoux '04: up to a universal constant, the isoperimetric problem in a convex body K ⊆ ℝⁿ is saturated by a hyperplane bisection.

The isoperimetric constant

For an open set $K \subset \mathbb{R}^n$ define

$$h_{K} = \inf_{A \subset K} \frac{|\partial A \cap K|}{\min\{|A|, |K \setminus A|\}}$$

Thin shell phenomenon

- The KLS conjecture is currently known up to log *n* (K. '23).
- A weak form is:

Thin Shell Conjecture (Bobkov and Koldobsky '04, stems from Anttila, Ball and Perissinaki '03)

If X is an isotropic, log-concave random vector in \mathbb{R}^n , then

$$\mathbb{E}\left(|X|-\sqrt{n}\right)^2\leq C.$$

Most of the mass of *X* is contained in a **thin spherical shell**.

 Using Guan's bound and the approach in K.-Lehec '22 refined:

Theorem (Guan '24)

The thin shell conjecture is true up to $(\log \log n)^2$.

Boaz Klartag

Resolution of Bourgain's Slicing Problem using Guan's Bound

Some partial results on KLS and thin shell

• Thin shell conjecture \implies Slicing Theorem (Eldan-K. '11).

Sudakov '76, Diaconis-Freedman '84

Thin shell phenomena implies **approx. Gaussian marginals**. Precise estimates (up to log) by Bobkov, Chistyakov, Götze '19.

• Let t > 0 and $X \in \mathbb{R}^n$ be a random vector in \mathbb{R}^n with density $e^{-\psi}$ such that $\nabla^2 \psi \ge t \cdot \text{Id pointwise.}$

Theorem (log-concave Lichnerowicz (folklore, see Obata '62))

$$\operatorname{Cov}(X) \leq \mathcal{C}_{\mathcal{P}}(X) \leq \frac{1}{t}.$$

Geometric average of Lichnerowicz and KLS holds:

Theorem (Improved Lichnerowicz, K. '23)

$$C_p(X) \leq \sqrt{\|\operatorname{Cov}(X)\|_{op} \cdot \frac{1}{t}}.$$

Boaz Klartag

How is Guan's bound proved?

• Analyze the covariance matrix A_t . For any function f,

 $\frac{d}{dt}\mathbb{E}\mathrm{Tr}f(A_t) = \mathbb{E} \text{ (expression involving third moments of } p_t)$

where $p_t = p_{1/t, X+Z/\sqrt{t}}$ is more log-concave than $\gamma_{1/t}$.

• Consider *f* which is positive, increasing, with $f(t) = t^2$ for t > 4 such that

$$|f''(t)| \le D_0^2 |f(t)|.$$

A self-controlled estimate

Dividing the 3-tensor into a few pieces, and using improved Lichnerowicz yields

$$\frac{d}{dt}\mathbb{E}\mathrm{Tr}f(A_t) \leq \frac{C}{t} \cdot \mathbb{E}\mathrm{Tr}f(A_t) \qquad (0 < t < D_0^{-4}).$$

How is Guan's bound proved? (continued)

• Divide [0, c] into $\log^* n$ sub-intervals. Set $t_1 = c/\log^2 n$ and for $t \ge 2$,

$$t_k = \frac{c}{|\underbrace{\log \log \ldots \log}_{k \text{ times}} n|^{16}}$$

- For $i \ge 1$, in the interval $[t_i, t_{t+1}]$ use $F_{i,t} = \mathbb{E} \operatorname{Tr} f(A_t)$ with f as in the figure.
- The function *F_{i,t}* is much smaller than *n*, and grows regularly in the interval, thanks to the self-controlled estimate.

At the end of the interval $F_{i,t}$ and $F_{i+1,t}$ are still much smaller than n. May thus proceed to next interval.

Conclusion

- It took a (global) village.
- Is thin shell coming up?
- KLS remains unsolved.

Conclusion

- It took a (global) village.
- Is thin shell coming up?
- KLS remains unsolved.

- Fresh from the oven: **Pierre Bizeul** has simplified our argument, eliminating the usage of information theory!
- Instead of Eldan-Mikulincer, he applies Paouris' small ball estimates from '12.

Milman ellipsoids are still necessary, as well as Guan's bound and a projection to a subspace of proportional dimension to eliminate small eigenvalues of A_t .

Jean Bourgain by Jan Rauchwerger

Images are courtesy of Qingyang Guan, Vitali Milman and Yoel Shkolnisky.

Boaz Klartag

Resolution of Bourgain's Slicing Problem using Guan's Bound