Modewise methods for tensor dimension reduction (oblivious subspace embeddings)

Liza Rebrova

UCLA

Online Asymptotic Geometric Analysis Seminar
June 272020

Joint work with Mark Iwen, Deanna Needell, and Ali Zare

Tensors and Kronecker/outer products

$$
\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \ldots \times n_{d}}-d \text {-way tensor }
$$

(for simplicity, in this talk, let's assume all $n_{i}=n$)
Rank 1 matrix can be defined as $\mathbf{x} \otimes \mathbf{y}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$:

$$
\mathbf{x} \otimes \mathbf{y}=\left[\begin{array}{c}
\mathbf{x}(1) \\
\mathbf{x}(2) \\
\ldots \\
\mathbf{x}(n)
\end{array}\right]\left[\begin{array}{lll}
\mathbf{y}(1) & \ldots & \mathbf{y}(n)
\end{array}\right]
$$

By analogy, we define rank 1 tensor as $\mathcal{X}:=\mathbf{x}_{1} \otimes \ldots \otimes \mathbf{x}_{d}$,

$$
\mathcal{X}\left(i_{1}, \ldots, i_{d}\right)=\mathbf{x}_{1}\left(i_{1}\right) \mathbf{x}_{2}\left(i_{2}\right) \ldots \mathbf{x}_{d}\left(i_{d}\right)
$$

Tensor CP-rank

CP-rank r tensor is a smallest number of rank-one tensors that generate \mathcal{X} as their sum:

$$
\mathcal{X}=\sum_{i=1}^{r} \alpha_{i} \mathbf{x}_{1}^{i} \otimes \ldots \otimes \mathbf{x}_{d}^{i}
$$

Normalization: we always assume $\left\|\mathbf{x}_{j}^{i}\right\|_{2}=1$. Clearly, $r \leq n^{d}$. For example, for a 3-way (3 modes) tensor,

Fig. 3.1 CP decomposition of a three-way array.

Various tensor ranks

- CANDECOMP (canonical decomposition)/PARAFAC (parallel factors) rank (CP) earlier names: Polyadic form, topographic components model, ...
- Rank is different over real and complex numbers
- It is NP-hard to compute the rank (Hastad, "Tensor rank is NP-complete", 1990) There is an example of $9 \times 9 \times 9$ tensor that has rank somewhere between 18 and 23 (conjecture by Comon et al: between 19 and 20),
- Uniqueness question
- Tucker decomposition (HOSVD, higher-order PCA)

Fig. 4.1 Tucker decomposition of a threc-way array.

Tensor norm

We consider $\|\mathcal{X}\|=$ sum of squares of the elements (generalization of the Frobenius norm)

For a rank r tensor,

$$
\begin{aligned}
\|\mathcal{X}\|^{2} & =\sum_{k, h=1}^{r} a_{k} a_{h}\left\langle\bigcirc_{\ell=1}^{d} \mathbf{x}_{k}^{(\ell)}, \bigcirc_{\ell=1}^{d} \mathbf{x}_{h}^{(\ell)}\right\rangle \\
& =\sum_{k \neq h}^{r} a_{k} a_{h} \prod_{\ell=1}^{d}\left\langle\mathbf{x}_{k}^{(\ell)}, \mathbf{x}_{h}^{(\ell)}\right\rangle+\|\mathbf{a}\|_{2}^{2}
\end{aligned}
$$

Using Cauchy-Swartz, one can estimate

$$
\left(1-\mu_{\mathcal{X}}^{\prime}\right)\|\boldsymbol{\alpha}\|_{2}^{2} \leq\|\mathcal{X}\|^{2} \leq\left(1+\mu_{\mathcal{X}}^{\prime}\right)\|\boldsymbol{\alpha}\|_{2}^{2}
$$

Fitting problem

For an arbitrary tensor \mathcal{Y}, find the closest rank r tensor \mathcal{X} :

$$
\arg \min \|\mathcal{X}-\mathcal{Y}\|^{2}
$$

This problem includes finding the best set of vectors $\left\{\mathbf{x}_{j}^{i}\right\}$ (basis) and the best set of coefficients $\left\{\alpha_{i}\right\}_{i=1}^{r}$:

$$
\underset{\mathcal{X}}{\arg \min }\|\mathcal{X}-\mathcal{Y}\|^{2}=\underset{\mathbf{x}_{j}^{i} \in \mathbb{R}^{n}, \alpha_{i} \in \mathbb{R}}{\arg \min }\left\|\sum_{i=1}^{r} \alpha_{i} \bigotimes_{j=1}^{d} \mathbf{x}_{j}^{i}-\mathcal{Y}\right\|^{2}
$$

Solving the fitting problem

Idea:

- Start with random basis for \mathcal{X} : take random unit vectors $\mathbf{x}_{j}^{i} \in \mathbb{R}^{n}$ for $j=1, \ldots, d, i=1, \ldots, r$
- Fix all but one mode $j \in[d]$, namely, $\mathbf{x}_{j}^{1}, \ldots, \mathbf{x}_{j}^{r}$
- Optimize over j-th mode
- Repeat for the other modes until some error threshold

This turns out to be equivalent to solving n_{j} separate problems of the form:

Find

$$
\underset{\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}}{\arg \min }\left\|\sum_{i=1}^{r} \alpha_{i} \bigotimes_{j=1 \neq j^{\prime}}^{d} \mathbf{x}_{j}^{i}-\mathcal{Y}^{\prime}\right\|^{2}
$$

That is, looking for the best fit in some fixed basis

Dimension reduction for the fitting problem

Goal: reduce the size of this problem.
Preferably,

- in a subspace oblivious way (to have the same simple operation for the multiple applications in various bases)
For example, classical dimension reduction lemma

Lemma (Johnson-Lindenstrauss)

Take small $\eta>0$. Random projection from
$\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ e-preserves distances between $e^{c(\eta) \varepsilon^{2} m}$ points with probability $1-\eta$.

(c) Mode-3 (tube) fibers: $\mathrm{x}_{i j}$:

(c) Frontal slices: $\mathbf{X}_{:: k}\left(\right.$ or $\left.\mathbf{X}_{k}\right)$

- without vectorization of the tensors

Modewise products: tensor \times_{j} matrix

Definition (j-mode product, $j=1, \ldots, d$)
A tensor $\mathcal{X} \in \mathbb{R}^{n^{d}}$ can be multiplied by a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ to get a tensor $\left(\mathcal{X} \times_{j} \mathbf{A}\right) \in \mathbb{R}^{n \times \ldots \times m \times \ldots \times n}$ with the coordinates

$$
\left(\mathcal{X} \times_{j} \mathbf{A}\right)\left(\ldots, i_{j-1}, \ell, i_{j+1}, \ldots\right)=\sum_{i_{j}=1}^{n} \mathbf{A}\left(\ell, i_{j}\right) \mathcal{X}\left(\ldots, i_{j}, \ldots\right)
$$

Properties of j-mode products

- Associativity, linearity
- For a 2 way tensor (a matrix)

$$
\mathcal{X} \times_{1} \mathbf{A}_{1} \times_{2} \mathbf{A}_{2}=\mathbf{A}_{1} \mathcal{X} \mathbf{A}_{2}^{T}
$$

- For the CP representation, it is equivalent to

$$
\mathcal{X} \times_{1} \mathbf{A}_{1} \times 2 \mathbf{A}_{2} \ldots \times_{d} \mathbf{A}_{d}=\sum_{i=1}^{r} \alpha_{i}\left(\mathbf{A}_{1} \mathbf{x}_{1}^{i}\right) \otimes \ldots \otimes\left(\mathbf{A}_{d} \mathbf{x}_{d}^{i}\right)
$$

So, instead of
Fitting problem: $\|\mathcal{X}-\mathcal{Y}\|^{2} \rightarrow \min$

$$
\underset{\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}}{\arg \min }\left\|\sum_{i=1}^{r} \alpha_{i} \bigotimes_{j=1 \neq j^{\prime}}^{d} \mathbf{x}_{j}^{i}-\mathcal{Y}\right\|^{2}
$$

let us find
Reduced fitting problem: $\left\|\mathcal{X} \times{ }_{j=1}^{d} \mathbf{A}_{j}-\mathcal{Y} \times_{j=1}^{d} \mathbf{A}_{j}\right\|^{2} \rightarrow \min$

$$
\underset{\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}}{\arg \min }\left\|\sum_{i=1}^{r} \alpha_{i} \bigotimes_{j=1}^{d} \mathbf{A}_{j} \mathbf{x}_{j}^{i}-\mathcal{Y} \underset{j=1}{\underset{X}{X}} \mathbf{A}_{j}\right\|^{2}
$$

Will it find us a good solution for the original (non-reduced) problem?

Subspace oblivious dimension reduction for tensors

For now: let $\mathcal{Y}=0$.
We want

$$
\left|\|\mathcal{X}\|^{2}-\left\|\mathcal{X} \underset{j=1 \neq j}{\stackrel{d}{X}} \mathbf{A}_{j}\right\|^{2}\right| \leq \varepsilon\|\mathcal{X}\|^{2}
$$

for any low r-rank tensor \mathcal{X} from a fixed CP subspace (basis), and for $m \times n$ matrices \mathbf{A}_{j} 's taken from some general (subspace oblivious!) model.

Johnson-Lindenstrauss embeddings

We are going to consider matrices \mathbf{A}_{j} such that

Definition ($\boldsymbol{\eta}$-optimal family of JL embeddins)

A $m \times n$ matrix \mathbf{A} is an η-optimal JL embedding if for any $\varepsilon \in(0,1)$ and $\mathcal{S} \subset \mathbb{R}^{n}$ of cardinality $|\mathcal{S}| \leq \eta e^{\varepsilon^{2} m / C}$,

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \varepsilon\|\mathbf{x}\|_{2}^{2} \text { for any } \mathbf{x} \in \mathcal{S}
$$

with probability at least $1-\eta$.
Gaussian, Fourier matrices, random projection matrices (to a subspace uniformly selected from the Grassmanian) ...

Definition is inspired by Johnson-Lindenstrauss Lemma: for any small $\eta>0$, random projection from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \varepsilon$-preserves distances between $e^{c(\eta) \varepsilon^{2} m}$ points with probability $1-\eta$.

Main theorem -1

Theorem (Iwen-Needell-R.-Zare)

Let \mathcal{L} be an r-dimensional subspace of $\mathbb{R}^{n^{d}}$ spanned by a basis $\mathcal{B}:=\left\{\bigcirc_{\ell=1}^{d} \mathbf{x}_{k}^{(\ell)} \mid k \in[r]\right\}$. If all $\mathbf{A}_{j} \in \mathbb{R}^{m \times n}$ from an (η / d)-optimal family of JL embeddings, $m \gtrsim \varepsilon^{-2} r^{2 / d} d^{2}$, then with probability at least $1-\eta$

$$
\left|\|\mathcal{X}\|^{2}-\left\|\mathcal{X} \underset{j=1}{\stackrel{d}{X}} \mathbf{A}_{j}\right\|^{2}\right| \leq \varepsilon\|\mathbf{a}\|_{2}^{2}
$$

for all $\mathcal{X}=\sum_{i=1}^{r} a_{i} \mathbf{x}_{1}^{i} \otimes \ldots \otimes \mathbf{x}_{d}^{i} \in \mathcal{L}$.

Total number of entries $N=n^{d} \rightarrow M \sim \varepsilon^{-2 d} r^{2} d^{2 d}$.

Main theorem-1

Theorem (Iwen-Needell-R.-Zare)

Let \mathcal{L} be an r-dimensional subspace of $\mathbb{R}^{n^{d}}$ spanned by a basis $\mathcal{B}:=\left\{\bigcirc_{\ell=1}^{d} \mathbf{x}_{k}^{(\ell)}\right\}_{k \in[r]}$ with modewise coherence $\mu_{\mathcal{B}}^{d-1}<1 / 2 r$. If all $\mathbf{A}_{j} \in \mathbb{R}^{m \times n}$ from an (η / d)-optimal family of JL embeddings with $m \gtrsim \varepsilon^{-2} r^{2 / d} d^{2}$, then with probability at least $1-\eta$
for all $\mathcal{X} \in \mathcal{L}$.

Total number of entries $N=n^{d} \rightarrow M \sim \varepsilon^{-2 d} r^{2} d^{2 d}$.

Modewise (in)coherence

- measures angles between all basis vectors (from the same subspaces)
- orthogonal bases have coherence zero
- random (sub)gaussian tensors are incoherent enough with exponentially high probability:

Lemma

If all components of all vectors $\mathbf{x}_{k}^{(j)}$ are normalized independent mean zero K-subgaussian random variables, with probability at least $1-2 r^{2} d \exp \left(-c \mu^{2} n\right)$ maximum modewise coherence parameter of the tensor \mathcal{X} is at most μ.

Theorem 2: Fitting an arbitrary \mathcal{X}

Theorem (Iwen-Needell-R.-Zare)

Let \mathcal{L} be an r-dimensional subspace of $\mathbb{R}^{n^{d}}$ spanned by a basis $\mathcal{B}:=\left\{\bigcirc_{\ell=1}^{d} \mathbf{x}_{k}^{(\ell)}\right\}_{k \in[r]}$ with $\mu_{\mathcal{B}}^{d-1}<1 / 2 r$ and $\mathcal{Y} \notin \mathcal{L}$.
If all $\mathbf{A}_{j} \in \mathbb{R}^{m \times n}$ are from an (η / d)-optimal family of JL embeddings with $m \gtrsim \varepsilon^{-2} r d^{3}$, then with probability at least $1-\eta$

$$
\mid\|\mathcal{Y}-\mathcal{X}\|^{2}-\|(\mathcal{Y}-\mathcal{X}) \underset{j=1}{\stackrel{d}{X} \mathbf{A}_{j}\left\|^{2} \mid \leq \varepsilon\right\| \mathcal{Y} \|^{2}, ~}
$$

for all $\mathcal{X} \in \mathcal{L}$.

Total number of entries $N=n^{d} \rightarrow M \sim \varepsilon^{-2 d} r^{d} d^{3 d}$.
Reason: we need to additionally compress a subspace spanned by $\left\{P_{\mathcal{L}^{\perp}}(\mathcal{Y}) \pm \mathcal{B}\right\}$, this basis is NOT low rank.

Proof idea

Use a "naive" estimate: modewise products can be separated by fibers (slicing by the same mode), so, for a fixed tensor, we can compute the norm distortion summing over the norm distortions of separate fibers.

$$
\begin{aligned}
\mid\|L(\mathcal{Y}-\mathcal{X})\|_{2}^{2} & -\|\mathcal{Y}-\mathcal{X}\|^{2} \mid \\
& \leq\left|\left\|L\left(\mathbb{P}_{\mathcal{L}^{\perp}}(\mathcal{Y})\right)\right\|^{2}-\left\|\mathbb{P}_{\mathcal{L}^{\perp}}(\mathcal{Y})\right\|^{2}\right| \\
& +\left|\left\|L\left(\mathbb{P}_{\mathcal{L}}(\mathcal{Y})-\mathcal{X}\right)\right\|^{2}-\left\|\mathbb{P}_{\mathcal{L}}(\mathcal{Y})-\mathcal{X}\right\|^{2}\right| \\
& +2\left|\left\langle L\left(\mathbb{P}_{\mathcal{L}}(\mathcal{Y})-\mathcal{X}\right), L\left(\mathbb{P}_{\mathcal{L}^{\perp}}(\mathcal{Y})\right)\right\rangle\right|
\end{aligned}
$$

The last term is small since scalar products are also almost preserved by JL embedding.

Can we do better?

Is our dependence on r and on ε (and on d) good?

Lemma (Larsen, Nelson, 2016)

For any $n, d \geq 2$, there exists a set of n vectors in \mathbb{R}^{d} so that any linear map $\mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, \varepsilon$-preserving distances between them, must have

$$
m \gtrsim \varepsilon^{-2} \ln n
$$

Moreover, the set of all rank r matrices of the size $n \times n$ can be recovered from $O(r n)$ linear measurements.

Modewise Fourier JL for a finite set

For a special modewise operator $L_{\text {FJL }}$,
Theorem $\left(^{*}\right)($ Jin, Kolda, Ward, 2019)
Let $\eta \gtrsim n^{-d}$. Consider $\mathcal{S} \subset \mathbb{R}^{n^{d}}$ of cardinality $|\mathcal{S}|=p$. Then with probability at least $1-\eta$ the linear operator $L_{\text {FJL }}$ is an ε-JL embedding of \mathcal{S} into \mathbb{R}^{m}, where

$$
m \gtrsim \varepsilon^{-2} \cdot \log ^{2 d-1}\left(\frac{\max \left(p, n^{d}\right)}{\eta}\right) \cdot \log n^{d}
$$

Moreover, if $d=1$, then we may replace $\max \left(p, n^{1}\right)$ with p.

Kronecker Fast Johnson Lindenstrauss

$$
L_{\mathrm{FJL}}(\mathcal{X}):=\mathbf{R}\left(\operatorname{vect}\left(\mathcal{X} \times_{1} \mathbf{F}_{1} \mathbf{D}_{1} \cdots \times_{d} \mathbf{F}_{d} \mathbf{D}_{d}\right)\right),
$$

vect: $\mathbb{R}^{n \times \cdots \times n} \rightarrow \mathbb{R}^{n^{d}}$ is the vectorization operator, \mathbf{R} is a matrix containing m random rows from $I d_{n^{d} \times n^{d}}$, $\mathrm{F}_{i} \in \mathbb{R}^{n \times n}$ is a unitary discrete Fourier transform matrix, $\mathbf{D}_{i} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with n random ± 1 entries.
Clearly, the sketching part \mathbf{R} is faster than the. mixing part FD.

Remark (Computational advantage when the FJLT is applied to Kronecker vectors)

Computing FJLT requires $O\left(n^{d} \log \left(n^{d}\right)\right)$ iterations. Computing KFJLT requires $O\left(\sum_{i=1}^{d} n \log n\right)=O(d n \log n)$ iterations. It is computationally disadvantageous to unfold!

Proof idea

Definition (RIP property)

A matrix Φ satisfies a (ε, s)-RIP property if it ε-preserves the norms of all s-sparse vectors.

Kronecker product of unitary matrices is a unitary matrix. So, the Fourier model differs from FJLT by random signs structure:

$$
\mathbf{R U}_{n^{d}} \mathbf{D}_{\xi}, \quad \text { where } \xi=\otimes_{i=1}^{d} \xi_{i}
$$

and ξ_{i} are independent Rademacher vectors. Then

- Normalized RU $_{n^{d}}$ is an RIP matrix
- Krahmer, Ward (2011): For matrices, multiplying and RIP matrix Φ by random signs gives a JL embedding
- Allowing Kronecker structure in the random signs

Theorem (*)/Theorem 2:

Let us compare these two modewise JL-type embedding results:

- For a fixed finite set S / for a fixed subspace \mathcal{L}
- Special Fourier modewise transform /large class of JL-type modewise maps
- $m \gtrsim \varepsilon^{-2} / m \gtrsim \varepsilon^{-2 d}$
- for any subset of tensors / only for incoherent bases

Idea: using Theorem $\left(^{*}\right)$ to improve ε-dependence and to get rid of the incoherence assumption

How can this help with subspace embeddings?

Two ways to apply JL-type results to a low r-dimensional subspace. Note that it is enough to approximate unit norm tensors only! $\{1\}$ To an ε-net on \mathcal{S}^{r-1} :

Lemma (Nets on S^{n-1} for JL)

Fix $\varepsilon \in(0,1)$. Let \mathcal{L} be an r-dimensional subspace of \mathbb{R}^{n}, and let $\mathcal{N} \subset \mathcal{L}$ be an $\frac{\varepsilon}{16}$-net of the unit sphere $\mathcal{S}^{r-1} \subset \mathcal{L}$. Then, if $\mathbf{A} \in \mathbb{R}^{m \times n}$ is an $\frac{\varepsilon}{2}$-JL embedding of \mathcal{N} it will also satisfy

$$
(1-\varepsilon)\|\mathbf{x}\|_{2}^{2} \leq\|\mathbf{A} \mathbf{x}\|_{2}^{2} \leq(1+\varepsilon)\|\mathbf{x}\|_{2}^{2} \text { for all } \mathbf{x} \in \mathcal{L}
$$

There exists an $\frac{\varepsilon}{16}$-net such that $|\mathcal{N}| \leq\left(\frac{47}{\varepsilon}\right)^{r}$.
$\{2\}$ To a set of r basis vectors: Recall Theorem 1 above

Using Theorem (*): wrong way

Recall that Theorem (*) gives:

$$
m \gtrsim \varepsilon^{-2} \cdot \log ^{2 d-1}\left(\frac{\max \left(p, n^{d}\right)}{\eta}\right) \cdot \log n^{d}
$$

1. Apply it to the approximation net $S=\mathcal{N}$ of cardinality $\left(\frac{47}{\varepsilon}\right)^{r}$
2. Use JL Discretization Lemma

Resulting dimension is at least

$$
m \gtrsim \varepsilon^{-2} r^{2 d-1} \cdot \log ^{2 d-1}\left(\frac{47}{\eta^{1 / r} \varepsilon}\right) \cdot \log n^{d}
$$

So, ε dependence improves, but dependence on the rank even become worse: $r^{2 d-1}$ instead of r^{d} (Theorem 2)

Using Theorem (*): right way

Recall that Theorem (*) gives:

$$
m \gtrsim \varepsilon^{-2} \cdot \log ^{2 d-1}\left(\frac{\max \left(p, n^{d}\right)}{\eta}\right) \cdot \log n^{d}
$$

1. Apply Theorem $\left(^{*}\right)$ to the set of r basis vectors
2. Proceed like we did for Theorem 2 to get the estimate for all others
Resulting dimension (since $r<n^{d}$):

$$
m \gtrsim\left(\frac{\varepsilon}{r}\right)^{-2} \cdot \log ^{2 d-1}\left(\frac{n^{d}}{\eta}\right) \cdot \log n^{d}
$$

Much better! :)
Still quadratic dependence on rank...

Improved two step dimension reduction

Let us vectorize the result of Step 2 to get a vector (tensor with $d=1$) in \mathbb{R}^{m}, recall that by Theorem (*),

$$
m \gtrsim \varepsilon^{-2} \cdot \log \left(\frac{p}{\eta}\right) \cdot \log n \quad \text { for } d=1
$$

3. Now, apply it to the approximation net $S=\mathcal{N}$ of cardinality $\left(\frac{47}{\varepsilon}\right)^{r}$ in \mathbb{R}^{m}
to get

$$
\tilde{m} \gtrsim \varepsilon^{-2} r \cdot \log \left(\frac{47}{\varepsilon \eta^{1 / r}}\right) \cdot \log m .
$$

Optimal dependence on both ε and r ! (and a bit of logarithmic multiples...)

Experiments: gaussian and coherent tensors compression

Relative norm averaged over 10 samples in 1000 trials.

Relative norm averaged over 10 samples in 1000 trials.

$c_{s}=m / n-$ compression ratio
$c_{n, \mathcal{X}}=\left\|\mathcal{X} \times{ }_{1} \mathbf{A}_{\mathbf{1}} \ldots \times{ }_{d} \mathbf{A}_{\mathbf{d}}\right\| /\|\mathcal{X}\|$ - relative norm
Both data sets contain 10 tensors with $d=4, r=10, n=100$
Coherent tensors constructed as $1+\sqrt{0.1} \cdot g, g \sim N(0,1)$

Experiments: MRI tensor compression

The same for MRI data: three 3-mode MRI images of size

$$
240 \times 240 \times 155
$$

What was the rank r ?

Experiments: approximate rank of the MRI tensor

Experiments: fitting with various target ranks

Ongoing work/further directions

- Remove theoretical incoherence assumption in Theorem 2 (which is still the most general model for modewise compression!)
- Consider other typical models of JL embeddings (say, (sub)gaussian sketches) to improve the dependence on ε and r in Theorem 2.
- Give JL-type guarantees for all CP-rank r tensors with high probability: get (T)RIP (restricted isometry property) type results.

Thanks for your attention!
QUESTIONS?

