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(Semi)algebraic geometry
and convexity



How do we generalize polytopes?

finite representation

f -vector

linear algebra

⇝ semialgebraic convex bodies
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Semialgebraic convex bodies

A subset K ⊂ Rd is a convex body if it is convex, compact and
non-empty (today we will also assume full dimensional).

Definition
A convex body K ⊂ Rd is semialgebraic if it is a semialgebraic set:
a finite Boolean combination of polynomial inequalities.

The topological boundary ∂K of K is also a semialgebraic set.
Also intersections, projections, the dual/polar body, the Minkowski
sum,. . .
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The algebraic boundary

Definition
The algebraic boundary of K ⊂ Rd, denoted by ∂aK ⊂ Cd, is the
closure of ∂K with respect to the Zariski topology. In other words,
it is the smallest complex algebraic variety that contains ∂K.

Example

K ∂aK
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Fiber convex bodies



Setting

We work in Rn+m. Consider π : Rn+m → Rn the projection onto
the first n coordinates, and let K ⊂ Rn+m be a convex body.

Goal: construct a convex body of Rm.
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Definition

The fiber body of K, with respect to π, is given by

ΣπK =
{

y =
∫

π(K)
γ(x) dx | γ measurable section

}

with γ : π(K) → K such that π ◦ γ(x) = x.

Kx is the fiber of K over x.
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Some remarks

• Continuity is not enough:{
y =

∫
π(K)

γ(x) dx | γ continuous section
}

⊂ ΣπK

If K is a polytope, the inclusion is an equality!

In general? It is a strict inclusion.

• Support function:

hΣπK(u) =
∫

π(K)
hKx(u) dx.
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Example the elliptope

K =
{

(x, y, z) ∈ [−1, 1]3 | x2 + y2 + z2 − 2xyz ≤ 1
}
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Example the elliptope

Let’s integrate its support function:

hΣπK(y, z) =
∫ 1

−1
hKx(y, z) dx

=
∫ 1

−1

√
y2 + z2 + 2xyz dx

= 1
3yz

(
|y + z|3−|y − z|3

)
.
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Example the elliptope

ΣπK =
{

(y, z) ∈ R2 | 3y2 + 8z − 16 ≤ 0, 3y2 − 8z − 16 ≤ 0,

3z2 + 8y − 16 ≤ 0, 3z2 − 8y − 16 ≤ 0
}
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Zonoids

Zonoid (centered at the origin): limit of zonotopes
∑∞

i=1[−zi, zi].

Theorem (Vitale - 1991)
A convex body K ⊂ Rd is a zonoid if and only if there is a random
vector X ∈ Rd with E∥X∥< ∞ such that for all u ∈ Rd

hK(u) = 1
2E |⟨u, X⟩| .
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Zonoids fiber zonoid

Procedure: K ⊂ Rn+m zonoid
↓

X ∈ Rn+m random vector associated to K

↓

Consider the function Fπ : (Rn+m)n+1 → Rm that maps the point
(x1 + y1, . . . , xn+1 + yn+1) to

1
(n + 1)!

n+1∑
i=1

(−1)n+1−i(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn+1)yi

and let Y := Fπ

(
X(1), . . . , X(n+1)

)
∈ Rm

↓

Z(Y ), the zonoid of Rm associated to Y
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Zonoids fiber zonoid

Theorem (Mathis, M. - 2021)
Let K be the zonoid associated to the random vector X, then

hΣπK(u) = 1
2E|⟨u, Y ⟩|

where Y := Fπ

(
X(1), . . . , X(n+1)

)
and X(1), . . . , X(n+1) are i.i.d.

copies of X.

In particular, if we consider the zonotope

K =
s∑

i=1
[−zi, zi] ⊂ Rn+m

then its fiber body is again a zonotope, given by

(n + 1)!
∑

1≤i1<···<in+1≤s

[
− Fπ

(
zi1 , . . . , zin+1

)
, Fπ(zi1 , . . . , zin+1)

]
.
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Zonoids the dice

K = {x = 0, y2+z2 ≤ 1}+{y = 0, x2+z2 ≤ 1}+{z = 0, x2+y2 ≤ 1}
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Zonoids the fiber dice

With respect to the projection π(x, y, z) = x, the fiber body of the
dice is

ΣπK = D3 + π

4 (S2 + S3) + 1
2Λ

where Λ is the convex body whose support function is given by

hΛ(u, v) = 1
2

∫ π

0

√
cos(θ)2 (u)2 + sin(θ)2 (v)2 dθ.
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Intersection bodies



Intersection bodies definition

Let K be a convex body in Rd. Its intersection body is defined to
be the set IK = {x ∈ Rd | ρIK(x) ≥ 1}, where the radial function
(restricted to the sphere) is

ρIK(u) = vold−1(K ∩ u⊥).

u u

We will focus here on the intersection body of a polytope P .
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Intersection bodies gallery
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Intersection bodies the associated zonotope

Let P be the three dimensional cube centered at the origin.

Define the zonotope associated to P as

Z(P ) =
∑

v is a vertex of P

[−v, v].

Lemma
The maximal cones of its normal fans determine the regions of IP .
Equivalently, the facets of Z(P )◦ determine the regions.
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Intersection bodies the associated zonotope
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Intersection bodies semialgebraicity

Theorem (Berlow, Brandenburg, M., Shankar - 2022)
Let P ⊆ Rd be a full-dimensional polytope. Then IP , the
intersection body of P , is a semialgebraic starshaped set.

In particular, the radial function of IP is piecewise rational. The
pieces are exactly the maximal cones of the normal fan of Z(P ).

Why?
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Intersection bodies semialgebraicity

Sketch of the proof:

u

ρIP (u) =
4∑

j=1
vold−1(∆j) = 1

(d − 1)!

4∑
j=1

|det (Mj(u))|

= p(u)
q(u) it is semialgebraic!
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Intersection bodies algebraic boundary

Degree bound
Let P ⊂ Rd be a full-dimensional polytope with f1(P ) edges.
Then the degrees of the irreducible components of the algebraic
boundary of IP are bounded from above by

f1(P ) − (d − 1).

https://mathrepo.mis.mpg.de/intersection-bodies
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Thank you!

Fiber Convex Bodies,
with L. Mathis,
arXiv:2105.12406

Intersection Bodies of
Polytopes,
with K. Berlow, M. C.
Brandenburg, I. Shankar,
Beitr Algebra Geom (2022)


