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Introduction

Motivating Question

Let X € R™ be a random vector, let A € R"*("~% he a random matrix, and H be
the subspace spanned by the columns of A.
Q: What can we say about dist(X, H)?

In the context of non-asymptotic random matrix theory, this is an important
question with a number of applications.
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Introduction

Preliminaries and Notation

o For a matrix A € RV*" the singular values of A, o1(A),--- ,0,(A), are the
square roots of the eigenvalues of AT A.

o The smallest singular value satisfies o, (A) = inf  cgn—1]|Az]|2.

o The largest singular value satisfies 01(A4) = sup,egn-1|Az]2.
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o The Hilbert Schmidt norm of a matrix A is |A||xs = Zi,j afj
e A random variable X is uniformly anti-concentrated if sup,p P(|X — 2| < a) < b.
e Given 4, p € (0,1) we define

Comp(,p) := {x € S"™! : dist(zx, sparse(én)) < p}.
o Incomp(d, p) :=S" !\ Comp(4, p).

VL P
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Introduction

Distances in Non-asymptotic Random Matrix Theory

o Deriving lower tail estimates for the smallest singular value of rectangular
matrices ([10]):
Proving a lower bound on inf,cgn—1||Az||2 reduces to proving a lowerbound on
inf.espread; dist(Ayz, Hye), for an appropriate choice of submatrix A; and
subspace H je.

e Deriving upper tail estimate for smallest singular value of square matrices ([9]):
Proving an upperbound on ||A™*|| reduces to proving a lowerbound on
dist(Ar, Hix) forall 1 <k <mn

o /s delocalization of eigenvectors [11]: Proving that eigenvectors have small £
norm requires proving lower bounds on the distance between anisotropic random
vectors and random subspaces.

e Many more examples (rank deviation [8], no-gaps delocalization [12], etc.).
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Levy concentration function

For a random variable X € R the levy-concentration function is

L(X,t) = 51611[;]}”(|X —z| <t) (1)

A gESY
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x
X=-€ X <
=
LX) = sup P (IX-2124) « (=]
Zew.
For a random vector X € R" the levy-concentration function is
L(X,t) := sup P([|[X -2 <) 2
'UER’”'

Importance for distance:

P(dist (X, H) < t) = P(| Pyo X2 < t) < L(Pyo X, 1)
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Distance theorems

X eR", Ae RV("=9 H = colspan(A)

Theorem (Rudelson and Vershynin [10])
e l1<d<ecn
o X, A have i.i.d. subgaussian entries with unit variance.

L(Pyo X, tVd) < (Ct)* + e "

Theorem (Livshyts [5])
e 1<d<cn
o X has i.i.d. entries, A has i.i.d. rows
o UAC entries

E||All%s < Kn?

L(Pyo X, tVd) < (Ct)* +e™"
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History and Results

Distance theorems cont.

X eR", Ae R H = colspan(A)

Theorem (Livshyts, Tikhomirov, Vershynin [6])
ed=1
o UAC entries
o E||X|3 < rn?
° E||Allfs < Kn?
L(Pyo X, tVd) < (Ct)T + e~

Theorem (Rudelson, Vershynin [13])
o L(X;t)<pforalll<i<n
L(Py. X, tVd) < (Cp)?
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History and Results

Distance theorem for inhomogeneous rectangular matrices

Theorem (F. [16])

X eR", Ac R 9 H = colspan(A)
e 1 <d<An/(logn)
o UAC entries
° E|I X3 <rn®
o E|Allfs < Kn?

L(Py1 X, tVd) < (CH)* + e

Improves upon the square distance theorem in [6].
Remark about aspect ratio.
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Relating Distance to Smallest Singular Value

3
Exarple 1o fi

dist (A\ X, H') = Xl “P"“L Al

P = PH.A‘

H| = Span (Aa, AS\

Mocal: WAxl, = ) dist(A, 1))

|nvecklbi H\/ Via. distance (Sqmm case)’
Pe WAxl, ) L P (disk (s, W) < €)
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Subgaussian rectangular matrices: some previous results

Let A € RV*™.
Standard gaussian matrices (Edelman. [2], Szarek [14]).

Theorem (Litvak, Pajor,Rudelson, Tomcazk-Jaegermann [4])
o i.i.d. entries
o mean-0 subgaussian
e N —n>cn/(logn)
P(on(A) < cVN) < e N

Theorem (Rudelson, Vershynin [10])
e i.i.d. entries

o mean-0 subgaussian

P(on(A) < e(v/'N +1—+/n)) < (Ce)V 7" 4 e,

Manuel Fernandez V Online Asymptotig Smallest Singular Value October 30, 2024

10/ 29



inhomogeneous matrices: some previous results

Let A € RVX",

Theorem (Livshyts [5])
o independent, mean-0, unit variance entries
@ i.i.d rows

e uniformly anti-concentrated entries.

P(on(A) < (VN +1-v/n)) < (Celog(1/e)™ 7" + &7

Theorem (Livshyts, Tikhomirov, Vershynin [6])
o E|Al}s < Kn?
o independent UAC entries
P(on(A) < e/v/n) < Ce4e N

Sparse inhomogeneous matrices: (Litvak, Rivasplata [3])
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History and R

New Results

Let A € RVX",

Theorem (Dabagia, F. [1])
o EAA] = Iy
o independent mean-0 entries

Q If A has UAC entries then
P (an(A) <e (\/N Fi- \/a)) < (Celog(1/e))N "1 4 =N
@ If A has entries with bounded 2 + 3 moments then

P (Un(A) <e (\/W— \/ﬁ)) < (Ce)N 4 meN
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Proving a distance theore

Proving a distance theorem

Recall:

L(Y,t) := sup P([|Y —wvlls < 1)
vER™

Characteristic function: ¢y (0) := Eexp(2mi(Y, 0)).
Analytic tool: Esseen’s inequality

L(Y,t) < PRGOS
B(0,7/d)
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Proving a distance theorem

Proving a distance theorem cont.

For X € R", A € R"™*("~9) and H = colspan(A) we have dist(X, A) = || Py X||2.
Write UTU = Py, Y =t7'UX

L(Pyo X, tVd) = L(tT'UX, Vd)

< cd/ |6y (0)] do
B(0,vd)

< Cd/ exp (—4-E(dist® (U7 0/t) « X,2")?) do
B(0,V/d)

Q: How to bound this integral?
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Proving a distance theore

LCD of vectors 1

E(dist?(U T 8/t)  X,Z™) is large when U T lack ‘arithmetic structure’.

o Essential Least Common Denominator (Rudelson and Vershynin [9],[10])

LCDy (V) = inf{||0]]2 > 0 : dist(V"0,Z") < min(u|V0|2,L)}  (3)

fv Zl

. .
L
) . .
wlievil,
» . L] .

Pros: Successfully captures arithmetic structure.
Drawback: Difficult to use for d > 1, problematic for the inhomogeneous setting

Manuel Fernandez V Online Asymptotic Smallest Singular Value October 30, 2024 15 /29



Proving a distance theore

LCD of vectors 2

e Logarithmic Least Common Denominator (Rudelson and Vershynin [12])

LCD..(V) = inf {|lfll> > 0 : dist(V'0,2") < Ly/log, (IVTOI/L)}  (4)

ZZ

Pros: Easy to use for d > 1.
Drawback: Problematic for the inhomogeneous setting
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Proving a distance theore

LCD of vectors 3

o Randomized Least Common Denominator (Livshyts, Tikhomirov, Vershynin [6])
RLCDfu(v) =inf{f > 0 : Edist’(0v X,Z") < min(ul0v|3,L*)} (5)

Pros: Applicable in the inhomogeneous setting.
Drawback: Specific for d = 1. Generalization maybe be difficult to use for d > 1.
Idea: Combine Randomized LCD and Logarithmic LCD
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Proving a distance theore

Randomized Logarithmic LCD

e Vector version: let v € R™.

RLogLCD7 ,(v) := inf (9 >0 : Edist*(vx X,2") < L? -log, <ML””2>> ,

RLogLCD} ,(v) := min RLogLCD}’, (v).
(6)
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Proving a distance theore

Randomized Logarithmic LCD cont.

o Matrix version: Let V € R™*V.

_ T
RLogLCD7 (V) := inf <||0\| > 0: Edist®(VT0x X,Z") < L - log., (M))
(7

o Subspace version: Let E C RY be a subspace.

RLogLCD; ,(E):= inf RLogLCD} ,(v). (8)

veEENSN -1
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Proving a distance theore

Large Randomized Logarithmic LCD = Distance Theorem

Takeaway: If RLogLCDf’u(U ) is large then the integral can be bounded nicely.
Recall:

L(Yt) = sup B(|Y —vl|2 <)
vER™

Proposition (Levy concentration for projections)

o X € R" is a random vector.
e E C R" is a subspace

0 412 >d+2

D(E) := RLogLCDy ,(E)

L(PpX,t) < (%)d - max (t, \/&/D(E))d (9)

To recover our theorem, it suffices to prove that D(E) > v/de®"/¢ when E = H*.

V.
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Proving a distance theorem

First steps: Proving Properties of Randomized Logarithmic LCD

Analogous to Randomized LCD [6], Randomized Logarithmic LCD enjoys some nice
properties.

o RLogLCDfu(v) is ‘stable’ under pertubations of v.
(2] RLogLCDf’u(v) is monotone in L (assuming RLogLCDf’u(v) is large
enough).
Q RLogLCDfu(v) isn’t ‘too small’ when v is incompressible.
Recall: Incomp(6, p) := {z € S"~' : dist(z, sparse(in)) > p}.
Difficulty with lowerbound:
e Naive lower bound: L/u.

@ Desired lower bound: L/u+ en/+/Var(X).
e Problematic when L/u > cn/+/Var(X)
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Proving a distance theore

Idea: A better lowerbound when L is random

Issue: If you give me L, I can construct X so that (L/u)vx X € Z", where

v=(1/vn,--,1/y/n).
Workaround: Take L ~ [L,2L] uniformly.

(X, x)
x p s s pam
O(X,-x)
“ p ~ s pi
O (X, x)
“ p o P p!
Proposition

Let x € Incomp(3,p). If L* < n then there exists L € [L,2L] such that

L cn
RLogLCD; () > = + 10
g L,u( )7 U Var(X) ( )
Caveat: L depends on x.
Consolation: May pick L € {L,2L}U{L+¢/10 : 1 <4 < [10L]|}.
October 30, 2024 22 /29
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Proving a distance theore

Main task: Lowerbounding RLogLCDf ,(H1) via recursion

Recall: RLogLCD7 ,(H™") := inf, g1 ngv—1 RLogLCDZ , (v).
Exploit: H- € null(A")

Notation:
@ (Q; := submatrix of A consisting of columns of A with variance at most
n?/d — f(i).
o D =¢m/?
o D;=D2""
@ D = Dyax-
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Proving a distance theorem

Recursive Formulation

H; := {3z € Incomp(d,p) s.t. A'x = O,RLogLCD%’L(m) € [D, D;)},
& = {3z € Incomp(4,p) s.t. A x = O,RLogLCDgi;rl (x) € [D, Ds)
and RLogLCDY' (z) > D1},

Fi = U {3z € Incomp(8, p) s.t. ATz =0, RLogLCD?ﬁJl‘Y(m) € [D, D;)

YeQi\Qit1
and RLogLCD{ ' (z) > Diy1}.
Hoc |J E&uF)
1<i<max

P(Ho) < Union Bound.
We bound RLogLCDglf (H*) in a similar way.

Manuel Fernandez V Online Asymptotig Smallest Singular Value October 30, 2024

24 /29



Observakion :
A'x =0 but
NATKN, = ok NAT,- €
veN

Goee aetr Coc lage
CD
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allest singular value and conclusio

Estimating the smallest singular value via distance

In view of previous work [10, 6, 5] showing that inf,ccomp(s,p) || A2 is large is not
too difficult.
Crux of the matter: Lower bounding inf,cincomp(s,p) || AZ]|2-

Definition (spread vector [10])

A vector v € S?71 is said to be spread if all entries satisfy |v;| € [ed~'/2, Cd~/?], for
some positive constants ¢, C. We denote the set of spread vectors as spread,.

Lemma (Invertibility via distance [10])

[10] Let d € {1,2--- ,n} and A € RN*™ be a random matriz. Then there exists
J CA{1,2,--- ,n} of size d such that

]P’( inf  ||Az|» < %‘f) < ch< inf  dist(Ayz, Hye) < aﬁ) :
n

x€Incomp(s,p) - zEspready

where C and the spread parameters depend only on § and p.
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Smallest singular value and conclusion

Key ideas for obtaining estimates for inhomogeneous rectangular
matrices

In view of previous tools and results ([10],[5],[6]), what do we need to prove our
smallest singular value estimates?

@ A way to bound dist(Ajz, Hye) when A has no identical distribution
assumptions. (Use our distance theorem)

@ An improved deviation inequality for regularized Hilbert-Schmidt norm.
Remark: The tall case.
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Smallest singular value and conclusion

Future Directions

Using the distance theorem from [16] a number of results known for i.i.d. or
subgaussian matrices can be considered in the inhomogeneous setting.

Upper tail estimates for smallest singular value [9, 15]

Upper tail estimates for intermediate singular values [17]
@ Delocalization type results for eigenvectors [12, 11, 7]

e Many more (rank [8]), (no-gaps [12]), etc.

For rectangular matrices, the need for isotropic columns seems fundamental in the
case of small aspect ratios, but not for the square case. Can this condition be
relaxed?
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End

Thank you!
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allest singular value and conclusion
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