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Bourgain’s Slicing Problem

Question (Bourgain ’86)

Consider a convex body K ⊆ Rn of volume one. Does there
exist a hyperplane H ⊆ Rn such that

Voln−1(K ∩ H) ≥ c,

for a universal constant c > 0?

The context of Bourgain’s seemingly innocent question:
the maximal function operator MK associated with a
centrally-symmetric convex body K ⊆ Rn. Bourgain proved

∥MK∥L2(Rn)→L2(Rn) ≤ C.

Much mathematics was developed around this question,
culminating in an affirmative answer in K.-Lehec, 2024.
We are still waiting for a short and sweet proof...
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Bourgain’s Slicing Problem

Theorem (K.-Lehec ’24, building upon Guan ’24)

Consider a convex body K ⊆ Rn of volume one. Then there
exists a hyperplane H ⊆ Rn such that

Voln−1(K ∩ H) ≥ c,

for a universal constant c > 0.

The context of Bourgain’s seemingly innocent question:
the maximal function operator MK associated with a
centrally-symmetric convex body K ⊆ Rn. Bourgain proved

∥MK∥L2(Rn)→L2(Rn) ≤ C.

Much mathematics was developed around this question,
culminating in an affirmative answer in K.-Lehec, 2024.
We are still waiting for a short and sweet proof...
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The Busemann-Petty problem from the 1950s
It was explained by Milman and Pajor ’89 (in the
centrally-symmetric case) that the Slicing Theorem implies:

Theorem (corrected Busemann-Petty conjecture)

Let K ,T ⊆ Rn be centered convex bodies such that

Voln−1(K ∩ θ⊥) ≤ Voln−1(T ∩ θ⊥) for all θ ∈ Sn−1.

Then Voln(K ) ≤ C · Voln(T ), for some universal constant C > 0.

Busemann and Petty proved the above with C = 1 if
T = −T and the convex body K is, say, a Euclidean ball.
In the 1950s, they conjectured that C = 1 for all K = −K .
This turns out to be true if n ≤ 4 and false if n ≥ 5. (Lutwak
’88, Zhang, Gardner - Koldobsky - Schlumprecht ’90s)
Fails already for the cube and Euclidean ball in high
dimensions. We lose a factor of ≈

√
e/2 (Ball ’86).
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SLn(R)-invariant ways to measure “size”
Given a convex body K ⊆ Rn we may consider:

1 Its volume.
2 The determinant of its covariance matrix Cov(K ) ∈ Rn×n,

Covij(K ) =

∫
K

xixj
dx

Voln(K )
−
∫

K
xi

dx
Voln(K )

∫
K

xj
dx

Voln(K )
.

Determined by the volume of the Legendre ellipsoid of
inertia of K , which has the same 2nd moments as K .

Definition (Isotropic constant)

For a convex body K ⊆ Rn we define

LK =

(
detCov(K )

Voln(K )2

)1/(2n)

.

We have LK = LT (K ) for any invertible, affine map T .
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Isotropic position and volume of slices
K ⊆ Rn is an isotropic convex body if it’s centered and its
Legendre ellipsoid is a ball, i.e., Cov(K ) ∈ Rn×n is scalar.

Theorem (Volumes of slices – Hensley ’80, Fradelizi ’99)

Let K ⊆ Rn be an isotropic convex body. Then for any two
hyperplanes H1,H2 ⊆ Rn through the origin,

Voln−1 (K ∩ H2)

Voln−1(K ∩ H1)
≤

√
6.

In fact, Voln−1 (K ∩ Hi) ∼ L−1
K · Voln(K )(n−1)/n.

Proven using the Brunn-Minkowski inequality.
For any convex K ⊆ Rn, we have LK ≥ LBn ≥ c.

Theorem (K.-Lehec ’24, building upon Guan ’24)

For any convex K ⊆ Rn we have c ≤ LK ≤ C.
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Isotropic position and volume of slices
K ⊆ Rn is an isotropic convex body if it’s centered and its
Legendre ellipsoid is a ball, i.e., Cov(K ) ∈ Rn×n is scalar.

Theorem (Volumes of slices – Hensley ’80, Fradelizi ’99)

Let K ⊆ Rn be an isotropic convex body. Then for any two
hyperplanes H1,H2 ⊆ Rn through the origin,

Voln−1 (K ∩ H2)

Voln−1(K ∩ H1)
≤

√
6.

In fact, c ≤ Voln−1 (K ∩ Hi) /Voln(K )(n−1)/n ≤ C.

Proven using the Brunn-Minkowski inequality.
For any convex K ⊆ Rn, we have LK ≥ LBn ≥ c.

Theorem (K.-Lehec ’24, building upon Guan ’24)

For any convex K ⊆ Rn we have c ≤ LK ≤ C.
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What are the values of these universal constants?

The numerical values that our proof yield are very large.
Perhaps the extremal cases (with/without central
symmetry) are:

L[0,1]n =
1√
12
, L∆n =

(n!)1/n

(n + 1)(n+1)/(2n)
√

n + 2
≈ 1

e
.

Relations to classical conjectures
1 If LK is maximized for the simplex ∆n, then the Mahler

volume-product conjecture follows (the non-symmetric
case, proven in 2D by Mahler, 1939). See K. ’18.

2 If among centrally-symmetric bodies, LK is maximized for
the cube, then the Minkowski lattice conjecture follows
(proven in 2D by Minkowski, 1901). See Magazinov ’18.
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More consequences of the Slicing Theorem
From Milman-Pajor ’89, K.-Milman ’05 and the Slicing Theorem:

Theorem (Sylvester problem)

Let K ⊆ Rn be a convex body. Select n + 2 random points, i.i.d
uniformly in K . Write p(K ) for the probability for a convex
position. Then,

c/
√

n ≤ (1 − p(K ))1/n ≤ C/
√

n.

Theorem (Steiner symmetrization of most of a convex body)

For any convex body K ⊆ Rn there exists a convex T ⊆ K with

Voln(T ) ≥ 0.9 · Voln(K )

such that ∀ε > 0, after ⌊εn⌋ Steiner symmetrizations of T , we
reach T̃ with Banach-Mazur distance to a Euclidean ball:

dBM(T̃ ,Bn) ≤ C(ε).
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Relation to Milman’s ellipsoids

Theorem (V. Milman, ’80s)

Let K ⊂ Rn be a centered convex body. Then there exists an
ellipsoid E ⊂ Rn, with Voln(E) = Voln(K ), such that

Voln(K ∩ CE)/Voln(K ) ≥ cn.

Quite a few consequences: reverse Brunn-Minkowski,
Bourgain-Milman inequality, Quotient of Subspace and
also

max{N(K , E),N(E ,K )} ≤ eCn.

Corollary (Slicing thm + Paouris large deviation estimate ’05)

Let K ⊂ Rn be a centered convex body. Then its normalized
Legendre ellipsoid E ⊂ Rn, with Voln(E) = Voln(K ), satisfies

Voln(K ∩ CE)/Voln(K ) ≥ 1 − e−
√

n.
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Previous bounds for the isotropic constant
Write Ln = supK⊆Rn LK . Trivial bound Ln ≤ C

√
n. Better bounds:

n1/4 · logn using sub-Gaussian processes and
K-convexity, Bourgain ’91.
n1/4 using covariance of exponential tilts ex ·y1K (x),
Paouris LDP and Bourgain-Milman, K. ’05.
n1/4 via thin shell and Eldan’s stochastic localization,
covariance of ex ·y−t |x |2/21K (x), Lee-Vempala ’16.

eC
√

log n·log log n using growth regularity of the covariance
process, Chen ’20.
log4 n and log2.223... n by combining the above with
spectral analysis, K.-Lehec ’22, Jambulapati-L.V. ’22.
√
log n by an improved Lichnerowicz inequality, using

Bochner’s formula, K. ’23.
log logn using self-controlled growth estimates for the
covariance process, analysis of 3-tensors, Guan ’24.
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Convex bodies with large isotropic constant
Write λK for the uniform probability measure on K . By using
Milman ellipsoid and covering numbers:

Proposition (essentially from Bourgain, K., Milman ’04)

Let K ⊆ Rn satisfy LK ≥ Ln/2. Let E ⊆ Rn be any subspace of
dim(E) ≥ n/4. Denote µ = (ProjE)∗λK . Then,

Lµ ≥ c · Ln.

The measure projection of λK is a log-concave measure:
it has density e−H where H : Rn → R ∪ {+∞} is convex.
Prékopa-Leindler inequality: Log-concavity is preserved
under convolution, push-forward by linear maps, weak
limits. Also pointwise products.
The isotropic constant of a log-concave µ is

Lµ = e−Ent(µ)/n · detCov(µ)1/(2n)

where Ent(µ) = −
∫
Rn f log f , with f being the density of µ.
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Entropy vs. Covariance? Analyze using heat flow!
Log-concave measures include uniform measures on
convex bodies and Gaussian measures.

Theorem (Slicing thm + Ball ’86 (and K. ’05 for non-even µ))

For any log-concave probability measure µ in a finite
dimensional linear space,

1/
√

2πe ≤ Lµ ≤ C.

(Equality on the left-hand side is classical, attained for
Gaussians.)

How may we analyze the isotropic constant? A suggestion
from Ball-Nguyen ’13 is to use:

The heat flow in Rn

It preserves log-concavity, it increases the covariance linearly,
and it is great with entropy, too!
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Entropy production along the heat flow

Definition
A log-concave probability measure µ in Rn is isotropic if it is
centered with Cov(µ) = Id.

(this is one of two common normalizations in the literature)

For an isotropic, log-concave µ in Rn and for s > 0 denote

µs = µ ∗ γs

where γs is a Gaussian of mean zero and Cov(γs) = s · Id.

De Bruijn’s identity (from Stam’s paper ’59)

d
ds

Ent(µs) =
1
2

J(µs).

Here, the density of µs is exp(−ψs), and the Fisher information
is

J(µs) =

∫
Rn

|∇ψs|2dµs =

∫
Rn

Tr[∇2ψs]dµs.
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Probabilistic interpretation: conditional covariance
By differentiating a Gaussian convolution,

∇2ψs(y) =
Id
s

−
Cov(ps,y )

s2

where, with ρ the log-concave density of µ,

ps,y (x) =
γs(x − y)ρ(x)
(ρ ∗ γs)(y)

Observation 1
We have Cov(ps,y) ≤ s · Id . By Prékopa, as µs is log-concave.

Let X ∼ µ and Z ∼ N(0, Id) be independent random vectors.

Observation 2

The measure µs is the law of X +
√

sZ .

∇2ψs(X +
√

sZ ) =
Id
s

− 1
s2 · Cov(X |X +

√
sZ ).
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Application of the probabilistic interpretation

Lemma (super-additivity)

Let X ,Y ,Z1,Z2 be independent, Z1,Z2 ∼ N(0, Id). Then,

ECov(X + Y |X + Y +
√

s(Z1 + Z2))

≥ ECov(X + Y |X +
√

sZ1,Y +
√

sZ2)

= ECov(X |X +
√

sZ1) + ECov(Y |Y +
√

sZ2).

Recall that J(µs) = n/s − s−2 · ETr
[
Cov(X |X +

√
sZ )

]
.

Thus, by integrating the derivative of Ent(µs) we get:

The Shannon-Stam inequality (’48 –’59)

Let X ,Y be independent random vectors in Rn and 0 < λ < 1.
Then

Ent
(√

λX +
√

1 − λY
)
≥ λ · Ent(X ) + (1 − λ) · Ent(Y ).

Equality iff Gaussians with proportional covariance matrices.
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The Shannon-Stam inequality in the log-concave case
Particularly simple behavior in the i.i.d, log-concave case:

Proposition (Ball-Nguyen ’13)

If X and Y are i.i.d and log-concave in Rn, then,

Ent(X ) ≤ Ent
(

X + Y√
2

)
≤ Ent(X ) + 2n.

Proof idea: f (0) ∼ e−Ent(X) and (f ∗ f )(0) =
∫

f 2 ≥ 2−nf (0).
Using a stochastic proof of Shannon-Stam in Lehec ’13:

Theorem (reformulation of Eldan and Mikulincer ’20)

If X and Y are i.i.d and log-concave in Rn, with law µ, then,

2n ≥ Ent
(

X + Y√
2

)
− Ent(X )

≥ c
∫ ∞

0
s ·

∫
Rn

∣∣∣∣∇2ψs −
∫
Rn

∇2ψsdµs

∣∣∣∣2 dµsds.
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Guan’s Bound
Last month, Qingyang Guan from
CAS in Beijing posted a paper on arXiv.
It solved Bourgain’s slicing problem up
to log log n, improving upon

√
log n, using:

Proposition (Guan ’24)

Consider an isotropic, log-concave probability measure µ in Rn.
Write e−ψs for the density of µs = µ ∗ γs. Then for s > 0,∫

Rn

∣∣∣Id − s · ∇2ψs

∣∣∣2 dµs ≤ Cn/s2,

where C > 0 is a universal constant.

Proved with intricate bootstrap using
∫

Tr fk (∇2ψs)dµs, the
improved Lichnerowicz inequality, and 3-tensor analysis.
This provided the missing link in an approach to Bourgain’s
slicing problem we discussed with Lehec in 2022.
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Focusing on the conditional covariance matrix
Let us change variables t = 1/s.
This slightly helps us focus on isotropicity of µ.

Time reversal s = 1/t
1 Consider the covariance matrix: A0 = Id and for t > 0,

At = Cov(X |X +
√

sZ ) = Cov(X |tX +
√

tZ ) ≤ Id/t .

(helpful to think of tX + Wt where (Wt)t≥0 is a Brownian motion in Rn)

2 Moreover,
d
dt

EAt = −EA2
t ≤ −(EAt)

2 =⇒ EAt ≤
Id

1 + t
.

3 The de Brujin identity:

Ent(µ) = −1
2

∫ ∞

0
Tr

[
Id

1 + t
− EAt

]
dt +

n
2
log(2πe).

4 Guan’s bound: E|At |2 ≤ Cn.

5 Eldan-Mikulincer:
∫ ∞

0
(1 + t) · E|At − EAt |2dt ≤ Cn.
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Suppose that EAt ≥ c · Id/(1 + t) for t ≥ C
Following Eldan-Mikulincer:

1 Integration by parts using d
dtEAt = −EA2

t gives∫ ∞

0
(1 + t)E

∣∣∣∣ Id
1 + t

− At

∣∣∣∣2 dt =
∫ ∞

0
Tr

[
Id

1 + t
− EAt

]
dt .

In both integrals, the contribution of t ∈ [0,C] is at most C̃n.
2 From (1) and Eldan-Mikulincer stability, Slicing follows

from: ∫ ∞

0
(1 + t)

∣∣∣∣ Id
1 + t

− EAt

∣∣∣∣2 dt ≤ C̄n

3 Positive-definite matrices: from the “Suppose”, for t ≥ C,

(1 + t)
∣∣∣∣ Id
1 + t

− EAt

∣∣∣∣2 ≤ (1 − c) · Tr
[

Id
1 + t

− EAt

]
.

4 From (3) and (1) we obtain (2).
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Using Guan’s bound and Milman’s ellipsoid

We still need to obtain EAt ≥ c · Id/(t + 1) for t ≥ C.

1 Start with “worse possible” µ = λK . By Milman ellipsoid, for
any subspace E ⊆ Rn with dim(E) ≥ n/4,

Ln ≤ c′ · L(ProjE )∗µ.

2 For t = t0 = c we have TrEAt0 ≥ n/2. Indeed, A0 = Id and
hence from Guan’s bound, ETr[At ] ≥ 1 − Cn · t for all t .

3 A third of the eigenvalues of EAt0 are at least 1/4. Indeed,
this follows from (2) as EAt0 ≤ Id and all e.v. are in [0,1].

4 Thus there exists a subspace E with dim(E) ≥ n/3 and

EAt0,(ProjE )∗µ ≥ ProjE · EAt0 · ProjE ≥ Id/4.

5 Denote Ãt = At ,(ProjE )∗µ. Then EÃt ≥ c̃ · Id/t for t ≥ t0.
Indeed, the matrix t · EÃt is increasing, since
d
dtEÃt = −EÃt

2 ≥ −EÃt/t . Hence L(ProjE )∗µ < Const .
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The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let K ⊆ R3 be convex and open.
Let f : K → R be C1-smooth, with∫

K f = 0. Then,∫
K

f 2 ≤ CP(K ) ·
∫

K
|∇f |2

where CP(K ) ≤ (9/16) · Diam2(K ).

The smallest possible CP(K ) is the Poincaré constant of
K or the inverse spectral gap for the Neumann laplacian.
Proof: Estimate

∫
K×K |f (x)− f (y)|2dxdy via segments.

In high dimensions, bounds for the Poincaré constant via
the diameter are usually inadequate.
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The Kannan-Lovász-Simonovits (KLS) conjecture
It is conjectured that up to a universal constant, the
Poincaré inequality is saturated by linear functions.

Conjecture (KLS ’95)

Let X ∈ Rn be a log-concave random vector. Then,

∥Cov(X )∥op ≤ CP(X ) ≤ C · ∥Cov(X )∥op.

An equivalent formulation of KLS due to Cheeger ’70,
Buser ’82 and Ledoux ’04: up to a universal constant, the
isoperimetric problem in a convex body K ⊆ Rn is
saturated by a hyperplane bisection.

The isoperimetric constant

For an open set K ⊂ Rn define

hK = inf
A⊂K

|∂A ∩ K |
min{|A|, |K \ A|}
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Thin shell phenomenon
The KLS conjecture is currently known up to log n (K. ’23).
A weak form is:

Thin Shell Conjecture (Bobkov and Koldobsky ’04, stems from
Anttila, Ball and Perissinaki ’03)

If X is an isotropic, log-concave random vector in Rn, then

E
(
|X | −

√
n
)2 ≤ C.

Most of the mass of X is contained
in a thin spherical shell.

Using Guan’s bound and the
approach in K.-Lehec ’22 refined:

Theorem (Guan ’24)
The thin shell conjecture is true up
to (log log n)2.
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Some partial results on KLS and thin shell
Thin shell conjecture =⇒ Slicing Theorem (Eldan-K. ’11).

Sudakov ’76, Diaconis-Freedman ’84
Thin shell phenomena implies approx. Gaussian marginals.
Precise estimates (up to log) by Bobkov, Chistyakov, Götze ’19.

Let t > 0 and X ∈ Rn be a random vector in Rn with
density e−ψ such that ∇2ψ ≥ t · Id pointwise.

Theorem (log-concave Lichnerowicz (folklore, see Obata ’62))

Cov(X ) ≤ CP(X ) ≤ 1
t
.

Geometric average of Lichnerowicz and KLS holds:

Theorem (Improved Lichnerowicz, K. ’23)

Cp(X ) ≤
√
∥Cov(X )∥op · 1

t
.

Boaz Klartag Resolution of Bourgain’s Slicing Problem using Guan’s Bound 25/3025 / 30



taulogo.jpg

How is Guan’s bound proved?

Analyze the covariance matrix At . For any function f ,

d
dt

ETrf (At) = E (expression involving third moments of pt)

where pt = p1/t ,X+Z/
√

t is more log-concave than γ1/t .

Consider f which is positive, increasing, with f (t) = t2 for
t > 4 such that

|f ′′(t)| ≤ D2
0 |f (t)|.

A self-controlled estimate
Dividing the 3-tensor into a few pieces, and using improved
Lichnerowicz yields

d
dt

ETrf (At) ≤
C
t
· ETrf (At) (0 < t < D−4

0 ).
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How is Guan’s bound proved? (continued)

Divide [0, c] into log∗ n sub-intervals. Set t1 = c/ log2 n and
for t ≥ 2,

tk =
c

| log log . . . log︸ ︷︷ ︸
k times

n|16

For i ≥ 1, in the interval
[ti , tt+1] use Fi,t = ETrf (At)
with f as in the figure.
The function Fi,t is
much smaller than n,
and grows regularly
in the interval, thanks to
the self-controlled estimate.

At the end of the interval Fi,t and Fi+1,t are still much smaller
than n. May thus proceed to next interval.
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Conclusion

It took a (global) village.

Is thin shell coming up?

KLS remains unsolved.
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Conclusion

It took a (global) village.

Is thin shell coming up?

KLS remains unsolved.

Fresh from the oven: Pierre Bizeul has simplified our
argument, eliminating the usage of information theory!
Instead of Eldan-Mikulincer, he applies Paouris’ small ball
estimates from ’12.

Milman ellipsoids are still necessary, as well as Guan’s
bound and a projection to a subspace of proportional
dimension to eliminate small eigenvalues of At .
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Thank you!

Jean Bourgain by Jan Rauchwerger
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