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Brownian motion on U (N)

U (N): the group of N × N unitary matrices
u(N): its Lie algebra – the skew-Hermitian matrices.

U (N) is a Riemannian manifold, with left-invariant metric
defined by

〈A,B〉 = N Tr(B∗A) A,B ∈ u(N).

We may define a standard Brownian motion {UN
t }t≥0 on U (N)

to be a solution to

dUN
t = UN

t ◦ dW N
t

= UN
t dW N

t −
1
2

UN
t dt

with UN
0 = IN and W N

t a standard B.M. on u(N).
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The empirical spectral measure

Suppose that M is an n × n random matrix with eigenvalues
λ1, . . . , λn.

The empirical spectral measure µ of M is the (random) measure

µ :=
1
n

n∑
k=1

δλk .
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The empirical spectral measure

If {UN
t }t≥0 is a Brownian motion on U (N), then for each t , UN

t
has N eigenvalues

zt ,1, . . . , zt ,N

on the unit circle, and an associated spectral measure

µN
t =

1
N

N∑
j=1

δzt,j .



The process {µN
t }t≥0



The large N limit

Theorem (Biane, 1997)
There is a deterministic family of measures {νt}t≥0 on S1 such
that, for each t ≥ 0, the spectral measure of UN

t converges
weakly almost surely to νt :
for all f ∈ C(S1),

lim
N→∞

∫
fdµN

t =

∫
fdνt a.s.

The measure νt represents in some sense the spectral
distribution of a “free unitary Brownian motion”.

The measures νt are characterized in terms of their moments.
They have densities (symmetric about 1) on the circle, and are
supported on symmetric arcs until time t = 4, when their
support becomes the whole circle.
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Non-asymptotic theory

L1-Kantorovich distance:
For Borel probability measures µ and ν on a Polish space
(X , ρ),

W1(µ, ν) = inf
{∫

ρ(x , y)dπ(x , y) : π a coupling of µ, ν
}

= sup
{∫

f dµ−
∫

f dν : |f |Lip ≤ 1
}
.
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Levels of randomness

Let µn be the (random) spectral measure of an n × n random
matrix, and let ν be some deterministic measure which
supposedly approximates µn.

The annealed setting:

Limit theorems for the ensemble-averaged spectral measure
Eµn: ∫

fd(Eµn) := E
∫

fdµn.

The quenched setting:
Almost sure (or a.a.s.) bounds on the random variable d(µn, ν)
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Distance to the ensemble average

Theorem (M.–Melcher)
Let {UN

t }N∈N,t≥0 be such that for each N, UN
t is a Brownian

motion on U (N), with spectral measure µN
t .

There is a constant C > 0 such that with probability one, for all
N ∈ N sufficiently large and for all t > 0,

W1(µ
N
t ,EµN

t ) ≤ C
(

t
N2

)1/3

.

Moreover, for all N ∈ N sufficiently large and all t ≥ 8(log N)2,

W1(µ
N
t ,EµN

t ) ≤
C

N2/3 .



Paths of measures

Theorem (M.–Melcher)
There are constants c,C such that for any T ≥ 0 and for all
x ≥ c T 2/5 log(N)

N2/5 ,

P

(
sup

0≤t≤T
W1(µ

N
t , νt) > x

)
≤ C

(
T
x2 + 1

)
e−

N2x2
T .

In particular, with probability one for N sufficiently large

sup
0≤t≤T

W1(µ
N
t , νt) ≤ c

T 2/5 log(N)

N2/5 .



Concentration of measure

A standard argument using the fact that U (N) has nonnegative
Ricci curvature implies that for F : U (N) ⊆MN → R a
1-Lipschitz function with respect to

√
N‖ · ‖H.S.,

P
[∣∣F (UN

t )− EF (UN
t )
∣∣ > r

]
≤ 2e−

r2
t .

On the other hand, at stationarity (i.e., if U is distributed
according to Haar measure on U (N)), a clever coupling
argument shows that

P
[∣∣F (U)− EF (U)

∣∣ > r
]
≤ 2e−cr2

.
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Concentration of measure

Proposition (M.–Melcher)
There is a constant C > 0 such that for all N ∈ N, t ≥ 8(log N)2

and r > 0, and all 1-Lipschitz functions F : U (N)→ R,

P (|F (Ut)− EF (Ut)| > r) ≤ Ce−
r2
4 .

The proof takes advantage of

zt = e
ibt
N

(bt a standard BM on R)

Vt a standard BM on SU (N)
( independent of bt)


=⇒ ztVt is a standard

BM on U (N) .
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Concentration of the empirical spectral measure

If M is an n × n normal matrix with spectral measure µM and ν
is any reference measure,

M 7→W1(µM , ν)

is 1
n -Lipschitz.

=⇒ P[W1(µ
N
t , νt) > EW1(µ

N
t , νt) + r ] ≤ Ce−

cN2r2
(t) .

   To show W1(µ
N
t , νt) is typically small, it’s enough to show

that EW1(µ
N
t , νt) is small.
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Average distance to average
One approach: consider the stochastic process

Xf :=

∫
fdµN

t − E
∫

fdµN
t .

The concentration inequality for Lipschitz functions of UN
t

implies that {Xf}f satisfies a sub-Gaussian increment condition:

P
[
|Xf − Xg | > r

]
≤ 2e

− cN2r2

|f−g|2L(t) .

Dudley’s entropy bound together with approximation theory,
truncation arguments, etc., leads to the bound

EW1(µ
N
t ,EµN

t )

= E

(
sup
|f |L≤1

Xf

)
≤ C

{( t
N2

)1/3
, all t > 0;( 1

N2

)1/3
, t ≥ 8(log(N))2

.



Average distance to average
One approach: consider the stochastic process

Xf :=

∫
fdµN

t − E
∫

fdµN
t .

The concentration inequality for Lipschitz functions of UN
t

implies that {Xf}f satisfies a sub-Gaussian increment condition:

P
[
|Xf − Xg | > r

]
≤ 2e

− cN2r2

|f−g|2L(t) .

Dudley’s entropy bound together with approximation theory,
truncation arguments, etc., leads to the bound

EW1(µ
N
t ,EµN

t )

= E

(
sup
|f |L≤1

Xf

)
≤ C

{( t
N2

)1/3
, all t > 0;( 1

N2

)1/3
, t ≥ 8(log(N))2

.



Theorem (M.–Melcher)
Let µN

t be the spectral measure of Ut , where {Ut}t≥0 is a
Brownian motion on U (n) with U0 = I.
For any t , x > 0,

P

(
W1(µ

N
t ,EµN

t ) > c
(

t
N2

)1/3

+ x

)
≤ 2e−

N2x2
t .

For x > 0 and t ≥ 8(log(N))2,

P

(
W1(µ

N
t ,EµN

t ) > c
(

1
N2

)1/3

+ x

)
≤ 2e−cN2x2

.

Almost sure bounds on W1(µ
N
t ,EµN

t ) are immediate from the
Borel–Cantelli lemma.



Convergence of EµN
t to νt

Given f : S1 → R a 1-Lipschitz function, let

Sm(z) :=
∑
|k |<m

f̂ (k)zk .

Observe that ∫
zkdµN

t (z) =
1
N

[
Tr((Ut)

k )
]
,

so that∣∣∣∣∫ Sm dEµN
t −

∫
Sm dνt

∣∣∣∣ =
∣∣∣∣∣∣
∑

1≤|k |<m

f̂ (k)
(

1
N
E[Tr(Uk

t )]−
∫

zk dνt

)∣∣∣∣∣∣
≤

∑
1≤|k |<m

π

2k

∣∣∣∣ 1
N
E[Tr(Uk

t )]−
∫

zk dνt
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Convergence of EµN
t to νt

Collins–Dahlqvist–Kemp ’18:∣∣∣∣ 1
N
E[Tr(Uk

t )]−
∫

zkdνt

∣∣∣∣ ≤ t2k4

N2 .

Using this estimate together with the classical fact that

‖f − Sm‖∞ ≤ C
(

log(m)

m

)
and optimizing over m leads to

W1(EµN
t , νt) ≤ C

t2/5 log N
N2/5 .
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Convergence of paths: Continuity of {EµN
t }t≥0:

W1(EµN
t ,EµN

s ) = sup
|f |L≤1

E
[∫

fdµN
t −

∫
fdµN

s

]
≤ E‖Ut − Us‖N

N

=
E‖IN − Ut−s‖N

N
.

General properties of Brownian motion on manifolds together
with estimates on volume ratios of balls in U (N) yield a
concentration inequality for ‖IN − Ut−s‖N and ultimately,

W1(EµN
t ,EµN

s ) ≤ 3
√

t − s +
1
N
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Convergence of paths: Continuity of {νt}t≥0

Using
I the established convergence of EµN

t to νt

I the continuity of {EµN
t }t≥0

if 0 < s < t ,

W1(νt , νs) ≤W1(νt ,EµN
t ) + W1(νs,EµN

s ) + W1(EµN
t ,EµN

s )

≤ C
(t2/5 + s2/5) log N

N2/5 + 3
√

t − s +
1
N
.

Letting N →∞ yields

W1(νt , νs) ≤ 3
√

t − s.
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Convergence of paths

Fix T > 0, let m ∈ N, and for j = 1, . . . ,m, let tj :=
jT
m .

If

x > 9
√

T
m

P

(
sup

0≤t≤T
W1(µ

N
t , νt) > x

)

≤ P

 max
1≤j≤m

sup
|t−tj |< T

m

W1(µ
N
t , µ

N
tj ) >

x
3


+ P

(
max

1≤j≤m
W1(µ

N
tj , νtj ) >

x
3

)

≤ mP

 sup
|t |< T

m

‖IN − Ut‖ >
Nx
3

+ m max
1≤j≤m

P
(

W1(µ
N
tj , νtj ) >

x
3

)
.



Convergence of paths

Fix T > 0, let m ∈ N, and for j = 1, . . . ,m, let tj :=
jT
m . If

x > 9
√

T
m

P

(
sup

0≤t≤T
W1(µ

N
t , νt) > x

)

≤ P

 max
1≤j≤m

sup
|t−tj |< T

m

W1(µ
N
t , µ

N
tj ) >

x
3


+ P

(
max

1≤j≤m
W1(µ

N
tj , νtj ) >

x
3

)

≤ mP

 sup
|t |< T

m

‖IN − Ut‖ >
Nx
3

+ m max
1≤j≤m

P
(

W1(µ
N
tj , νtj ) >

x
3

)
.



Convergence of paths

Fix T > 0, let m ∈ N, and for j = 1, . . . ,m, let tj :=
jT
m . If

x > 9
√

T
m

P

(
sup

0≤t≤T
W1(µ

N
t , νt) > x

)

≤ P

 max
1≤j≤m

sup
|t−tj |< T

m

W1(µ
N
t , µ

N
tj ) >

x
3


+ P

(
max

1≤j≤m
W1(µ

N
tj , νtj ) >

x
3

)

≤ mP

 sup
|t |< T

m

‖IN − Ut‖ >
Nx
3

+ m max
1≤j≤m

P
(

W1(µ
N
tj , νtj ) >

x
3

)
.



Convergence of paths

Theorem (M.–Melcher)
Let T ≥ 0. There are constants c,C such that for all
x ≥ c T 2/5 log(N)

N2/5 ,

P

(
sup

0≤t≤T
W1(µ

N
t , νt) > x

)
≤ C

(
T
x2 + 1

)
e−

N2x2
T .

In particular, with probability one for N sufficiently large

sup
0≤t≤T

W1(µ
N
t , νt) ≤ c

T 2/5 log(N)

N2/5 .



Thank you.


