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What is dimension?..

We live in a space where there is 3 dimensions:

Can we imagine a 2-dimensional space? Think about shadows that have width
and depth, but no height!
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Fun fact about 2 dimensions

Fun fact (related to me by Asia, my math circles teacher)
If a creature lived in the 2-dimensional space it would need to eat and defecate
through the same opening...

... or else it would fall apart!
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Edwin Abbott Abbott, Flatland: a romance in many dimensions, 1884

“Flatland” is a book about life in two dimensions, narrated by a square.
Characters are triangles, squares, polygons, circles and others

Intelligence is somewhat proportional to the smallest angle; also, the more
sides the wiser the creature
Sons of a polygon with N sides have N + 1 sides; hence the rule “respect
and honor your children”
Circles are the wisest, the land is ruled by the Chief Circle, priests are
circles, while soldiers are the least witty and they are tall triangles
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Edwin Abbott Abbott, Flatland: a romance in many dimensions, 1884

Women are straight lines (intervals). Women are supposed to move side
to side all the time in order to be seen. Men and women have separate
entrance to a dwelling.

All men are seen as intervals; their shape is inferred by the sense of feeling.
Alternatively, one can understand the shape by looking at them in the
“fog” which makes farther points appear dimmer

According to Abbott, one could learn a shape by walking around it... but
this is not accurate:

Question: and what if the shapes have to be polygons, can we learn them
by walking around them (and learning the lengths of all projections)?

5/ 49



Fun facts Background Weird dimensionality LLN and CLT High-dimensional ball Convex CLT Isoperimetry and concentration

Edwin Abbott Abbott, Flatland: a romance in many dimensions, 1884

The narrator (the square) gets the “gospel of the three dimensions”. The
night before that, he dreams of the... Lineland!

In Lineland, all creatures are intervals, communicate using several voices;
for coitus, no proximity is needed
The square tries to explain to the Line King that he is 2-dimensional by
vanishing from the Lineland:

Later on, he gets explained 3D space by a sphere who uses the same trick:
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Fun facts about 4 dimensions

Similarly, maybe we could try and understand 4 dimensions by applying our
experience of looking down to 2 dimensions from our 3-dimensional world?

Imagine: if we (as 3-dimensional beings) lived in 4 dimensions, we would be
able to touch one another’s insides!
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Fun facts about 4 dimensions

Also, if we (as 3-dimensional beings) lived in 4 dimensions, this is how a pair of
shoes would look like:

Guess why?
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Fun facts about 4 dimensions

Also, if we (as 3-dimensional beings) lived in 4 dimensions, this is how a pair of
shoes would look like:

Guess why?

Just like we are able to move the left image (below) to the right using the
freedom of 3 dimensions,

our feet would be identical in 4 dimensions, and hence we would be able to
wear a left boot on a right foot!
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How to make sense out of many dimensions?

Think about a flipbook:

A collection of pictures in 2D makes a 3D book; when shuffled, it makes a little
flat movie!

Similarly, when our space moves in time, it creates a 4D picture. Time can be
viewed as a fourth dimension.

What about a 5-dimensional space?
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How to make sense out of many dimensions?

Think about a flipbook:

A collection of pictures in 2D makes a 3D book; when shuffled, it makes a little
flat movie!

Similarly, when our space moves in time, it creates a 4D picture. Time can be
viewed as a fourth dimension.

What about a 5-dimensional space?

Also a good book to read: Ted Chiang, “Anxiety is the dizziness of freedom.”
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Four-dimensional cube is called tesseract

Segment, square, cube... tesseract!

To understand tesseract (the 4-dimensional cube) imagine that the cube is
falling at you, as in the picture above on the right.

In culture
Robert Heinlein, “And he built a crooked house”, about a house built as a
3D unfolded tesseract which accidentally folds back during an earthquake
Appears in the Marvel universe, as well as the movie “Interstellar”

More dimensions (see also plug-ins):
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Mathematically speaking...
Alternatively, one can imagine a 4D space by taking density of materials as the
fourth parameter, in addition to width, length and height.

Mathematically, a point in 2D is a pair of Cartesian coordinates (a,b). A point
in 3D is a triplet (a,b,c). A point in 4D is a quadruplet (a,b,c,d).

A large number of parameters or variables might be needed to describe a
system. In a human population, they may include height, weight, age, gender,
number of languages spoken, eye color (indexed by a number), hair color,...

Geometric viewpoint, stemming from our geometric intuition in 2D and 3D
may help us study such complex high-dimensional systems.
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Distances in high dimensions

Pythagorean theorem in 2D

Pythagorean theorem in 3D and n dimensions
Similarly, in an n-dimensional space, distance from the origin to the point
x = (x1, ...,xn) is !

x2
1 + ... + x2n .
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High-dimensional cube and ball

High-dimensional cube
A unit cube in an n-dimensional space Rn is defined as

Bn
∞ =

"
x = (x1, ...,xn) ∈ Rn : for all i , |xi | ≤ 1

#

The sidelength of this cube is 2.

High-dimensional ball
A unit ball in an n-dimensional space Rn is defined as

Bn
2 =

$
x = (x1, ...,xn) ∈ Rn : |x | =

!
x2

1 + ... + x2n ≤ 1
%
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From now on we will think of the dimension

n = 1000000,

or, more generally, let n be a very large number! It turns out,
higher dimensionality sometimes introduces greater simplicity
rather than complexity.
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Weird high-dimensional phenomenon #1
What is the length of this interval when the dimension n = 2?
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Weird high-dimensional phenomenon #1
The length is

√
2 − 1 ≈ 0.4.
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Weird high-dimensional phenomenon #1
And what if the dimension n is arbitrary?
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Weird high-dimensional phenomenon #1
The ball “spills out”!
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Area, volume, n-dimensional Lebesgue measure

Area of a rectangle and volume of a parallelepiped

b

a

Area=ab

Volume=abc

Area of any set (Lebesgue measure)
Imagine a set on a very fine grid and count how many grid squares the set
covers; then add their areas (which we know to find – see above). This gives
an approximation of the area of the set.

The situation in higher dimensions is the same!
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Homogeneity of the n-dimensional Lebesgue measure

Homogeneity property of volume
For a set A in Rn, we have

Voln(5A) = 5nVoln(A).

Here 5A = {5x : x ∈ A}.

More generally, for t > 0,

Voln(tA) = tnVoln(A).
3

He a

Volume of the unit cube Bn
∞

Voln(Bn
∞) = 2n.
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Review of scalar products and projection
Let a and b be vectors, then the scalar product:

〈a,b〉 = |a| · |b| · cos(a,b),

In coordinates, if a = (a1, ...,an) and b = (b1, ...,bn), we have
〈a,b〉 = a1b1 + ... + anbn.

Projection
If |b| = 1 then

〈a,b〉 = |a|cos(a,b)
is the length of the projection of a onto b.
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Law of Large numbers

Law of Large Numbers
Let X1, ...,Xn be independent random variables with EXi = E . Then

X1 + ... + Xn
n −→n→∞ E

in the appropriate sense.

In other words, if you pull a ticket numbered 1, 2, 3 out of a hat, and average
your numbers after 10000 trials, you will almost certainly get something very
close to 2 (since 1+2+3

3 = 2).
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Central Limit Theorem

Central limit theorem
Let X1, ...,Xn be independent random variables with bounded variance and
EXi = E . Then

X1 + ... + Xn√n −→n→∞ Normal distribution

in the appropriate sense.
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Central Limit Theorem

Galton’s board
Imagine a bunch of beads falling down and randomly reflecting right or left at
many levels. Each reflection is a ±1 random variable Xi , and the position of
the bead is the averaged sum of the Xi .
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Geometric interpretation of the LLN and CLT

Central limit theorem
Let X1, ...,Xn be independent random variables uniform on [− 1

2 , 1
2 ]. Look at the

vector X = (X1, ...,Xn). It is uniformly distributed in the cube Q = [− 1
2 , 1

2 ]n.

Consider the random variable
X1 + ... + Xn√n = 〈X ,θ〉,

where θ =
&

1√n , ..., 1√n

'
. Note that

|θ| =
!

θ2
1 + ... + θ2n =

(
1
n + ... + 1

n = 1,

and thus 〈X ,θ〉 is the projection of X onto the direction θ.
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Geometric interpretation of the LLN and CLT
The density of the random variable 〈X ,θ〉 is

f〈X ,θ〉(t) ≈ 1
ε

P (〈X ,θ〉 ∈ [t, t + ε]) ≈ Voln−1(Q ∩ Ht),

– the section function of the cube, where Ht is the (n − 1)−dimensional
hyperplane distance t from the origin. Thus, by the CLT,

Voln−1(Q ∩ Ht) −→n→∞ Normal distribution,

Also, by the LLN, there is a thin enough slab S orthogonal to
θ =

&
1√n , ..., 1√n

'
such that

Voln(S ∩ Q) = 99% of the cube.
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Volume of the n-dimensional ball
The volume of the unit ball Bn

2 in Rn can be found using Fubbini’s theorem:
approximate the ball with the union of many thin ball-slabs Bi , write

I
Voln(Bn

2 ) ≈
)

Vol(Bi ) ≈
* 1

−1
Voln−1(Bt)dt,

where Bt is a unit ball in Rn−1 of radius
√

1 − t2.
1-At

SoOt

By homogeneity,

Voln−1(Bt) = Voln−1
&+

1 − t2Bn−1
2

'
= (1 − t2)

n−1
2 Voln−1

&
Bn−1

2

'
.

Therefore,

Voln(Bn
2 ) = Voln−1

&
Bn−1

2

'* 1

−1
(1 − t2)

n−1
2 dt.
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Volume of the n-dimensional ball

Voln(Bn
2 ) = Voln−1

&
Bn−1

2

'* 1

−1
(1 − t2)

n−1
2 dt.

Letting

Jn =
* 1

−1
(1 − t2)

n−1
2 dt,

we see that

Voln(Bn
2 ) = Jn ·Voln−1

&
Bn−1

2

'
= Jn ·Jn−1 ·Voln−2

&
Bn−2

2

'
= ... = Jn ·Jn−1 · ... ·J1.

Dim n 1 2 3 4 5 6 7 8 9 10 11 12
Voln(Bn

2 ) 2 π 4π
3

π2

2
8π2

15
π3

6
16π3

105
π4

24
32π4

945
π5

120
64π5

10395
π6

720
≈ 2 3.14 4.19 4.93 5.27 5.17 4.73 4.06 3.30 2.55 1.88 1.34

Volume of unit ball Bn
2 decays rapidly to zero as the dimension n → ∞ :
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Volume of the n-dimensional ball

Voln(Bn
2 )

Voln(Bn−1
2 )

= Jn =
* 1

−1
(1 − t2)

n−1
2 dt ≈

√
2π√n

as n → ∞. More precisely,

Voln(Bn
2 ) ≈

&2πe
n

' n
2

,

decays to zero very fast! Consequently,

Voln(RnBn
2 ) = 1

when Rn ≈ 0.242√n.

In dimension 1000000, the ball of volume 1 has radius approximately 242.
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Volume of the n-dimensional ball

Focus on
Voln(Bn

2 )
Voln(Bn−1

2 )
= Jn =

* 1

−1
(1 − t2)

n−1
2 dt ≈

√
2π√n .

n =5 n = 10

n =40n = 70

The mass under the graph becomes more and more concentrated around the
peak!

32/ 49



Fun facts Background Weird dimensionality LLN and CLT High-dimensional ball Convex CLT Isoperimetry and concentration

Volume of the n-dimensional ball

Suppose for concreteness that n ≥ 1000.

√
2π√n ≈

* 1

−1
(1 − t2)

n−1
2 dt ≥

* 10√
n−1

− 10√
n−1

(1 − t2)
n−1

2 dt ≥
20

,
1 − 100

n−1
- n−1

2

√
n − 1

= c√n .

most of

1 the mass

IS over

the interval

↳Itinterval !
⑳

Thus * 1

−1
(1 − t2)

n−1
2 dt ≤ C

* 10√
n−1

− 10√
n−1

(1 − t2)
n−1

2 dt.
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Concentration in the n-dimensional ball

Suppose for concreteness that n ≥ 1000
Let

B =
$

x ∈ Bn
2 : |x1| ≤ 10√n

%
.

Then

Voln(B) = Voln−1(Bn
2 )

* 10√
n−1

− 10√
n−1

(1 − t2)
n−1

2 dt ≥

0.99Voln−1(Bn
2 )

* 1

−1
(1 − t2)

n−1
2 dt = 0.99Voln(Bn

2 ).

1

↳
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Concentration in the n-dimensional ball

99% of the volume of the Euclidean ball of radius 1 in Rn comes
from the strip of width of order 1√n ! For instance, in dimension
1000000, most of the volume of the unit ball comes from the strip
of width 0.001 around the equator!

~G
width 10

S

volume
= 1

One could also look at the √n−scaled picture: 99% of the mass of
the ball of volume 1 (whose radius is about √n) comes from a
strip of constant width.
This is an analogue of the law of large numbers – but without the
independence!
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Concentration in the n-dimensional ball

Surprisingly, mass concentrates strongly near every equator! So
which picture below is a high-dimensional ball?..
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Concentration in the n-dimensional ball
This might make one think that the ball is especially heavy near the center...
But this is not true!

Shell =
.

x : |x | ∈ [1 − 10
n ,1]

/
.

Then
Voln(Shell) = Voln(Bn

2 ) − Voln
&&

1 − 10
n

'
Bn

2
'

=
0

1 −
&

1 − 10
n

'n1
Voln(Bn

2 ) ≈ 0.99 · Voln(Bn
2 ).

Most of the volume of the ball is 1
n−near the boundary! This is a

classical depiction of the high-dimensional ball:
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Central Limit Theorem for the ball

In analogy with the geometric interpretation of the Central Limit Theorem
(which we saw earlier with the cube), we notice:

CLT for the ball
The function |Bn

2 ∩ Ht | (where Ht is a subspace distance t from the origin) is
close to a Gaussian, if the dimension is large.

⑭I
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Central Limit Theorem for convex sets

Convex set
A set K is convex if for any x ,y ∈ K , the line connecting x and y is inside K .

Examples of convex sets:

A version of the Central Limit Theorem is true for all convex sets K !
Theorem (Klartag 2007)
For any convex set K in Rn there is some direction in which Voln−1(K ∩ Ht)
“looks like” the standard normal distribution.
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Bourgain’s slicing problem

Law of Large numbers for convex sets
If X is uniform in a K , a convex set in Rn of volume 1, and if the thinnest strip
containing 50% of the volume of K is orthogonal to (1,1, ...,1), then does
X1+...+Xn

n → const?

The answer is yes (follows from the Theorem below), but one may even ask a
harder question: what is the biggest possible width of the thinnest strip
containing 50% of the volume of K?

Equivalent question: Bourgain’s slicing problem, 1984
Does convex K of volume 1 have an (n − 1)-dimensional section of “area” at
least 1/100?

Theorem (Klartag, Lehec 2024)
Yes!
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Isoperimetric inequality

A Roman soldier is given a rope of fixed length in order to surround a plot of
land. What shape should he make in order to maximize the area?

The isoperimetric inequality (ancient romans and greeks, Jacob Steiner 1834,
20th century...)
If A ⊂ Rn has fixed volume then its “perimeter” is minimized when A is a ball.
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Spherical isoperimetric inequality
Analogously, denoting the sphere in Rn by Sn−1, the perimeter of A ⊂ Sn−1 of
given “area” is smallest when A is a spherical cap.

From this one can infer that also the “ε-thickening” of A (consisting of the
points on the sphere which are ε-close to A) is the smallest, among A of fixed
“area”, if A is a spherical cap.

A E
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Concentration in the high-dimensional sphere

Like for the high-dimensional ball, there is measure concentration
for the sphere: 99% of the mass of the sphere is c√n -near any
equator!

In fact, more is true! Suppose ! ≈ 100√n .

A large enough set eats the sphere!
Let A ⊂ Sn−1 be a set which takes up 50% of the sphere. Let A! be
a “thickening” of A. Then A! takes up 99% of the whole sphere.
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Brunn-Minkowski inequality

Minkowski sum of sets K ,L ⊂ Rn

K + L = {x + y : x ∈ K ,y ∈ L}

Perimeter of a set A

Perim(A) ≈ Voln(A + εBn
2 ) − Voln(A)
ε

The Brunn-Minkowski inequality

Voln(K + L)
1
n ≥ Voln(K)

1
n + Voln(L)

1
n
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Isoperimetry via Brunn-Minkowski inequality

perimeter of the ball is n times the volume

Perim(Bn
2 ) ≈ 1

ε (Voln((1 + ε)Bn
2 ) − Voln(Bn

2 )) = (1+ε)n−1
ε Voln(Bn

2 ) = nVoln(Bn
2 ).

The isoperimetric inequality (revisited)
For (nice) sets K with Voln(K) = Voln(Bn

2 ), one has Perim(K) ≥ Perim(Bn
2 ).

Proof (via the Brunn-Minkowski inequality)

Perim(K) ≈ Voln(K + εBn
2 ) − Voln(K)
ε

≥
!

Voln(K) 1
n + εVoln(Bn

2 ) 1
n

"n
− Voln(K)

ε
≈ nVoln(K)

n−1
n Voln(Bn

2 )
1
n .

and when Voln(K) = Voln(Bn
2 ) we get nVoln(Bn

2 ) (=perimeter of the ball.) □ 45/ 49
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I feel obliged to also mention some of my own theorems:)

The multivariate normal distribution dγ(x) = 1√
2π

n e− |x|2
2 dx

Theorem (Kolesnikov, Livshyts 2018)
For a pair of convex sets K ,L containing the origin, one has

γ
!K + L

2

" 1
2n

≥ γ (K)
1

2n + γ (L)
1

2n

2

Extended by Eskenazis, Moschidis; Cordero-Erausquin, Rotem; convexity
dropped by Aishwarya, Rotem.

Theorem (Livshyts 2021)
For a pair of symmetric convex sets K ,L, even log-concave measure µ on Rn

(whose density’s logarithm is concave), with cn = 1/poly(n), we have

µ
!K + L

2

"cn
≥ µ(K)cn + µ(L)cn

2 .
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Thanks for your attention!

(drawing by Itay B.)
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Appendix: proof of the Brunn-Minkowksi inequality

Voln(K + L)
1
n ≥ Voln(K)

1
n + Voln(L)

1
n

Proof of the Brunn-Minkowski inequality.
STEP 1: When K and L are coordinate boxes given by K =

#n
i=1[0,ai ] and

L =
#n

i=1[0,bi ], we have K + L =
#n

i=1[0,ai + bi ].

Then the Brunn-Minkowski inequality amounts to
$ n%

i=1
(ai + bi )

& 1
n

≥

$ n%

i=1
ai

& 1
n

+

$ n%

i=1
bi

& 1
n

,

or equivalently,

1 ≥

$ n%

i=1

ai
ai + bi

& 1
n

+

$ n%

i=1

bi
ai + bi

& 1
n

,

and this follows from the arithmetic-geometric mean inequality.
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Appendix: proof of the Brunn-Minkowksi inequality

Proof of the Brunn-Minkowski inequality.
STEP 2: For volume, K and L can be approximated by a union of boxes:

Argue by induction in the total number of boxes, call it N. Base case for N = 1
was handled in Step 1. After shifting K as necessary, let H be a hyperplane
splitting them into K+ and K− and L+ and L− so that Voln(K+)

Voln(K) = Voln(L+)
Voln(L) = t,

and such that the total number of boxes is less than N on both sides.

By inductional assumption,

Voln(K + L) ≥ Voln(K+ + L+) + Voln(K− + L−) ≥
!

Voln(K+)
1
n + Voln(L+)

1
n
"n

+
!

Voln(K−)
1
n + Voln(L−)

1
n
"n

=

(t + 1 − t)
!

Voln(K)
1
n + Voln(L)

1
n
"n

.□
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