On the eigenvalues of
Brownian motion on U (N)

Elizabeth Meckes
Joint with Tai Melcher

Case Western Reserve University

Online Asymptotic Geometric Analysis Seminar
June 23, 2020



Brownian motion on U (N)

U (N): the group of N x N unitary matrices
u(N): its Lie algebra — the skew-Hermitian matrices.



Brownian motion on U (N)

U (N): the group of N x N unitary matrices
u(N): its Lie algebra — the skew-Hermitian matrices.

U (N) is a Riemannian manifold, with left-invariant metric
defined by

(A,B) = NTr(B*A) A Bcu(N).



Brownian motion on U (N)

U (N): the group of N x N unitary matrices

u(N): its Lie algebra — the skew-Hermitian matrices.

U (N) is a Riemannian manifold, with left-invariant metric
defined by

(A,B) = NTr(B*A) A, Bcu(N).

We may define a standard Brownian motion {UN} ¢ on U (N)
to be a solution to

dUN = UN o dW]N

= UNdwl — %U{th

with U} = Iy and W} a standard B.M. on u(N).
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The empirical spectral measure

Suppose that M is an n x n random matrix with eigenvalues
)\1 g ooy )\n.

The empirical spectral measure n of M is the (random) measure

1 n
po= 25,\,(.
k=1



The empirical spectral measure

If {UN}+>0 is @ Brownian motion on U (N), then for each ¢, UY
has N eigenvalues

Zl‘,1)' . 'aZt,N

on the unit circle, and an associated spectral measure

1 N

N

i =y 2 0ay
j=1



The
process {uN} =0
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The large N limit

Theorem (Biane, 1997)

There is a deterministic family of measures {v:}~o on'S' such
that, for each t > 0, the spectral measure of UY converges
weakly almost surely to vy:

for all f € C(S"),

lim / fduN = / fdvy  as.
N—o0

The measure v; represents in some sense the spectral
distribution of a “free unitary Brownian motion”.

The measures v; are characterized in terms of their moments.
They have densities (symmetric about 1) on the circle, and are
supported on symmetric arcs until time t = 4, when their
support becomes the whole circle.
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Non-asymptotic theory

L'-Kantorovich distance:
For Borel probability measures ¢ and v on a Polish space

(X, p),

Wi (p, v) = inf {/p(x,y)dw(x,y) :  a coupling of x, y}

—sup{/fd,u—/fdu:]f|Lip<1}.
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Levels of randomness

Let 1, be the (random) spectral measure of an n x n random
matrix, and let » be some deterministic measure which
supposedly approximates fip.

The annealed setting:

Limit theorems for the ensemble-averaged spectral measure
Epn:

| / fd(Bun) = B / foljun.

The quenched setting:
Almost sure (or a.a.s.) bounds on the random variable d(p, v)



Distance to the ensemble average

Theorem (M.—Melcher)

Let {UN}new t>0 be such that for each N, UV is a Brownian
motion on U (N), with spectral measure i}

There is a constant C > 0 such that with probability one, for all
N € N sufficiently large and for all t > 0,

N £\ 1/3
Wi(ue  Epe') < C<N2> :

Moreover, for all N € N sufficiently large and all t > 8(log N)?,

W1(M;V~/EM;V) < 2ER



Paths of measures

Theorem (M.—Melcher)

There are constants ¢, C such that forany T > 0 and for all

T2/510g(N)
X 2 c N2/5 )

2,2
P(sup W1(M§V7ut)>x> <C<)Z—2+1>e’vr .

0<t<T

In particular, with probability one for N sufficiently large

T2/31og(N)
Wy (i, ) < c— 2
Ozl@ 1(pt>vt) <€ N2/5



Concentration of measure

A standard argument using the fact that U (N) has nonnegative
Ricci curvature implies that for F: U(N) C My — R a
1-Lipschitz function with respect to v'N|| - ||y.s.,

P[|F(UN) ~ EF(UM)| > r] <2¢77.



Concentration of measure

A standard argument using the fact that U (N) has nonnegative
Ricci curvature implies that for F: U(N) C My — R a
1-Lipschitz function with respect to v/N|| - ||4.s.,

P[|F(UN) ~ EF(UM)| > r] <2¢77.

On the other hand, at stationarity (i.e., if U is distributed
according to Haar measure on U (N)), a clever coupling
argument shows that

P[\F(U) ~EF(U)| > r} < 27",



Concentration of measure

Proposition (M.—Melcher)

There is a constant C > 0 such that for all N € N, t > 8(log N)?
and r > 0, and all 1-Lipschitz functions F : U(N) — R,

2

P(|F(U) —EF(U;)| >r) < Ce .



Concentration of measure

Proposition (M.—Melcher)
There is a constant C > 0 such that for all N € N, t > 8(log N)?
and r > 0, and all 1-Lipschitz functions F : U(N) — R,

2

P(|F(U;) —EF(U)| >r) < Ce™%.

The proof takes advantage of
iby
Zt = enN
(b; a standard BM on R) 2V, is a standard
BMon U (N).
V; a standard BM on SU (N)
( independent of by)
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Concentration of the empirical spectral measure

If M is an n x n normal matrix with spectral measure 1y, and v
is any reference measure,

M — W1 (MMvV)

is L-Lipschitz.

cN2r2

= P[W (M?’Wt) > EW, (u?’,vr) +r]<Ce O .

A2 To show W, (1, 1) is typically small, it's enough to show
that EW; (1Y, v¢) is small.



Average distance to average
One approach: consider the stochastic process

X = / fdﬂ?’—E/ faulN.



Average distance to average
One approach: consider the stochastic process

X; = / fdu?’—E/ fdul.
The concentration inequality for Lipschitz functions of U,N
implies that { Xt} satisfies a sub-Gaussian increment condition:

_ oN2r?

P [|X; — Xg| > r] < 2e 90,

Dudley’s entropy bound together with approximation theory,
truncation arguments, etc., leads to the bound

D)3 allt > o,
E(supX,)gC{ N s At .
|flL<1 (a2) ~» t=8(log(N))



Theorem (M.—Melcher)

Let 1) be the spectral measure of U;, where {Ut} > is a
Brownian motion on U (n) with Uy = 1.
Foranyt ,x >0,

t 1/3 N2x2
P W1(,U{‘V:E,U$V)>C<Nz> +x| <277,
Forx > 0 andt > 8(log(N))?,

P <W1(/L?’,Eu?’) >c <N2> + x> < 27N,

Almost sure bounds on W (uN,Eul) are immediate from the
Borel-Cantelli lemma.
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Convergence of EulN to v

Given f : S — R a 1-Lipschitz function, let

Sm(z) == > f(k)Z".

|k|l<m

Observe that

[ ZFantia) = [T

so that

5 1

(k) [ <E[T(UN] - [ Z¥dv
I 0 (e f o)
< Y

1<|k|<m

%E[Tr(uf)] — / ZX duy




Convergence of EulN to v

Collins—Dahlqvist—-Kemp '18:

2K4

= NE

‘;VIE[Tr(U{‘ )] — / ZXduy




Convergence of EulN to v

Collins—Dahlqvist—-Kemp '18:

2K4

‘E[Tr Uk)]/ ZKd| < N

Using this estimate together with the classical fact that
log(m
If = Snllc < € (257

and optimizing over m leads to

2/Slog N

Wi (Bup', ) < C N2/5



t .



Convergence of paths: Continuity of {EulN}¢o:

Wi (B, Epf) = sup E U fauf — /fdﬂs]

[f| <1
_ EllU;— Udlln
- N
_Ellly— Urs|ln
ey



Convergence of paths: Continuity of {EulN}¢o:

Wi (Ep', Epl) = sup E U fdpy' —/fdué\’}

[fl.<1
- EllUi— Udlln
- N
= M
N .

General properties of Brownian motion on manifolds together
with estimates on volume ratios of balls in U (N) yield a
concentration inequality for ||/y — U;_s||y and ultimately,

1
Wi (Eul, Eud) <3vE—s+ N
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Convergence of paths: Continuity of {v;}:0

Using
» the established convergence of Exl to v
» the continuity of {EuN}>0

if0<s<t,

Wi (v, vs) < Wi (v, Epp') + Wy (vs, Ed) + Wi (Epp  Epf)

t2/5 + s2/5)log N 1
(72 % 52)log +3Vi—s+ 4.

E C N2/5

Letting N — oo yields
Wi (v, vs) < 3ViE—s.
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Convergence of paths

Fix T > 0, IetmeN,andforj:1,...,m,|ettj::%. If

x>9\/;

P < sup_ Wi (up, ve) > X>
0<t<T

X

X
+P <1T8.X W1(,ut ,I/t/) > 3>

1<j<m

Nx X
<mP (sup Iy — Utl| > 3> + m max P<W1(ug’,utj) > §> .

;
[t|<+



Convergence of paths

Theorem (M.—Melcher)

Let T > 0. There are constants c, C such that for all

T2/5log(N
X 2 CW()’

T 2)(2
P(sup W1(M?’,ut)>x> §C<X2+1>eNr .

0<t<T

In particular, with probability one for N sufficiently large

T2/%log(N)
Wy (ulN <¢c—
ozl}]ng i’y m) < N2/5



Thank you.




