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Suppose that all of the following integrals vanish:

f(z)dz =0,
o(B)

where we allow o to vary over all rigid motions,
so this identity is true for all o € M (d).

Does it follow that f = 07

Another restatement of the problem (easy) is:

Is it true that the integral of f over B, as well as
integrals of f over all rigid motions of B, uniquely

determine the function f7
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If the answer is “yes”, then the body B is said to have
the “Pompeiu property”.

For general convex bodies (including d = 2),
the problem is open.

Known: many infinite families of convex bodies
have the Pompeiu property.

In 1973, Brown, Schreiber, and Taylor (BST) proved that
this problem is very closely tied to ‘mean periodic functions’,
studied by Laurent Schwartz.

BST proved that in R?, all Lipschitz curves
‘with at least one corner’ have the Pompeiu property.
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In 1976, Williams showed that if a convex body does *not™
have the Pompeiu property, then its boundary cannot be
real analytic. This implies, in particular, that all
polytopes have the Pompeiu property.

But the methods of Williams, although quite important,
are highly non-trivial, and involve eigenvalues of the Laplacian.

Here we find a simple proof, involving the explicit form ot
the Fourier transform ot a polytope.

But our emphasis is on the zero set of the Fourier transtorm of
a polytope P - also called the null set of P.
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First, we recall the definition of the Fourier transform in R%:

f©) = | e dn

In the case that f is the INDICATOR function of a
convex body P, we have the special case:

1p(§) == /Rd 1p(z)e2™45®) dy :/ e~ 2mHET) .
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So what does the Fourier transform of a polytope look like?

In R?, let’s see what the Fourier transform of
a simple triangle looks like.

It’s not difficult to show that:

j: (5)_ (1>2< 1 | b6—2777}a§1 | a6—27m'b§2 )
G T R T T N B R

valid for ‘generic’ vectors & := (&1,&2) € C.

(Homework)
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Theorem. For any real polytope P C R¢,
its Fourier transform may be written as follows:

—2mi(v,z) M

. det K,
—27i{u,2) T € J
/P k g (27 > ’

d
vEV j=1 Hk:1<wj,kv 2)

where V' 1s the set of vertices of P, and the matrices K
are formed by certain well-defined combinations of
edge vectors w, . of polyhedral cones (vertex tangent
cones) that emanate from each vertex.
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We call such an expansion, in the statement of the Theorem above,
an exponential-rational function.

The theorem above, through its various incarnations, is due to
Brion, Lawrence, and Barvinok.

(We are ignoring here a complication inherent in such a formula for
general polytopes: the triangulation of the vertex tangent cones)
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We define the null set of a polytope by:

N(P) :={£ € R*: 1p(€) = 0},

We also define the complex algebraic variety
S¢ () ={2€C?| 2]+ -+ 25 =1},

for each fixed r > 0.

(Note: it is tricky to visualize Sg_l, even when d = 2,
because even in this case we have a 2-dimensional, unbounded
manifold sitting in R*, as one can easily check.)



Fact. The null set of a polytope gives a lot of information
about the combinatorics of the polytope. In particular, it
also gives us a necessary and sufficient condition for tiling
and multi-tiling.



Harmonic analysis lemma for tilings

in terms of the null set of P

Lemma. (M. Kolountzakis)

A convex polytope P admits a k-tiling of R by translations

with the lattice £ if and only if both of the following
conditions are true:

(a) 1p(m) =0, for all nonzero vectors m € L*

vol P
<b) k = |det L]
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A convex body P has the Pompeiu property

<

1p does not vanish identically on any of
the complex varieties S~ 1(r), for any r > 0.

(S r) ={z€C*|2f+ -+ 25 =1}

In other words, Pompeiu’s problem is equivalent to the claim
that the null set N(P) does not contain any of the complex

algebraic varieties S 1(r).
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Question. |Bianchi, 2016] Does the zero set
N(B)={¢€C?|15(¢) =0}

determine the convex body B, among all convex bodies,
up to translations?

Known: In dimension 2, it is known to be true, but it is
open in all higher dimensions.
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Suppose we have a finite point set S C R?.

We say that S has the discrete Pompeiu property,
with respect to isometries (similarities),

if for all functions f : R? — C such that the sum of the
values of f on any congruent (similar) copy of S is zero,
then f is identically zero.

But even for d = 2 and for an arbitrary 5-point set,
it is not completely known.
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We may recall that the explicit F'T of a polytope is:
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Suppose we parametrize a circle in Euclidean space by z(t) : [0,1] — R<.

We suppose, to the contrary, that the null set of P does contain a circle.

We can massage the vanishing criterion 0 = 1p(2(t))
of the FT of a polytope, (given explicitly by the theorem above) into:

O — Z pv(t) 627T7:<’U,Z(t)>7
veV (P)

where p,(t) is an explicitly given trigonometric polynomial in ¢.
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for t € |—m, |, and the Bessel function may be defined by

:( ) li n+k'k'< )%'
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Proof ideas.

After some gymnastics with sums, we get a vanishing criterion
that has the shape:

N

0 = Z e P Z Corr T plrrs, )it et ey

vEV (P) k=—N

an over-determined identity that is satisfied by r, for all n € Z.

Considering simple asympotic values of the Bessel functions,
for large n, we arrive at a contradiction.
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