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Introduction

Motivating Question

Let X ∈ Rn be a random vector, let A ∈ Rn×(n−d) be a random matrix, and H be
the subspace spanned by the columns of A.
Q: What can we say about dist(X,H)?

In the context of non-asymptotic random matrix theory, this is an important
question with a number of applications.
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Introduction

Preliminaries and Notation

For a matrix A ∈ RN×n the singular values of A, σ1(A), · · · , σn(A), are the
square roots of the eigenvalues of A⊤A.

The smallest singular value satisfies σn(A) = infx∈Sn−1∥Ax∥2.
The largest singular value satisfies σ1(A) = supx∈Sn−1∥Ax∥2.

The Hilbert Schmidt norm of a matrix A is ∥A∥HS =
√∑

i,j a
2
ij

A random variable X is uniformly anti-concentrated if supz∈R P(|X− z| < a) < b.

Given δ, ρ ∈ (0, 1) we define
Comp(δ, ρ) := {x ∈ Sn−1 : dist(x, sparse(δn)) ≤ ρ}.
Incomp(δ, ρ) := Sn−1 \Comp(δ, ρ).
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Introduction

Distances in Non-asymptotic Random Matrix Theory

Deriving lower tail estimates for the smallest singular value of rectangular
matrices ([10]):
Proving a lower bound on infx∈Sn−1∥Ax∥2 reduces to proving a lowerbound on
infz∈spreadJ

dist(AJz,HJc), for an appropriate choice of submatrix AJ and
subspace HJc .

Deriving upper tail estimate for smallest singular value of square matrices ([9]):
Proving an upperbound on ∥A−1∥ reduces to proving a lowerbound on
dist(Ak, H1,k) for all 1 ≤ k ≤ n

ℓ∞ delocalization of eigenvectors [11]: Proving that eigenvectors have small ℓ∞
norm requires proving lower bounds on the distance between anisotropic random
vectors and random subspaces.

Many more examples (rank deviation [8], no-gaps delocalization [12], etc.).
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Introduction

Levy concentration function

For a random variable X ∈ R the levy-concentration function is

L(X, t) := sup
z∈R

P(|X − z| ≤ t) (1)

For a random vector X ∈ Rn the levy-concentration function is

L(X, t) := sup
v∈Rn

P (∥X − v∥2 ≤ t) (2)

Importance for distance:

P(dist(X,H) ≤ t) = P(∥PH⊥X∥2 ≤ t) ≤ L(PH⊥X, t)
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History and Results

Distance theorems

X ∈ Rn, A ∈ Rn×(n−d), H = colspan(A)

Theorem (Rudelson and Vershynin [10])

1 ≤ d ≤ cn

X,A have i.i.d. subgaussian entries with unit variance.

L(PH⊥X, t
√
d) ≤ (Ct)d + e−cn

Theorem (Livshyts [5])

1 ≤ d ≤ cn

X has i.i.d. entries, A has i.i.d. rows

UAC entries

E∥A∥2HS ≤ Kn2

L(PH⊥X, t
√
d) ≤ (Ct)d + e−cn
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History and Results

Distance theorems cont.

X ∈ Rn, A ∈ Rn×(n−d), H = colspan(A)

Theorem (Livshyts, Tikhomirov, Vershynin [6])

d = 1

UAC entries

E∥X∥22 ≤ rn2

E∥A∥2HS ≤ Kn2

L(PH⊥X, t
√
d) ≤ (Ct)d + e−cn

Theorem (Rudelson, Vershynin [13])

L(Xi, t) ≤ p for all 1 ≤ i ≤ n

L(PH⊥X, t
√
d) ≤ (Cp)d
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History and Results

Distance theorem for inhomogeneous rectangular matrices

Theorem (F. [16])

X ∈ Rn, A ∈ Rn×(n−d), H = colspan(A)

1 ≤ d ≤ λn/(logn)

UAC entries

E∥X∥22 ≤ rn2

E∥A∥2HS ≤ Kn2

L(PH⊥X, t
√
d) ≤ (Ct)d + e−cn.

Improves upon the square distance theorem in [6].
Remark about aspect ratio.
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History and Results

Relating Distance to Smallest Singular Value
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History and Results

Subgaussian rectangular matrices: some previous results

Let A ∈ RN×n.
Standard gaussian matrices (Edelman. [2], Szarek [14]).

Theorem (Litvak, Pajor,Rudelson, Tomcazk-Jaegermann [4])

i.i.d. entries

mean-0 subgaussian

N − n ≥ cn/(logn)

P(σn(A) ≤ c
√
N) ≤ e−cN

Theorem (Rudelson, Vershynin [10])

i.i.d. entries

mean-0 subgaussian

P(σn(A) ≤ ε(
√
N + 1−

√
n)) ≤ (Cε)N+1−n + e−cN .
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History and Results

inhomogeneous matrices: some previous results

Let A ∈ RN×n.

Theorem (Livshyts [5])

independent, mean-0, unit variance entries

i.i.d rows

uniformly anti-concentrated entries.

P(σn(A) ≤ ε(
√
N + 1−

√
n)) ≤ (Cε log(1/ε))N+1−n + e−cN

Theorem (Livshyts, Tikhomirov, Vershynin [6])

E∥A∥2HS ≤ Kn2

independent UAC entries

P(σn(A) ≤ ε/
√
n) ≤ Cε+ e−cN

Sparse inhomogeneous matrices: (Litvak, Rivasplata [3])

Manuel Fernandez V Online Asymptotic Geometric Analysis SeminarSmallest Singular Value October 30, 2024 11 / 29



History and Results

New Results

Let A ∈ RN×n.

Theorem (Dabagia, F. [1])

EAiA
⊤
i = IN

independent mean-0 entries

1 If A has UAC entries then

P
(
σn(A) ≤ ε

(√
N + 1−

√
n
))

≤ (Cε log(1/ε))N−n+1 + e−cN

2 If A has entries with bounded 2 + β moments then

P
(
σn(A) ≤ ε

(√
N + 1−

√
n
))

≤ (Cε)N−n+1 + e−cN
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Proving a distance theorem

Proving a distance theorem

Recall:
L(Y, t) := sup

v∈Rn
P (∥Y − v∥2 ≤ t)

Characteristic function: ϕY (θ) := E exp(2πi⟨Y, θ⟩).
Analytic tool: Esseen’s inequality

L(Y, t) ≤ Cd

∫
B(0,

√
d)

|ϕY (θ)| dθ
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Proving a distance theorem

Proving a distance theorem cont.

For X ∈ Rn, A ∈ Rn×(n−d) and H = colspan(A) we have dist(X,A) = ∥PH⊥X∥2.
Write U⊤U = PH⊥ , Y = t−1UX

L(PH⊥X, t
√
d) = L(t−1UX,

√
d)

≤ Cd

∫
B(0,

√
d)

|ϕY (θ)| dθ

≤ · · ·
· · ·

≤ Cd

∫
B(0,

√
d)

exp
(
−4 · E(dist2(U⊤θ/t) ⋆ X̄,Zn)2

)
dθ

Q: How to bound this integral?
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Proving a distance theorem

LCD of vectors 1

E(dist2(U⊤θ/t) ⋆ X̄,Zn) is large when U⊤θ lack ‘arithmetic structure’.

Essential Least Common Denominator (Rudelson and Vershynin [9],[10])

LCDL,u(V ) = inf{∥θ∥2 > 0 : dist(V ⊤θ,Zn) < min(u∥V ⊤θ∥2, L)} (3)

Pros: Successfully captures arithmetic structure.
Drawback: Difficult to use for d > 1, problematic for the inhomogeneous setting
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Proving a distance theorem

LCD of vectors 2

Logarithmic Least Common Denominator (Rudelson and Vershynin [12])

LCDL,u(V ) = inf
{
∥θ∥2 > 0 : dist(V ⊤θ,Zn) < L

√
log+ (∥V ⊤θ∥/L)

}
(4)

Pros: Easy to use for d > 1.
Drawback: Problematic for the inhomogeneous setting
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Proving a distance theorem

LCD of vectors 3

Randomized Least Common Denominator (Livshyts, Tikhomirov, Vershynin [6])

RLCDX
L,u(v) = inf{θ > 0 : Edist2(θv ⋆ X̄,Zn) < min(u∥θv∥22, L2)} (5)

Pros: Applicable in the inhomogeneous setting.
Drawback: Specific for d = 1. Generalization maybe be difficult to use for d > 1.
Idea: Combine Randomized LCD and Logarithmic LCD
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Proving a distance theorem

Randomized Logarithmic LCD

Vector version: let v ∈ Rn.

RLogLCDX
L,u(v) := inf

(
θ > 0 : Edist2(θv ⋆ X̄,Zn) < L2 · log+

(
u∥θv∥2

L

))
,

RLogLCDA
L,u(v) := min

i
RLogLCDAi

L,u(v).

(6)
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Proving a distance theorem

Randomized Logarithmic LCD cont.

Matrix version: Let V ∈ Rn×N .

RLogLCDX
L,u(V ) := inf

(
∥θ∥ > 0 : Edist2(V ⊺θ ⋆ X̄,Zn) < L2 · log+

(
u∥V ⊺θ∥2

L

))
.

(7)

Subspace version: Let E ⊆ RN be a subspace.

RLogLCDX
L,u(E) := inf

v∈E∩SN−1
RLogLCDX

L,u(v). (8)
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Proving a distance theorem

Large Randomized Logarithmic LCD =⇒ Distance Theorem

Takeaway: If RLogLCDX
L,u(U) is large then the integral can be bounded nicely.

Recall:
L(Y, t) := sup

v∈Rn
P(∥Y − v∥2 ≤ t)

Proposition (Levy concentration for projections)

X ∈ Rn is a random vector.

E ⊆ Rn is a subspace

4L2 ≥ d+ 2

D(E) := RLogLCDX
L,u(E)

L(PEX, t) ≤
(

CL√
du

)d

·max
(
t,
√
d/D(E)

)d

(9)

To recover our theorem, it suffices to prove that D(E) ≥
√
decn/d when E = H⊥.
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Proving a distance theorem

First steps: Proving Properties of Randomized Logarithmic LCD

Analogous to Randomized LCD [6], Randomized Logarithmic LCD enjoys some nice
properties.

1 RLogLCDX
L,u(v) is ‘stable’ under pertubations of v.

2 RLogLCDX
L,u(v) is monotone in L (assuming RLogLCDX

L,u(v) is large
enough).

3 RLogLCDX
L,u(v) isn’t ‘too small’ when v is incompressible.

Recall: Incomp(δ, ρ) := {x ∈ Sn−1 : dist(x, sparse(δn)) > ρ}.
Difficulty with lowerbound:

Naive lower bound: L/u.

Desired lower bound: L/u+ cn/
√

Var(X).

Problematic when L/u ≫ cn/
√

Var(X)
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Proving a distance theorem

Idea: A better lowerbound when L is random

Issue: If you give me L, I can construct X so that (L/u)v ⋆ X̄ ∈ Zn, where
v = (1/

√
n, · · · , 1/

√
n).

Workaround: Take L̃ ∼ [L, 2L] uniformly.

Proposition

Let x ∈ Incomp(δ, ρ). If L2 ≲ n then there exists L̃ ∈ [L, 2L] such that

RLogLCDX
L̃,u(x) ≥

L̃

u
+

cn√
Var(X)

. (10)

Caveat: L̃ depends on x.
Consolation: May pick L̃ ∈ {L, 2L} ∪ {L+ i/10 : 1 ≤ i ≤ ⌊10L⌋}.
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Proving a distance theorem

Main task: Lowerbounding RLogLCDX
L,u(H

⊥) via recursion

Recall: RLogLCDX
L,u(H

⊥) := infv∈H⊥∩SN−1 RLogLCDX
L,u(v).

Exploit: H⊥ ∈ null(A⊤)
Notation:

Qi := submatrix of A consisting of columns of A with variance at most
n2/d− f(i).

D = ecn/d

Di = D2−i

D = Dmax.

Manuel Fernandez V Online Asymptotic Geometric Analysis SeminarSmallest Singular Value October 30, 2024 23 / 29



Proving a distance theorem

Recursive Formulation

Hi := {∃x ∈ Incomp(δ, ρ) s.t. A⊤x = 0,RLogLCDQi
ℓ,u(x) ∈ [D,Di)},

Ei := {∃x ∈ Incomp(δ, ρ) s.t. A⊤x = 0,RLogLCD
Qi+1

L,u (x) ∈ [D,Di)

and RLogLCD
Qi+1

L,u (x) ≥ Di+1},

Fi :=
⋃

Y ∈Qi\Qi+1

{∃x ∈ Incomp(δ, ρ) s.t. A⊤x = 0,RLogLCD
Qi+1|Y
L,u (x) ∈ [D,Di)

and RLogLCD
Qi+1

L,u (x) ≥ Di+1}.

H0 ⊆
⋃

1≤i≤max

(Ei ∪ Fi)

P(H0) ≤ Union Bound.

We bound RLogLCD
Q|X
L,u (H⊥) in a similar way.
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Proving a distance theorem

Upper bounding P(Ei),P(Fi)
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Smallest singular value and conclusion

Estimating the smallest singular value via distance

In view of previous work [10, 6, 5] showing that infx∈Comp(δ,ρ)∥Ax∥2 is large is not
too difficult.
Crux of the matter: Lower bounding infx∈Incomp(δ,ρ)∥Ax∥2.

Definition (spread vector [10])

A vector v ∈ Sd−1 is said to be spread if all entries satisfy |vi| ∈ [cd−1/2, Cd−1/2], for
some positive constants c, C. We denote the set of spread vectors as spreadd.

Lemma (Invertibility via distance [10])

[10] Let d ∈ {1, 2 · · · , n} and A ∈ RN×n be a random matrix. Then there exists
J ⊂ {1, 2, · · · , n} of size d such that

P
(

inf
x∈Incomp(δ,ρ)

∥Ax∥2 ≤ εd√
n

)
≤ CdP

(
inf

x∈spreadd
dist(AJx,HJc) ≤ ε

√
d

)
,

where C and the spread parameters depend only on δ and ρ.

Manuel Fernandez V Online Asymptotic Geometric Analysis SeminarSmallest Singular Value October 30, 2024 26 / 29



Smallest singular value and conclusion

Key ideas for obtaining estimates for inhomogeneous rectangular
matrices

In view of previous tools and results ([10],[5],[6]), what do we need to prove our
smallest singular value estimates?

1 A way to bound dist(AJx,HJc) when A has no identical distribution
assumptions. (Use our distance theorem)

2 An improved deviation inequality for regularized Hilbert-Schmidt norm.

Remark: The tall case.
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Smallest singular value and conclusion

Future Directions

Using the distance theorem from [16] a number of results known for i.i.d. or
subgaussian matrices can be considered in the inhomogeneous setting.

Upper tail estimates for smallest singular value [9, 15]

Upper tail estimates for intermediate singular values [17]

Delocalization type results for eigenvectors [12, 11, 7]

Many more (rank [8]), (no-gaps [12]), etc.

For rectangular matrices, the need for isotropic columns seems fundamental in the
case of small aspect ratios, but not for the square case. Can this condition be
relaxed?

Manuel Fernandez V Online Asymptotic Geometric Analysis SeminarSmallest Singular Value October 30, 2024 28 / 29



Smallest singular value and conclusion

End

Thank you!
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