Modewise methods for tensor dimension reduction (oblivious subspace embeddings)

Liza Rebrova

UCLA

Online Asymptotic Geometric Analysis Seminar

June 27 2020

Joint work with Mark Iwen, Deanna Needell, and Ali Zare

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tensors and Kronecker/outer products

$$\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \dots \times n_d} - d$$
-way tensor

(for simplicity, in this talk, let's assume all $n_i = n$)

Rank 1 matrix can be defined as $\mathbf{x} \otimes \mathbf{y}$, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

$$\mathbf{x} \otimes \mathbf{y} = \begin{bmatrix} \mathbf{x}(1) \\ \mathbf{x}(2) \\ \dots \\ \mathbf{x}(n) \end{bmatrix} \begin{bmatrix} \mathbf{y}(1) & \dots & \mathbf{y}(n) \end{bmatrix}$$

By analogy, we define rank 1 tensor as $\mathcal{X} := \mathbf{x}_1 \otimes \ldots \otimes \mathbf{x}_d$,

$$\mathcal{X}(i_1,\ldots,i_d)=\mathbf{x}_1(i_1)\mathbf{x}_2(i_2)\ldots\mathbf{x}_d(i_d).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tensor CP-rank

CP-rank *r* tensor is a smallest number of rank-one tensors that generate \mathcal{X} as their sum:

$$\mathcal{X} = \sum_{i=1}^r \alpha_i \mathbf{x}_1^i \otimes \ldots \otimes \mathbf{x}_d^i$$

Normalization: we always assume $\|\mathbf{x}_{j}^{i}\|_{2} = 1$. Clearly, $r \leq n^{d}$. For example, for a 3-way (3 modes) tensor,

Fig. 3.1 CP decomposition of a three-way array.

э.

Pictures are taken from "Tensor Decompositions and Applications" paper by Kolda and Bader

Various tensor ranks

- CANDECOMP (canonical decomposition)/PARAFAC (parallel factors) rank (CP) earlier names: Polyadic form, topographic components model, ...
 - Rank is different over real and complex numbers
 - It is NP-hard to compute the rank (Hastad, "Tensor rank is NP-complete", 1990) There is an example of 9 × 9 × 9 tensor that has rank somewhere between 18 and 23 (conjecture by Comon et al: between 19 and 20),
 - Uniqueness question
- Tucker decomposition (HOSVD, higher-order PCA)

Tensor norm

We consider $\|\mathcal{X}\| = \text{sum of squares of the elements (generalization of the Frobenius norm)}$

For a rank r tensor,

$$\begin{aligned} \|\mathcal{X}\|^2 &= \sum_{k,h=1}^r a_k a_h \left\langle \bigcirc_{\ell=1}^d \mathbf{x}_k^{(\ell)}, \ \bigcirc_{\ell=1}^d \mathbf{x}_h^{(\ell)} \right\rangle \\ &= \sum_{k \neq h}^r a_k a_h \prod_{\ell=1}^d \left\langle \mathbf{x}_k^{(\ell)}, \ \mathbf{x}_h^{(\ell)} \right\rangle + \|\mathbf{a}\|_2^2 \end{aligned}$$

Using Cauchy-Swartz, one can estimate

$$\left(1-\mu_{\mathcal{X}}'\right)\|\boldsymbol{\alpha}\|_{2}^{2} \leq \|\mathcal{X}\|^{2} \leq \left(1+\mu_{\mathcal{X}}'\right)\|\boldsymbol{\alpha}\|_{2}^{2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fitting problem

For an arbitrary tensor \mathcal{Y} , find the closest rank r tensor \mathcal{X} :

 $\arg\min_{\mathcal{X}} \|\mathcal{X} - \mathcal{Y}\|^2$

This problem includes finding the best set of vectors $\{\mathbf{x}_{j}^{i}\}$ (basis) and the best set of coefficients $\{\alpha_{i}\}_{i=1}^{r}$:

$$\underset{\mathcal{X}}{\arg\min} \|\mathcal{X} - \mathcal{Y}\|^2 = \underset{\mathbf{x}_j^i \in \mathbb{R}^n, \alpha_i \in \mathbb{R}}{\arg\min} \|\sum_{i=1}^r \alpha_i \bigotimes_{j=1}^d \mathbf{x}_j^i - \mathcal{Y}\|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solving the fitting problem

Idea:

- Start with random basis for \mathcal{X} : take random unit vectors $\mathbf{x}_j^i \in \mathbb{R}^n$ for $j = 1, \dots, d$, $i = 1, \dots, r$
- Fix all but one mode $j \in [d]$, namely, $\mathbf{x}_j^1, \ldots, \mathbf{x}_j^r$
- Optimize over *j*-th mode
- Repeat for the other modes until some error threshold

This turns out to be equivalent to solving n_j separate problems of the form:

Find

$$\underset{\alpha_1,...,\alpha_r \in \mathbb{R}}{\arg\min} \|\sum_{i=1}^r \alpha_i \bigotimes_{j=1 \neq j'}^d \mathbf{x}_j^i - \mathcal{Y}'\|^2$$

That is, looking for the best fit in some fixed basis

Dimension reduction for the fitting problem

Goal: reduce the size of this problem.

Preferably,

 in a subspace oblivious way (to have the same simple operation for the multiple applications in various bases)
 For example, classical dimension reduction lemma

(c) Mode-3 (tube) fibers: x_{ij}

Lemma (Johnson-Lindenstrauss)

Take small $\eta > 0$. Random projection from $\mathbb{R}^n \to \mathbb{R}^m \ \varepsilon$ -preserves distances between $e^{c(\eta)\varepsilon^2 m}$ points with probability $1 - \eta$.

without vectorization of the tensors

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Picture is taken from Kolda&Bader paper

Modewise products: tensor \times_i matrix

Definition (*j*-mode product, $j = 1, \ldots, d$)

A tensor $\mathcal{X} \in \mathbb{R}^{n^d}$ can be multiplied by a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ to get a tensor $(\mathcal{X} \times_j \mathbf{A}) \in \mathbb{R}^{n \times ... \times m \times ... \times n}$ with the coordinates

$$(\mathcal{X} \times_j \mathbf{A})(\ldots, i_{j-1}, \ell, i_{j+1}, \ldots) = \sum_{i_j=1}^n \mathbf{A}(\ell, i_j) \mathcal{X}(\ldots, i_j, \ldots).$$

Properties of *j*-mode products

- Associativity, linearity
- For a 2 way tensor (a matrix)

$$\mathcal{X} \times_1 \mathbf{A}_1 \times_2 \mathbf{A}_2 = \mathbf{A}_1 \mathcal{X} \mathbf{A}_2^T$$

• For the CP representation, it is equivalent to

$$\mathcal{X} \times_1 \mathbf{A}_1 \times_2 \mathbf{A}_2 \ldots \times_d \mathbf{A}_d = \sum_{i=1}^r \alpha_i (\mathbf{A}_1 \mathbf{x}_1^i) \otimes \ldots \otimes (\mathbf{A}_d \mathbf{x}_d^i)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So, instead of

Fitting problem: $\|\mathcal{X} - \mathcal{Y}\|^2 \to \min$

$$\underset{\alpha_1,\ldots,\alpha_r \in \mathbb{R}}{\arg\min} \|\sum_{i=1}^r \alpha_i \bigotimes_{j=1 \neq j'}^d \mathbf{x}_j^i - \mathcal{Y}\|^2$$

let us find

Reduced fitting problem: $\|\mathcal{X} \times_{j=1}^{d} \mathbf{A}_{j} - \mathcal{Y} \times_{j=1}^{d} \mathbf{A}_{j}\|^{2} \to \min$

$$\underset{\alpha_1,...,\alpha_r \in \mathbb{R}}{\arg\min} \|\sum_{j=1}^r \alpha_j \bigotimes_{j=1}^d \mathbf{A}_j \mathbf{x}_j^i - \mathcal{Y} \bigotimes_{j=1}^d \mathbf{A}_j \|^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Will it find us a good solution for the original (non-reduced) problem?

Subspace oblivious dimension reduction for tensors

For now: let $\mathcal{Y} = 0$.

We want

$$\left| \| \mathcal{X} \|^2 - \| \mathcal{X} \bigotimes_{j=1 \neq j}^d \mathbf{A}_j \|^2 \right| \leq \varepsilon \| \mathcal{X} \|^2$$

for any low *r*-rank tensor \mathcal{X} from a fixed CP subspace (basis), and for $m \times n$ matrices \mathbf{A}_j 's taken from some general (subspace oblivious!) model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Johnson-Lindenstrauss embeddings

We are going to consider matrices A_j such that

Definition (η -optimal family of JL embeddins)

A $m \times n$ matrix **A** is an η -optimal JL embedding if for any $\varepsilon \in (0, 1)$ and $S \subset \mathbb{R}^n$ of cardinality $|S| \leq \eta e^{\varepsilon^2 m/C}$,

$$\left|\|\mathbf{A}\mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2
ight| \leq arepsilon \|\mathbf{x}\|_2^2$$
 for any $\mathbf{x}\in\mathcal{S}$

with probability at least $1 - \eta$.

Gaussian, Fourier matrices, random projection matrices (to a subspace uniformly selected from the Grassmanian) ...

Definition is inspired by Johnson-Lindenstrauss Lemma: for any small $\eta > 0$, random projection from $\mathbb{R}^n \to \mathbb{R}^m \varepsilon$ -preserves distances between $e^{c(\eta)\varepsilon^2 m}$ points with probability $1 - \eta$.

Main theorem -1

Theorem (Iwen-Needell-R.-Zare)

Let \mathcal{L} be an r-dimensional subspace of \mathbb{R}^{n^d} spanned by a basis $\mathcal{B} := \left\{ \bigcirc_{\ell=1}^d \mathbf{x}_k^{(\ell)} \mid k \in [r] \right\}$. If all $\mathbf{A}_j \in \mathbb{R}^{m \times n}$ from an (η/d) -optimal family of JL embeddings, $m \gtrsim \varepsilon^{-2} r^{2/d} d^2$, then with probability at least $1 - \eta$

$$\left| \|\mathcal{X}\|^2 - \|\mathcal{X} \bigotimes_{j=1}^d \mathbf{A}_j\|^2 \right| \leq \varepsilon \|\mathbf{a}\|_2^2,$$

for all $\mathcal{X} = \sum_{i=1}^{r} a_i \mathbf{x}_1^i \otimes \ldots \otimes \mathbf{x}_d^i \in \mathcal{L}$.

Total number of entries $N = n^d \rightarrow M \sim \varepsilon^{-2d} r^2 d^{2d}$.

Main theorem-1

Theorem (Iwen-Needell-R.-Zare)

Let \mathcal{L} be an r-dimensional subspace of \mathbb{R}^{n^d} spanned by a basis $\mathcal{B} := \left\{ \bigcirc_{\ell=1}^d \mathbf{x}_k^{(\ell)} \right\}_{k \in [r]}$ with modewise coherence $\mu_{\mathcal{B}}^{d-1} < 1/2r$. If all $\mathbf{A}_j \in \mathbb{R}^{m \times n}$ from an (η/d) -optimal family of JL embeddings with $m \gtrsim \varepsilon^{-2} r^{2/d} d^2$, then with probability at least $1 - \eta$

$$\left\| \|\mathcal{X}\|^2 - \|\mathcal{X} \bigotimes_{j=1}^d \mathbf{A}_j\|^2
ight| \leq \varepsilon \|\mathcal{X}\|^2,$$

(日本本語を本書を本書を入して)

for all $\mathcal{X} \in \mathcal{L}$.

Total number of entries $N = n^d \rightarrow M \sim \varepsilon^{-2d} r^2 d^{2d}$.

Modewise (in)coherence

$$\mu_{\mathcal{B}} := \max_{\substack{\ell \in [d] \\ k \neq h}} \max_{\substack{k,h \in [r] \\ k \neq h}} \left| \left\langle \mathbf{x}_{k}^{\ell}, \ \mathbf{x}_{h}^{\ell} \right\rangle \right|,$$

- measures angles between all basis vectors (from the same subspaces)
- orthogonal bases have coherence zero
- random (sub)gaussian tensors are incoherent enough with exponentially high probability:

Lemma

If all components of all vectors $\mathbf{x}_{k}^{(j)}$ are normalized independent mean zero K-subgaussian random variables, with probability at least $1 - 2r^{2}d \exp(-c\mu^{2}n)$ maximum modewise coherence parameter of the tensor \mathcal{X} is at most μ .

Theorem 2: Fitting an arbitrary \mathcal{X}

Theorem (Iwen-Needell-R.-Zare)

Let \mathcal{L} be an r-dimensional subspace of \mathbb{R}^{n^d} spanned by a basis $\mathcal{B} := \left\{ \bigcirc_{\ell=1}^d \mathbf{x}_k^{(\ell)} \right\}_{k \in [r]}$ with $\mu_{\mathcal{B}}^{d-1} < 1/2r$ and $\mathcal{Y} \notin \mathcal{L}$. If all $\mathbf{A}_j \in \mathbb{R}^{m \times n}$ are from an (η/d) -optimal family of JL embeddings with $m \gtrsim \varepsilon^{-2} r d^3$, then with probability at least $1 - \eta$

$$\left\| \left\| \mathcal{Y} - \mathcal{X}
ight\|^2 - \| \left(\mathcal{Y} - \mathcal{X}
ight) igotimes_{j=1}^d \mathbf{A}_j \|^2
ight| \leq arepsilon \left\| \mathcal{Y}
ight\|^2,$$

for all $\mathcal{X} \in \mathcal{L}$.

Total number of entries $N = n^d \rightarrow M \sim \varepsilon^{-2d} r^d d^{3d}$. Reason: we need to additionally compress a subspace spanned by $\{P_{\mathcal{L}^{\perp}}(\mathcal{Y}) \pm \mathcal{B}\}$, this basis is NOT low rank.

Proof idea

Use a "naive" estimate: modewise products can be separated by fibers (slicing by the same mode), so, for a fixed tensor, we can compute the norm distortion summing over the norm distortions of separate fibers.

$$\begin{split} \left| \left\| L\left(\mathcal{Y} - \mathcal{X}\right) \right\|_{2}^{2} - \left\| \mathcal{Y} - \mathcal{X} \right\|^{2} \right| \\ & \leq \left| \left\| L\left(\mathbb{P}_{\mathcal{L}^{\perp}}(\mathcal{Y})\right) \right\|^{2} - \left\|\mathbb{P}_{\mathcal{L}^{\perp}}(\mathcal{Y})\right\|^{2} \right| \\ & + \left| \left\| L\left(\mathbb{P}_{\mathcal{L}}\left(\mathcal{Y}\right) - \mathcal{X}\right) \right\|^{2} - \left\|\mathbb{P}_{\mathcal{L}}\left(\mathcal{Y}\right) - \mathcal{X}\right\|^{2} \right| \\ & + 2 \left| \left\langle L\left(\mathbb{P}_{\mathcal{L}}\left(\mathcal{Y}\right) - \mathcal{X}\right), \ L\left(\mathbb{P}_{\mathcal{L}^{\perp}}(\mathcal{Y})\right) \right\rangle \right| \end{split}$$

The last term is small since scalar products are also almost preserved by JL embedding.

Is our dependence on r and on ε (and on d) good?

Lemma (Larsen, Nelson, 2016)

For any $n, d \ge 2$, there exists a set of n vectors in \mathbb{R}^d so that any linear map $\mathbb{R}^d \to \mathbb{R}^m$, ε -preserving distances between them, must have

$$m\gtrsim \varepsilon^{-2}\ln n.$$

Moreover, the set of all rank r matrices of the size $n \times n$ can be recovered from O(rn) linear measurements.

Modewise Fourier JL for a finite set

For a special modewise operator $L_{\rm FJL}$,

Theorem (*)(Jin, Kolda, Ward, 2019)

Let $\eta \gtrsim n^{-d}$. Consider $S \subset \mathbb{R}^{n^d}$ of cardinality |S| = p. Then with probability at least $1 - \eta$ the linear operator $L_{\rm FJL}$ is an ε -JL embedding of S into \mathbb{R}^m , where

$$m \gtrsim \varepsilon^{-2} \cdot \log^{2d-1}\left(\frac{\max(p, n^d)}{\eta}\right) \cdot \log n^d.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Moreover, if d = 1, then we may replace $\max(p, n^1)$ with p.

Kronecker Fast Johnson Lindenstrauss

 $L_{\mathrm{FJL}}(\mathcal{X}) := \mathbf{R} \left(\operatorname{vect} \left(\mathcal{X} \times_1 \mathbf{F}_1 \mathbf{D}_1 \cdots \times_d \mathbf{F}_d \mathbf{D}_d \right) \right),$

vect : $\mathbb{R}^{n \times \dots \times n} \to \mathbb{R}^{n^d}$ is the vectorization operator, **R** is a matrix containing *m* random rows from $Id_{n^d \times n^d}$, **F**_i $\in \mathbb{R}^{n \times n}$ is a unitary discrete Fourier transform matrix, **D**_i $\in \mathbb{R}^{n \times n}$ is a diagonal matrix with *n* random ± 1 entries. Clearly, the sketching part **R** is faster than the. mixing part **FD**.

Remark (Computational advantage when the FJLT is applied to Kronecker vectors)

Computing FJLT requires $O(n^d \log(n^d))$ iterations. Computing KFJLT requires $O(\sum_{i=1}^d n \log n) = O(dn \log n)$ iterations. It is computationally disadvantageous to unfold!

Proof idea

Definition (RIP property)

A matrix Φ satisfies a (ε , s)-RIP property if it ε -preserves the norms of all s-sparse vectors.

Kronecker product of unitary matrices is a unitary matrix. So, the Fourier model differs from FJLT by random signs structure:

$$\mathbf{RU}_{n^d}\mathbf{D}_{\xi}, \quad \text{where } \xi = \otimes_{i=1}^d \xi_i$$

and ξ_i are independent Rademacher vectors. Then

- Normalized **RU**_{n^d} is an RIP matrix
- Krahmer, Ward (2011): For matrices, multiplying and RIP matrix Φ by random signs gives a JL embedding
- Allowing Kronecker structure in the random signs

Theorem (*)/Theorem 2:

Let us compare these two modewise JL-type embedding results:

- For a fixed finite set S / for a fixed subspace \mathcal{L}
- Special Fourier modewise transform /large class of JL-type modewise maps
- $m\gtrsim \varepsilon^{-2}$ / $m\gtrsim \varepsilon^{-2d}$
- for any subset of tensors / only for incoherent bases

Idea: using Theorem (*) to improve ε -dependence and to get rid of the incoherence assumption

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How can this help with subspace embeddings?

Two ways to apply JL-type results to a low *r*-dimensional subspace. Note that it is enough to approximate unit norm tensors only! {1} To an ε -net on S^{r-1} :

Lemma (Nets on S^{n-1} for JL)

Fix $\varepsilon \in (0, 1)$. Let \mathcal{L} be an r-dimensional subspace of \mathbb{R}^n , and let $\mathcal{N} \subset \mathcal{L}$ be an $\frac{\varepsilon}{16}$ -net of the unit sphere $\mathcal{S}^{r-1} \subset \mathcal{L}$. Then, if $\mathbf{A} \in \mathbb{R}^{m \times n}$ is an $\frac{\varepsilon}{2}$ -JL embedding of \mathcal{N} it will also satisfy

$$(1-arepsilon)\|\mathbf{x}\|_2^2 \leq \|\mathbf{A}\mathbf{x}\|_2^2 \leq (1+arepsilon)\|\mathbf{x}\|_2^2$$
 for all $\mathbf{x}\in\mathcal{L}.$

There exists an $\frac{\varepsilon}{16}$ -net such that $|\mathcal{N}| \leq \left(\frac{47}{\varepsilon}\right)^r$.

 $\{2\}$ To a set of *r* basis vectors: Recall Theorem 1 above

Using Theorem (*): wrong way

Recall that Theorem (*) gives:

$$m \ \gtrsim \ arepsilon^{-2} \cdot \log^{2d-1}\left(rac{\max(p, n^d)}{\eta}
ight) \cdot \log n^d$$

1. Apply it to the approximation net $S = \mathcal{N}$ of cardinality $\left(\frac{47}{\varepsilon}\right)^r$ 2. Use JL Discretization Lemma Resulting dimension is at least

$$m \gtrsim \varepsilon^{-2} r^{2d-1} \cdot \log^{2d-1} \left(\frac{47}{\eta^{1/r}\varepsilon}\right) \cdot \log n^d.$$

So, ε dependence improves, but dependence on the rank even become worse: r^{2d-1} instead of r^d (Theorem 2)

Using Theorem (*): right way

Recall that Theorem (*) gives:

$$m \gtrsim \varepsilon^{-2} \cdot \log^{2d-1}\left(rac{\max(p, n^d)}{\eta}
ight) \cdot \log n^d$$

- 1. Apply Theorem (*) to the set of r basis vectors
- Proceed like we did for Theorem 2 to get the estimate for all others

Resulting dimension (since $r < n^d$):

$$m \gtrsim \left(\frac{\varepsilon}{r}\right)^{-2} \cdot \log^{2d-1}\left(\frac{n^d}{\eta}\right) \cdot \log n^d.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Much better! :) Still quadratic dependence on rank...

Improved two step dimension reduction

Let us vectorize the result of Step 2 to get a vector (tensor with d = 1) in \mathbb{R}^m , recall that by Theorem (*),

$$m \gtrsim \varepsilon^{-2} \cdot \log\left(\frac{p}{\eta}\right) \cdot \log n$$
 for $d = 1$.

3. Now, apply it to the approximation net $S = \mathcal{N}$ of cardinality $\left(\frac{47}{\varepsilon}\right)^r$ in \mathbb{R}^m

to get

$$\tilde{m} \gtrsim \varepsilon^{-2} r \cdot \log\left(\frac{47}{\varepsilon \eta^{1/r}}\right) \cdot \log m.$$

Optimal dependence on both ε and r! (and a bit of logarithmic multiples...)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Experiments: gaussian and coherent tensors compression

 $c_s = m/n$ - compression ratio $c_{n,\mathcal{X}} = \|\mathcal{X} \times_1 \mathbf{A_1} \dots \times_d \mathbf{A_d}\| / \|\mathcal{X}\|$ - relative norm Both data sets contain 10 tensors with d = 4, r = 10, n = 100Coherent tensors constructed as $1 + \sqrt{0.1 \cdot g}$, $g \sim N(0, 1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Experiments: MRI tensor compression

The same for MRI data: three 3-mode MRI images of size $240 \times 240 \times 155$ What was the rank r?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Experiments: approximate rank of the MRI tensor

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Experiments: fitting with various target ranks

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Ongoing work/further directions

- Remove theoretical incoherence assumption in Theorem 2 (which is still the most general model for modewise compression!)
- Consider other typical models of JL embeddings (say, (sub)gaussian sketches) to improve the dependence on ε and r in Theorem 2.
- Give JL-type guarantees for all CP-rank *r* tensors with high probability: get (T)RIP (restricted isometry property) type results.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thanks for your attention!

QUESTIONS?

(ロ)、(型)、(E)、(E)、 E) の(()