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- ?
L () =X l/,T—M*
o Convex bodies in R" denote K, L, M; /z
o Lebesgue volume in R" denote |-| or |- |n;

@ Recall Minkowski sum of sets A,BCR" :

A+B={x+y:x€AyeB}.
@ Support function of a convex set K is

hi(y) = sup(x,y) = [l¥llke;
xeK

o hyyp =hx+hg;

@ Unit normal to 0K at x € 0K denote ny;

o hic(ne) = (x,nx);

@ Second fundamental form of OK denote II, mean curvature Hx = tr(II).
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The Brunn-Minkowski inequality

Log-concavity of the Lebesgue measure

IAK+ (1= AL > KL

%—concavity of the Lebesgue measure

INK 4+ (1= A)L|" > K[+ (1= M)|L|?

The isoperimetric inequality
For all Borel-measurable sets K with |K| = |B3|, one has |0K| > |0B3].

1 )"
(117 +elB317) "~ 1K1

n—1

=n|K| ™

|K + B3| —|K]
€

|OK| = liminf > liminf B3|
e—0 2

e—0
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The local version of the Brunn-Minkowski inequality

o Fix convex sets K and L with support functions hx and h;;
o Let ¢ :S""1 R be given by ¢(u) = hy(u) — hy(u);
@ For t € [0,1], the body Kt = (1 —t)K + tL has support function
ht = hy + tp on S" L
@ The Brunn-Minkowski inequality
K+ (=X)L 2 (KL
implies that log|Kt| is concave;
o Let F(t) = |K¢|. We deduce (logF)}_y <0, or

F"(0)F(0)— F'(0) < 0.

Galyna V. Livshyts On the Log-Brunn-Minkowski conjecture



The local version of the Brunn-Minkowski inequality

o F(t)=|Kt|, ht = hi + 1, BM implies F”(0)F(0)— F'(0)> < 0.
o Let f: 9K — R be given by f(x) =1 (nx) = hy(nx) — hx(nx);
o F(0) =IK];
° F/(O):faK f;
o F'(0) = [, Hxf? — (LT 'V ok f, Vo f);
@ Brunn-Minkowski inequality implies, and follows from
2
f
Hyf? — (T Vi, Vi F) — (ox ) <0
oK K]

(Colesanti 2008; Kolesnikov-Milman 2015-2018)
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Abstract observation

@ Take any algebra A which is a vector space over R;
o Let @: Ax A— R be any symmetric bilinear form;
@ Suppose for every a € A,

Q(a,a) <0. (1)

Fix any element z € A;
For all t € R we have Q(a+ tz,a+ tz) <0, or equivalently

Q(a,a) +2tQ(a,2) + t°Q(z,2) < 0;

o Optimize in t, plug optimal t = — 8Ei’3 get the Schwartz inequality

Q(a,z)2

Q(a,a) < Qz.2)

<0 (@)

(2) is sharper than (1);

]
@ (2) is invariant under a — a+ tz.
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Optimizing the local version of the Brunn-Minkowski inequality

@ The local version of the (multiplicative) Brunn-Minkowski inequality:

/ Hef2 — (1T Vo f, Vox ) — (7
oK

o Pick the special function z(x) = (x, nx)(= hk(nx));

@ Optimize with respect to f(x)+ tz(x), using Schwartz inequality get a
strengthening

2
- f
/ Hyf2 — (17 Vi f, Vok ) — t (o f)” <0.
oK no K]

o When K = B, we get the sharp Poincare inequality on S"~* :

2
/ f2_ (/ f) g i |vo-f|27
Sn—1 S§n—1 n—1 Sn—1

where fgn,l is normalized.

@ The first eigenvalue of A on S"lis n—1, and the above is sharp.
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Invariances of the local version of the Brunn-Minkowski inequality

@ The Local Brunn-Minkowski inequality

/ Hxf? — (11" Vok f, VaKﬂ——(‘de) <0
oK lw K]

is invariant under f — f + t(x, nx) (“times change”);
@ It is also invariant under f — sf (dilating);
@ Recall the definition of mixed volumes of convex bodies K and M, for
k=1,...,n
(n—k)! (K) .
Vi (K, M) = T|K+ tM|; 20

@ WLOG suppose that f(x) = hps(nx) for some convex body M (or else add

a large multiple of hk(nx)). Get Minkowski's second inequality:
Vi(K, M)?
va(k.my < AT

@ Upshot: the Minkowski second inequality is equivalent to the
Brunn-Minkowski inequality.
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The L2 proof of the Brunn-Minkowski inequality (Kolesnikov-Milman)

-

2
)SO

o Goal: [, Hxf? — (LI Vo f, Vo f) — 251 (ff,;l :
@ Let u: K — R be any function such that (Vu,nyx) = f(x) for x € OK.

o By divergence theorem, fBK f= fK Au.

Lemma (Kolesnikov, Milman 2015)

Jor Hef2 = (1o £,V ok f) < [, (Bu)? — [|V2ul]?.

@ Goal follows from finding for every f : 0K — R such u: K — R with
(Vu,nx) =f(x) and

E(|V2u|?® > Var(Au) + %(EAU)Z.

Solvability of the Neumann system

Let Au = const, with the Neumann boundary condition (Vu, nx) = f(x).

tr(A)?

n

@ For any symmetric matrix A, ||AH$_,5 > ; thus || V2u]2 > %(Au)2.
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The Log-Brunn-Minkowski conjecture

Logarithmic sum (Definition)

AK+o(1=AL= [ {x€R": [(u,x)| < hx(u) by (u)}.
uesn—1

Note, by AMGM, AK +¢ (1 —=A)L C AK+ (1= )L.

Log-Brunn-Minkowski conjecture (Béréczky, Lutwak, Yang, Zhang 2011)

For origin-symmetric convex sets K and L in R",

IAK 40 (1= A)L| > | KL

@ Equivalent to uniqueness of solution of certain Monge-Ampere equations,

questions go back to Firey;

True for n =2 (Béroczky, Lutwak, Yang, Zhang 2011), (Stancu for

polytopes);

@ True for unconditional sets (Saraglou 2013; Cordero-Fradelizi-Maurey;
Boroczky, Kalantzopoulos 2020 — more general result);

True for complex convex bodies (Rotem 2017).
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The local version of the Log-Brunn-Minkowski inequality

@ Fix convex sets K and L with support functions hx and h;;

¢ Lt 0157 b g by o) = )

o Locally, Kt := tK +¢ (1 —t)L has support function

he = hxp® = h + to+ O(t2),

where ¢ = hk Iog,l:—;;
@ The Log-Brunn-Minkowski inequality implies that log|K:| is concave;
o Let F(t) = |K¢|. We deduce (log F)}_o <0, or F”(0)F(0)— F’(0)*> < 0.
o Let f: 9K — R be given by f(x) = ¢(nx) = hk(nx)log Z;((ZXX))
e F(0)=|K|;
e F'(0) :faK f;
o F'(0) = [, Hxf? — (LT Vo f, Vox )+

2
JOK (x,ny) "
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The local version of the Log-Brunn-Minkowski inequality

Theorem (Colesanti, L, Marsiglietti 2016)

The Log-Brunn-Minkowski inequality would imply, for every symmetric convex
K and every even function f : 0K — R,

2
2 f
/ fo2—<11‘1vaKf,v6Kf)+/ L (Jox ) .
oK OK <X7nX> |K‘

Colesanti-L-Marsiglietti

The local version of the Log-Brunn-Minkowski inequality is true when K = Bj.

o Indeed, the Local Log-Brunn-Minkowski inequality with K = B is
equivalent to the following Poincare inequality:

1
Varga—1(f) < ;Egnfﬂvaﬂz,

for all even functions f, which is known to be true, moreover, with
constant 3= < L.
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The local version of the Log-Brunn-Minkowski inequality

Kolesnikov-Milman

The local version of the Log-Brunn-Minkowski inequality is true when K = By,
for all p € [2,00].

| A

Chen-Huang-Li-Liu; Putterman

The local version of the Log-Brunn-Minkowski inequality implies the global
version of the Log-Brunn-Minkowski inequality!

A\

@ However, when K is fixed, no global result follows. The global conjecture
IAK +o (1= N)L| = [KA|L

with arbitrary symmetric L is not known for any K.

@ Could one prove the Local Log BM for some nice “speed function” f, for
all K? (one such answer will come after two slides...)
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Invariance properties of the Local Log-Brunn-Minkowski inequality

@ (Kolesnikov-Milman) The Local Log BM inequality

2

2 f

/ fo2—<11‘1VaKf,VaKf>+/ P o Ubkf)
oK oK (x, nx) |K]

is invariant under f — f + t(x, nx).

o (Putterman) Therefore, it is equivalent to the strengthening of
Minkowski's second inequality
n*Vi(K, M)
KT

hi(nx)
n(n—l)Vz(K,l\/l)-i- danl(X)S
K (x, nx)
@ Furthermore, the Local (and global) Log BM is invariant under linear
transformations.

@ In the case of Log-Brunn-Minkowski conjecture, the invariance under
f — f 4 t(x, nx) corresponds to the invariance of the global version under
L — tL, while the invariance under f — sf corresponds to “time change”.
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The local version of the Log-Brunn-Minkowski inequality for K = BZ,

Example: K = BZ.; it was previously known to Emanuel Milman

@ The inequality

n?Vi(K, M)?
T

2
n(n—1)Va(K, M)+/6K 'zf:”(,:':;

becomes (using symmetry!)

2
n n
n(n—1)Va(BS, M) +2-2""1 " hijy(e)) <27*.4.22772 (Z hM(e,-)> .
i=1

i=1

@ Mixed volumes are monotone, thus V5 (B3, M) < V5(B3,, By), where By,
is the parallelepiped with sides 2hp(e1),...,2hp(€n).

("] n(n— 1) Vz(Bgo, BM) = 4.2n—2 Zi;éj hM(e,-)hM(ej). \
@ Thus the inequality boils down to an equality /14
o

n 2 n 2
(Z hM(ei)> = (Z hM(ei)> :
i=1 i=1
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The local Log-Brunn-Minkowski inequality for interval M

Theorem (Kolesnikov, L, 2020+)

For every symmetric convex bounded set K in R” with non-empty interior, for
f(x) = t{x,nx) + |{v,nx)|, for any t € R and any v € R", the Local
Log-Brunn-Minkowski inequality is true. In other words,

<nXa V>2 <

L/ Fhc{me, )2 = (Vx| (e ), Vi )+ 2 <
oK o

2
1
”<<Lummw0.

Furthermore, the equality is attained if and only if K = C+ [—v, v] for some
symmetric convex C C w™, for some vector w € R\ v

/f‘”
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The local Log-Brunn-Minkowski inequality for interval M

Proof

o Recall the support function of an interval: h_, ,j(u) = [{u,v)[;

@ By invariance properties, it is enough to show that

2 (nx n? 2

is true when M = [—v, v], for any vector v € R";

o Cauchy'’s projection formula:
VA(K, [=v,v]) = [K + t[=v,v][t=o = 2| K|v"| =/ [(nx, v)[;
OK
o The function |K + t[—v, V]| = |K|+2t|v|-|K|v"| is linear in t and thus

n(n—1)Va(K, M) = |K + t[-v,V][!o = 0.

@ Our goal rewrites:

[, )2 Ak
/SmhK(u)ds”— KT
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The local Log-Brunn-Minkowski inequality for interval M

Proof (continued)

_— VL2
o Goal: fo,_, (L) 1w ldSi(u) < L]

o By Fubbini’s theorem, for every ue S"~ 1, |K| = hK(u |Kﬁ(u + tu)|dt,
and thus 0
KNnu—|.
ey < TR |
@ Since the projection of a subset is smaller than the projection of a set,
0,0 < 21K b )] = o KOt v < oI
hi(u) — IKI IK\ IKI
@ We conclude
|(u, V)| 2|K|v| 4K
u,v)|dSk(u) < ———— u,v)|dSx = ——.
[ (L) st < 2 [ s = 45

(the last passage is the Cauchy’s projection formula again.) O
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Question: what if M is a 2-dimensional square?

When M = [—e1,e1] X [—e2, e], the Local Log BM inequality

2
n(nfl)Vz(K,M)Jr/aK <ij":x>dH,,_1(x) "‘ﬂ# &

becomes

Conjecture: Local Log BM when M is a square

2
4(|Klef| +|K|es
dSk(u) < (l e ||K\| le2 |)

+ |u])?
8Ksane,62J'+/ 7(|u1|
| | P ( 1 ) | i hK(U)

@ This does not reduce to the case of one interval:( Example — hexagon on
the plane which is close to the square.

Observation

If the above inequality is true for all K, then the Local Log-Brunn-Minkowski
inequality holds whenever

@ K is any symmetric convex body and M is a zonoid (limit of a sum of
intervals), or

@ K is a zonoid and M is any symmetric convex body.
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Another inequality

Suppose the Log-Brunn-Minkowski conjecture holds. Then, for all symmetric
convex K and M,

: Nx n? 2
n(n_l)v2(K’M)+/aK /zﬂx”,(m) = V1|(;<(|’M) :

Since Vo(K, M) > 0, this implies

/ h2,(nx) - n?Vi(K, M)?
oK

(x,nx) — K]
Equivalently,
2 2
n 1
[ A< (] )
9K <X7”X> ‘ | K
where || - || = || - || is a semi-norm.

Question: Is the above inequality true?
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Another inequality

Theorem (Kolesnikov, L, 2020+)

For any symmetric convex bounded set K in R"” with non-empty interior, and

any semi-norm || - || on R", we have v~
2 2 /
[[nx| 1
S = l[nxll)
K (x, nx) |K| K
Furthermore, the equality occurs if and only if ||- || = |(-, v}, fo

v €R" and K = C+[—v,v] for some symmetric convex C C w, for some
vector w € R"\ v+,

Sketch of the proof

Recall that any semi-norm there exists a set Q such that

llull = sup [{u,v)|.
veQ

Similarly to the previous proof, we show

2
/Pen|<>2<1(/ sup |(n v>|>
_— X7 :
oK <X,nx> ‘ | K veQ
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Yet another estimate

Theorem (Kolesnikov, L, 2020+)

For any symmetric convex bounded set K in R"” with non-empty interior, and
any semi-norm || - || on R", we have

2
/ an||2 < 2CP0in(K) . i / HnXH
oK (Xonx) — inrad(K) K]\ Jok ’
where inrad(K) is the radius of the largest ball inside K, and

Cpoin(K) = infv:lfLip \/ VarK(V)'

Note that %"((:8 <1e.g. for K= Bj, in which case this estimate beats the

previous estimate.

Galyna V. Livshyts On the Log-Brunn-Minkowski conjecture



Lemma

Let K be C?-smooth strictly convex body in R". Let ||-|| be an arbitrary
semi-norm in R". Let u: K — R be any C? function such that (Vu, nx) = | nx|
for all x € 0K. Then

/ 1920l < / (Bu)2.
K K

Proof of the Lemma

@ Recall (Kolesnikov, Milman): when (Vu,nx) =f: 0K — R,

/ Hef? — (I Vo f, Yok f) < / (D) — V2l
oK K

o When f(x) = ||nx|| = ||nx||pme, we have

/ fo2 = <H_1V5Kf,VaKf> = |K—|—t‘M|6’ =n(n—1)Vo(K,M) > 0.0
oK

<

Galyna V. Livshyts On the Log-Brunn-Minkowski conjecture



Proof (continued)

@ Let u: K — R be the solution of the Neumann system

(Vu,nx) = ||nxl, x € 0K,

and
o Joclnsll
K]
2
° fBK ol lfaK |Vul|(Vu,nx), where r = inrad(K) = min(x, nx) and we

(x,nx)

used that (Vu,nx) > 0.
e For any o, >0,

Vu
[Vul’

div(|Vu|Vu) = Au|Vu| + (V2 u—— Vi) <

o > 1 2 B2 2 1 2
2(Au) +2a|Vu| +2||V “||HS+2ﬁ|VU| ;
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Proof (continued)

@ Thus, by divergence theorem, we get

Ini> _1 [ a 2, 1 2, Bio2 2 1 )
<= = (Au) "+ —|Vu|"+Z|IV + —|Vu|dx <
/a <7 K2( u) 2a| ul 2|| ullks 25| ulfdx <

2 2

1 C Cooi

;/ Z(Au)2+< §°’”+5+ ;’;) 1V2ul|%s,
K

where in the last line we used the Poincare inequality coordinate-wise for
Vu, in view of the fact that v is even and thus fKVu =0

o We let a = 8 = Cpojn, and use the Lemma

/ 120l < / (Bu)?,
K K

in order to conclude
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Proof (continued)

@ It remains to recall that Au is a constant function, and thus

/ aoa - ScBD _ Uclosd)”
K

Kl KL

where in the last passage, the Divergence Theorem was used.

@ We conclude that

/ sl _ 2Gpoin (e lInsl))”
oK

(o) = Kl

and the theorem follows. [
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The L,-Brunn-Minkowski conjecture

Lp-Minkowski sum (Definition)

AK+p(1=NL= (] {x€R™: [(u,x)[P < Ahk() + (1= A)hy(u)P}.
uesSn—1

Lp-Brunn-Minkowski conjecture (Boérdczky, Lutwak, Yang, Zhang 2011)

For origin-symmetric convex sets K and L in R", for p € [0,1]

IAK 4p (1= AL > |K L

Equivalently, by homogeneity (and/or the earlier story)

INK +p (1= A)L|5 > K| 7+ (1= A)|L]5.

e For p€[0,1],
AK 40 (1= AL CAK +p (1= A)L CAK +(1— A)L.

@ The conjecture interpolates between the Log-Brunn-Minkowski conjecture
(p=0) and the Brunn-Minkowski inequality (p = 1).
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The L,-Brunn-Minkowski conjecture

@ Kolesnikov-Milman developed the local version of the Lp-Brunn-Minkowski
inequality

h2, 1) < " anl(K M)?
n—
K]

n(n—l)Vg(K,M)—i—(lfp)/(aK(

X, Nx)

o Kolesnikov-Milman: true for p € [1 —cn™ 1 1]!
@ Chen-Huang-Li-Liu: local implies global (with equality cases)
@ Putterman: local implies global (simple and useful proof)

@ Conclusion: the Lp-Brunn-Minkowski conjecture
IAK +p (L= N)L|7 > A[K[7 + (1= A)|L| 7.

is true when p € [1—cn™ 12 1]1
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The L,-Brunn-Minkowski conjecture

Theorem (Hosle, Kolesnikov, L 2020+)

For origin-symmetric convex sets K and L in R"” such that K C L, for
pell—cn %7 1]
MK +p (1= A)L| > KL

[

e
5 il et
pae= Zama

Remark: note that this is not the dilation-invariant version.
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Log-concave measures: preliminaries

Log-concave functions

A function is called log-concave if its logarithm is concave, i.e.
FOX+ (1= N)y) > F(x) (y)

Log-concave measures

A measure y is called log-concave if u(AK + (1 —A)L) > p(K)*u(L).

Borell's theorem (which implies Brunn-Minkowski)

A measure with log-concave density is log-concave.

. . . 2
o Gaussian measure 7y with density #e 2
T

@ Lebesgue measure;
o Poisson density...
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The L,-Brunn-Minkowski conjecture for measures

Theorem (Saraglou 2014)

If the Lp-Brunn-Minkowski conjecture holds for some p € [0,1], then for any
even log-concave measure p and any pair of origin-symmetric convex sets K
and L in R”,

ROK +p (1= A)L) > p(K) (L)

o Considering the case p =0 and K = aL, note that the above would imply
the B-conjecture of Banazchyk-Latala, posed in the 1990s.

o Cordero-Fradelizi-Maurey 2008: true when K = al and p is Gaussian.

o In the absence of homogeneity, the inequality no longer improves to an
additive version...
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The L,-Brunn-Minkowski conjecture for measures

Theorem (Saraglou 2014)

If the Lp-Brunn-Minkowski conjecture holds for some p € [0,1], then for any
even log-concave measure p and any pair of origin-symmetric convex sets K
and L in R”,

ROK +p (1= ML) > p(K) (L),

o Considering the case p =0 and K = aL, note that the above would imply
the B-conjecture of Banazchyk-Latala, posed in the 1990s.

o Cordero-Fradelizi-Maurey 2008: true when K = al and p is Gaussian.

o In the absence of homogeneity, the inequality no longer improves to an
additive version... Except it does!

L, Marsiglietti, Nayar, Zvavitch 2017

If the Log-Brunn-Minkowski conjecture holds, then for every even log-concave
measure u and any pair of origin-symmetric convex sets K and L in R",

1
n

WK + (L= X)L)7 > Ma(K) 7 + (1= A)p(L)7.
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The dimensional Brunn-Minkowski
Theorem (Hosle, Kolesnikov, L 2020+)

If the Log-Brunn-Minkowski conjecture holds, then for every even log-concave
measure . and any pair of origin-symmetric convex sets K and L in R”,

P
n

K +p (1= A)L)7 > Au(K)7 + (1= (L) " (3)

Moreover, (3) strengthens when p decreases.

| \

Conjecture (Gardner, Zvavitch 2007)

For an even log-concave measure p, and symmetric convex sets K and L,

Si=

WK + (L= X)L)7 > Ma(K) 7+ (1= A)p(L)7.

@ Tkocz-Nayar: the symmetry assumption cannot be replaced by simply
origin in the interior, even in the Gaussian case.

Theorem (Kolesnikov, L 2018)

For the Gaussian measure u, and convex sets K and L containing the origin,

HOK + (1= 21T = MAa(K)? + (1= A)u(L) .
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The dimensional Brunn-Minkowski

o Eskenazis-Moschidis: for the Gaussian measure v and for symmetric
convex sets K and L,

1
n

YK+ (1= N)L)7 > My(K)7 + (1= Ny (L)7.

Theorem (Kolesnikov, L 2020+)

Fix a € [0,1]. For the Gaussian measure «y and for symmetric convex sets K
and L with v(K) > a, v(L) > a,

YAK+(1—=A)L) GO > Ay (K)n=FG) G +(1=A)y(L)-F@ G
where n_#,__(a) —a—1 OO.

@ The power in this inequality tends to infinity even in the non-symmetric
case, as is implied by Ehrhard's inequality (but the above is not related to
Ehrhard's inequality).

. 1 —1 f tPe™ 22
@ The function F(a) := ZJpy10J,";(a), where Jp(R ~0———, and
tPe 5 dt

the rate in the previous theorem is optimal up to a dimenS|ona| constant.
”
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The dimensional Brunn-Minkowski

Moreover,

Theorem (Kolesnikov, L 2020+)

Fix a € [0,1]. Let u be a log-concave measure with twice-differentiable density
eV, and suppose V2V is uniformly strictly non-singular everywhere. Then for
symmetric convex sets K and L with pu(K) > a, u(L) > a,

K + (1= M) L)PE > Aa(K)PE) 4 (1= N)a(L)P),

where p(a) —,-,1 co.

Additionally,

Theorem (Kolesnikov, L 2020+)

Let v be the measure with density Cnef‘lxlh. Then for symmetric convex sets
K and L,

POK + (1= AL > Ma(K) 57 4 (1= A)pa( L) 7557

The previous result utilizes a deep result of Barthe, Klartag.
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The mixed L,-Brunn-Minkowski and dimensional conjecture for measures

Theorem (Hosle, Kolesnikov, L 2020+)

Let «v be the Gaussian measure, and let K and L be symmetric convex sets
containing the ball rB3. Then for any A >0,

Q Y(AK +p (1= A)L) > (K) (L)'=, whenever p >0 and

2r2
n+1°

p>1-—

@ |In particular, the Gaussian Log-Brunn-Minkowski inequality holds for all

convex sets K and L containing 4/0.5(n+1)B5.

© More generally, y(AK +p (1 — )\)L)% > /\'y(K)% +(1- )\)'y(L)%, provided

that +1
n
4Q+7(1—P) <2

@ Assuming further that K C L, we show that
Y(AK +p (1= A)L) > v(K) (L)}, whenever p >0 and p>1—

T —
v/n+0.25"

@ In one of the steps of the proof, we deduced the “local to global™ result for
general measures, following the approach of Putterman.
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Thanks for your attention!
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