
Modewise methods for tensor dimension
reduction

(oblivious subspace embeddings)

Liza Rebrova

UCLA

Online Asymptotic Geometric Analysis Seminar

June 27 2020

Joint work with Mark Iwen, Deanna Needell, and Ali Zare



Tensors and Kronecker/outer products

X ∈ Rn1×n2...×nd − d-way tensor

(for simplicity, in this talk, let’s assume all ni = n)

Rank 1 matrix can be defined as x⊗ y, x, y ∈ Rn:

x⊗ y =


x(1)
x(2)
. . . .
x(n)

 [y(1) . . . y(n)
]

By analogy, we define rank 1 tensor as X := x1 ⊗ . . .⊗ xd ,

X (i1, . . . , id) = x1(i1)x2(i2) . . . xd(id).



Tensor CP-rank

CP-rank r tensor is a smallest number of rank-one tensors that
generate X as their sum:

X =
r∑

i=1

αix
i
1 ⊗ . . .⊗ xid

Normalization: we always assume ‖xij‖2 = 1. Clearly, r ≤ nd .
For example, for a 3-way (3 modes) tensor,

Pictures are taken from ”Tensor Decompositions and Applications” paper by Kolda and Bader



Various tensor ranks

• CANDECOMP (canonical decomposition)/PARAFAC (parallel
factors) rank (CP) earlier names: Polyadic form, topographic
components model, ...
• Rank is different over real and complex numbers
• It is NP-hard to compute the rank (Hastad, ”Tensor rank is

NP-complete”, 1990) There is an example of 9× 9× 9 tensor
that has rank somewhere between 18 and 23 (conjecture by
Comon et al: between 19 and 20),

• Uniqueness question
• Tucker decomposition (HOSVD, higher-order PCA)

Picture is taken from “Tensor Decompositions and Applications paper by Kolda and Bader



Tensor norm

We consider ‖X‖ = sum of squares of the elements (generalization
of the Frobenius norm)

For a rank r tensor,

‖X‖2 =
r∑

k,h=1

akah

〈
©d
`=1x

(`)
k , ©d

`=1 x
(`)
h

〉

=
r∑

k 6=h

akah

d∏
`=1

〈
x
(`)
k , x

(`)
h

〉
+ ‖a‖22

Using Cauchy-Swartz, one can estimate(
1− µ′X

)
‖α‖22 ≤ ‖X‖2 ≤

(
1 + µ′X

)
‖α‖22.



Fitting problem

For an arbitrary tensor Y, find the closest rank r tensor X :

arg min
X

‖X − Y‖2

This problem includes finding the best set of vectors {xij} (basis)
and the best set of coefficients {αi}ri=1:

arg min
X

‖X − Y‖2 = arg min
xij∈Rn,αi∈R

‖
r∑

i=1

αi

d⊗
j=1

xij − Y‖2



Solving the fitting problem

Idea:

• Start with random basis for X : take random unit vectors
xij ∈ Rn for j = 1, . . . , d , i = 1, . . . , r

• Fix all but one mode j ∈ [d ], namely, x1j , . . . , x
r
j

• Optimize over j-th mode

• Repeat for the other modes until some error threshold

This turns out to be equivalent to solving nj separate problems of
the form:

Find

arg min
α1,...,αr∈R

‖
r∑

i=1

αi

d⊗
j=16=j ′

xij − Y ′‖2

That is, looking for the best fit in some fixed basis



Dimension reduction for the fitting problem

Goal: reduce the size of this problem.

Preferably,

• in a subspace oblivious way (to have the
same simple operation for the multiple
applications in various bases)
For example, classical dimension reduction
lemma

Lemma (Johnson-Lindenstrauss)

Take small η > 0. Random projection from
Rn → Rm ε-preserves distances between
ec(η)ε

2m points with probability 1− η.

• without vectorization of the tensors Picture is taken from
Kolda&Bader paper



Modewise products: tensor ×j matrix

Definition (j-mode product, j = 1, . . . , d)

A tensor X ∈ Rnd can be multiplied by a matrix A ∈ Rm×n to get
a tensor (X ×j A) ∈ Rn×...×m×...×n with the coordinates

(X ×j A)(. . . , ij−1, `, ij+1, . . .) =
n∑

ij=1

A(`, ij)X (. . . , ij , . . .).



Properties of j-mode products

• Associativity, linearity

• For a 2 way tensor (a matrix)

X ×1 A1 ×2 A2 = A1XAT
2

• For the CP representation, it is equivalent to

X ×1 A1 ×2 A2 . . .×d Ad =
r∑

i=1

αi (A1x
i
1)⊗ . . .⊗ (Adx

i
d)



So, instead of

Fitting problem: ‖X − Y‖2 → min

arg min
α1,...,αr∈R

‖
r∑

i=1

αi

d⊗
j=16=j ′

xij − Y‖2

let us find

Reduced fitting problem: ‖X×d
j=1Aj − Y×d

j=1Aj‖2 → min

arg min
α1,...,αr∈R

‖
r∑

i=1

αi

d⊗
j=1

Ajx
i
j − Y

d

×
j=1

Aj‖2

Will it find us a good solution for the original (non-reduced)
problem?



Subspace oblivious dimension reduction for tensors

For now: let Y = 0.

We want ∣∣∣∣∣‖X‖2 − ‖X d

×
j=16=j

Aj‖2
∣∣∣∣∣ ≤ ε‖X‖2

for any low r -rank tensor X from a fixed CP subspace (basis), and
for m × n matrices Aj ’s taken from some general (subspace
oblivious!) model.



Johnson-Lindenstrauss embeddings

We are going to consider matrices Aj such that

Definition (η-optimal family of JL embeddins)

A m × n matrix A is an η-optimal JL embedding if for any
ε ∈ (0, 1) and S ⊂ Rn of cardinality |S| ≤ ηeε2m/C ,∣∣‖Ax‖22 − ‖x‖22∣∣ ≤ ε‖x‖22 for any x ∈ S

with probability at least 1− η.

Gaussian, Fourier matrices, random projection matrices (to a
subspace uniformly selected from the Grassmanian) ...

Definition is inspired by Johnson-Lindenstrauss Lemma:
for any small η > 0, random projection from Rn → Rm ε-preserves
distances between ec(η)ε

2m points with probability 1− η.



Main theorem -1

Theorem (Iwen-Needell-R.-Zare)

Let L be an r-dimensional subspace of Rnd spanned by a basis

B :=
{
©d
`=1x

(`)
k

∣∣ k ∈ [r ]
}
. If all Aj ∈ Rm×n from an

(η/d)-optimal family of JL embeddings, m & ε−2r2/dd2, then with
probability at least 1− η∣∣∣∣∣‖X‖2 − ‖X d

×
j=1

Aj‖2
∣∣∣∣∣ ≤ ε ‖a‖22 ,

for all X =
∑r

i=1 aix
i
1 ⊗ . . .⊗ xid ∈ L.

Total number of entries N = nd → M ∼ ε−2d r2d2d .



Main theorem-1

Theorem (Iwen-Needell-R.-Zare)

Let L be an r-dimensional subspace of Rnd spanned by a basis

B :=
{
©d
`=1x

(`)
k

}
k∈[r ]

with modewise coherence µd−1B < 1/2r .

If all Aj ∈ Rm×n from an (η/d)-optimal family of JL embeddings
with m & ε−2r2/dd2, then with probability at least 1− η∣∣∣∣∣‖X‖2 − ‖X d

×
j=1

Aj‖2
∣∣∣∣∣ ≤ ε‖X‖2,

for all X ∈ L.

Total number of entries N = nd → M ∼ ε−2d r2d2d .



Modewise (in)coherence

µB := max
`∈[d ]

max
k,h∈[r ]
k 6=h

∣∣∣〈x`k , x`h〉∣∣∣ ,
• measures angles between all basis vectors (from the same

subspaces)

• orthogonal bases have coherence zero

• random (sub)gaussian tensors are incoherent enough with
exponentially high probability:

Lemma

If all components of all vectors x
(j)
k are normalized independent

mean zero K-subgaussian random variables, with probability at
least 1− 2r2d exp

(
−cµ2n

)
maximum modewise coherence

parameter of the tensor X is at most µ.



Theorem 2: Fitting an arbitrary X

Theorem (Iwen-Needell-R.-Zare)

Let L be an r-dimensional subspace of Rnd spanned by a basis

B :=
{
©d
`=1x

(`)
k

}
k∈[r ]

with µd−1B < 1/2r and Y /∈ L.

If all Aj ∈ Rm×n are from an (η/d)-optimal family of JL
embeddings with m & ε−2rd3, then with probability at least 1− η∣∣∣∣∣‖Y − X‖2 − ‖(Y − X )

d

×
j=1

Aj‖2
∣∣∣∣∣ ≤ ε ‖Y‖2 ,

for all X ∈ L.

Total number of entries N = nd → M ∼ ε−2d rdd3d .
Reason: we need to additionally compress a subspace spanned by
{PL⊥(Y)± B}, this basis is NOT low rank.



Proof idea

Use a ”naive” estimate: modewise products can be separated by
fibers (slicing by the same mode), so, for a fixed tensor, we can
compute the norm distortion summing over the norm distortions of
separate fibers.∣∣∣ ‖L (Y − X )‖22 − ‖Y − X‖

2
∣∣∣

≤
∣∣∣‖L (PL⊥(Y))‖2 − ‖PL⊥(Y)‖2

∣∣∣
+
∣∣∣‖L (PL (Y)−X )‖2 − ‖PL (Y)−X‖2

∣∣∣
+ 2 |〈L (PL (Y)−X ) , L (PL⊥(Y))〉|

The last term is small since scalar products are also almost
preserved by JL embedding.



Can we do better?

Is our dependence on r and on ε (and on d) good?

Lemma (Larsen, Nelson, 2016)

For any n, d ≥ 2, there exists a set of n vectors in Rd so that any
linear map Rd → Rm, ε-preserving distances between them, must
have

m & ε−2 ln n.

Moreover, the set of all rank r matrices of the size n × n can be
recovered from O(rn) linear measurements.



Modewise Fourier JL for a finite set

For a special modewise operator LFJL,

Theorem (*)( Jin, Kolda, Ward, 2019)

Let η & n−d . Consider S ⊂ Rnd of cardinality |S| = p. Then with
probability at least 1− η the linear operator LFJL is an ε-JL
embedding of S into Rm, where

m & ε−2 · log2d−1
(

max(p, nd)

η

)
· log nd .

Moreover, if d = 1, then we may replace max(p, n1) with p.



Kronecker Fast Johnson Lindenstrauss

LFJL (X ) := R (vect (X ×1 F1D1 · · · ×d FdDd)) ,

vect : Rn×···×n → Rnd is the vectorization operator,
R is a matrix containing m random rows from Idnd×nd ,
Fi ∈ Rn×n is a unitary discrete Fourier transform matrix,
Di ∈ Rn×n is a diagonal matrix with n random ±1 entries.
Clearly, the sketching part R is faster than the. mixing part FD.

Remark (Computational advantage when the FJLT is applied
to Kronecker vectors)

Computing FJLT requires O(nd log(nd)) iterations.
Computing KFJLT requires O(

∑d
i=1 n log n) = O(dn log n)

iterations. It is computationally disadvantageous to unfold!



Proof idea

Definition (RIP property)

A matrix Φ satisfies a (ε, s)-RIP property if it ε-preserves the
norms of all s-sparse vectors.

Kronecker product of unitary matrices is a unitary matrix. So, the
Fourier model differs from FJLT by random signs structure:

RUndDξ, where ξ = ⊗d
i=1ξi

and ξi are independent Rademacher vectors. Then

• Normalized RUnd is an RIP matrix

• Krahmer, Ward (2011): For matrices, multiplying and RIP
matrix Φ by random signs gives a JL embedding

• Allowing Kronecker structure in the random signs



Theorem (*)/Theorem 2:

Let us compare these two modewise JL-type embedding results:

• For a fixed finite set S / for a fixed subspace L
• Special Fourier modewise transform /large class of JL-type

modewise maps

• m & ε−2 / m & ε−2d

• for any subset of tensors / only for incoherent bases

Idea: using Theorem (*) to improve ε-dependence and to get rid of
the incoherence assumption



How can this help with subspace embeddings?

Two ways to apply JL-type results to a low r -dimensional subspace.
Note that it is enough to approximate unit norm tensors only!

{1} To an ε-net on Sr−1:

Lemma (Nets on Sn−1 for JL)

Fix ε ∈ (0, 1). Let L be an r-dimensional subspace of Rn, and let
N ⊂ L be an ε

16 -net of the unit sphere Sr−1 ⊂ L. Then, if
A ∈ Rm×n is an ε

2 -JL embedding of N it will also satisfy

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22 for all x ∈ L.

There exists an ε
16 -net such that |N | ≤

(
47
ε

)r
.

{2} To a set of r basis vectors: Recall Theorem 1 above



Using Theorem (*): wrong way

Recall that Theorem (*) gives:

m & ε−2 · log2d−1
(

max(p, nd)

η

)
· log nd

1. Apply it to the approximation net S = N of cardinality
(
47
ε

)r
2. Use JL Discretization Lemma

Resulting dimension is at least

m & ε−2r2d−1 · log2d−1
(

47

η1/rε

)
· log nd .

So, ε dependence improves, but dependence on the rank even
become worse: r2d−1 instead of rd (Theorem 2)



Using Theorem (*): right way

Recall that Theorem (*) gives:

m & ε−2 · log2d−1
(

max(p, nd)

η

)
· log nd

1. Apply Theorem (*) to the set of r basis vectors

2. Proceed like we did for Theorem 2 to get the estimate for all
others

Resulting dimension (since r < nd):

m &
(ε
r

)−2
· log2d−1

(
nd

η

)
· log nd .

Much better! :)
Still quadratic dependence on rank...



Improved two step dimension reduction

Let us vectorize the result of Step 2 to get a vector (tensor with
d = 1) in Rm, recall that by Theorem (*),

m & ε−2 · log

(
p

η

)
· log n for d = 1.

3. Now, apply it to the approximation net S = N of cardinality(
47
ε

)r
in Rm

to get

m̃ & ε−2r · log

(
47

εη1/r

)
· logm.

Optimal dependence on both ε and r ! (and a bit of logarithmic
multiples...)



Experiments: gaussian and coherent tensors compression
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cs = m/n – compression ratio
cn,X = ‖X ×1 A1 . . .×d Ad‖/‖X‖ – relative norm
Both data sets contain 10 tensors with d = 4, r = 10, n = 100
Coherent tensors constructed as 1 +

√
0.1 · g , g ∼ N(0, 1)



Experiments: MRI tensor compression
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The same for MRI data: three 3-mode MRI images of size
240× 240× 155

What was the rank r?



Experiments: approximate rank of the MRI tensor
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Experiments: fitting with various target ranks

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

JL (Gaussian)
Fast JL (RFD)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.98

1

1.02

1.04

1.06

1.08
JL (Gaussian)
Fast JL (RFD)

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

JL (Gaussian)
Fast JL (RFD)



Ongoing work/further directions

• Remove theoretical incoherence assumption in Theorem 2
(which is still the most general model for modewise
compression!)

• Consider other typical models of JL embeddings (say,
(sub)gaussian sketches) to improve the dependence on ε and
r in Theorem 2.

• Give JL-type guarantees for all CP-rank r tensors with high
probability: get (T)RIP (restricted isometry property) type
results.



Thanks for your attention!

QUESTIONS?


