Magnetic Brunn-Minkowski and Borell-Brascamp-Lieb inequalities on Riemannian manifolds

AGA Seminar, September 2024

Rotem Assouline

Weizmann Institute of Science Advisor: Prof. Bo'az Klartag

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	
●OOOOOOO	0000	00000	0000000	

The Brunn-Minkowski inequality

$$A_{\rm O}, A_{\rm I} \subseteq \mathbb{R}^n, \ {\rm O} < \lambda < {\rm I}.$$

$$A_{\lambda} := (1-\lambda)A_{\circ} + \lambda A_{1} := \{(1-\lambda)a_{\circ} + \lambda a_{1} \mid a_{\circ} \in A_{\circ}, a_{1} \in A_{1}\}.$$

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	
●000000	0000	00000	0000000	

The Brunn-Minkowski inequality

$$A_{0}, A_{1} \subseteq \mathbb{R}^{n}, \ 0 < \lambda < 1.$$

 $A_{\lambda} := (1-\lambda)A_{0} + \lambda A_{1} := \{(1-\lambda)a_{0} + \lambda a_{1} \mid a_{0} \in A_{0}, a_{1} \in A_{1}\}.$

Theorem (The Brunn-Minkowski inequality)

 $A_{ extsf{o}}, A_{ extsf{i}} \subseteq \mathbb{R}^n$ Borel, nonempty, $extsf{o} < \lambda < extsf{i}$,

$$|A_{\lambda}|^{1/n} \ge (1-\lambda)|A_{0}|^{1/n} + \lambda|A_{1}|^{1/n}$$

The Brunn-Minkowski inequality

$$A_{o}, A_{1} \subseteq \mathbb{R}^{n}, \ o < \lambda < 1.$$

$$A_{\lambda} := (1 - \lambda)A_{o} + \lambda A_{1} := \{(1 - \lambda)a_{o} + \lambda a_{1} \mid a_{o} \in A_{o}, a_{1} \in A_{1}\}.$$
Theorem (The Brunn-Minkowski inequality)
$$A_{o} \in \mathbb{R}^{n} \text{ Porcel population} \{0 < \lambda < 1\}.$$

 $A_0, A_1 \subseteq \mathbb{K}^n$ Borel, nonempty, $0 < \Lambda < 1$,

$$|A_{\lambda}|^{1/n} \ge (1-\lambda)|A_{0}|^{1/n} + \lambda|A_{1}|^{1/n}$$

Theorem (The Prékopa-Leindler inequality)

 $0 < \lambda < 1$, $f_0, f_\lambda, f_1 : \mathbb{R}^n \to [0, \infty)$ integrable such that

$$f_{\lambda}((1-\lambda)x_{o}+\lambda x_{1}) \geqslant f_{o}(x_{o})^{1-\lambda}f_{1}(x_{1})^{\lambda} \qquad \text{for every } x_{o}, x_{1} \in \mathbb{R}^{n}.$$

$$\implies \qquad \int_{\mathbb{R}^n} f_{\lambda}(x) dx \geqslant \left(\int_{\mathbb{R}^n} f_0(x) dx \right)^{1-\lambda} \left(\int_{\mathbb{R}^n} f_1(x) dx \right)^{\lambda}.$$

 BACKCROUND
 MAGNETIC GEODESICS
 MAGNETIC BM AND BBL
 PROOF OUTLINE
 FUTURE STUDY

 0000000
 0000
 000000
 00000000
 0

The Brunn-Minkowski inequality

(M,g) Riemannian manifold, $A_0, A_1 \subseteq M, \ 0 < \lambda < 1.$

$$A_{\lambda} := \left\{ \begin{array}{cc} \gamma(\lambda) \\ geodesic, \end{array} \right| \begin{array}{c} \gamma: [\mathsf{o}, \mathsf{1}] \to M \text{ constant speed minimizing} \\ geodesic, \end{array} \right\}$$

The Brunn-Minkowski inequality

(M,g) Riemannian manifold, $A_0, A_1 \subseteq M, \ 0 < \lambda < 1.$

$$A_{\lambda} := \left\{ \begin{array}{cc} \gamma(\lambda) & \gamma: [\mathsf{0}, \mathsf{1}] \to M \text{ constant speed minimizing} \\ \text{geodesic,} & \gamma(\mathsf{0}) \in A_{\mathsf{0}}, \quad \gamma(\mathsf{1}) \in A_{\mathsf{1}}. \end{array} \right\}$$

Theorem (Cordero-Erausquin, McCann & Schmuckenschläger '01, Sturm '06)

(M,g) complete *n*-dim Riemannian manifold, $A_0, A_1 \subseteq M$ Borel, nonempty, $0 < \lambda < 1$, $\operatorname{Ric}_g \ge 0 \implies$

$$\operatorname{Vol}_{g}(A_{\lambda})^{1/n} \ge (1-\lambda)\operatorname{Vol}_{g}(A_{\circ})^{1/n} + \lambda \operatorname{Vol}_{g}(A_{1})^{1/n}.$$

 BACKEROUND
 MACNETIC GEODESICS
 MACNETIC BM AND BBL
 PROOF OUTLINE
 FUTURE STUDY

 0000000
 000000
 0000000
 0
 0
 0

The Brunn-Minkowski inequality

(M,g) Riemannian manifold, $A_0, A_1 \subseteq M, \ 0 < \lambda < 1.$

 $A_{\lambda} := \left\{ \begin{array}{c} \gamma(\lambda) \\ geodesic, \end{array} \right| \begin{array}{c} \gamma: [\mathsf{o}, \mathsf{I}] \to M \text{ constant speed minimizing} \\ geodesic, \end{array} \right\}$

Theorem (Cordero-Erausquin, McCann & Schmuckenschläger '01, Sturm '06)

(M,g) complete *n*-dim Riemannian manifold, $A_0, A_1 \subseteq M$ Borel, nonempty, $0 < \lambda < 1$, $\operatorname{Ric}_g \ge 0 \implies$

 $\operatorname{Vol}_{g}(A_{\lambda})^{1/n} \geqslant (1-\lambda)\operatorname{Vol}_{g}(A_{\circ})^{1/n} + \lambda \operatorname{Vol}_{g}(A_{1})^{1/n}.$

 BACKCROUND
 MAGNETIC GEODESICS
 MAGNETIC BM AND BBL
 PROOF OUTLINE
 FUTURE STUDY

 0000000
 0000
 00000000
 0
 0
 0

The Brunn-Minkowski inequality

(M,g) Riemannian manifold, $A_0, A_1 \subseteq M, \ 0 < \lambda < 1.$

 $A_{\lambda} := \left\{ \begin{array}{c} \gamma(\lambda) \\ geodesic, \end{array} \right| \begin{array}{c} \gamma: [\mathsf{o}, \mathsf{I}] \to M \text{ constant speed minimizing} \\ geodesic, \end{array} \right\}$

Theorem (Cordero-Erausquin, McCann & Schmuckenschläger '01, Sturm '06)

(M,g) complete *n*-dim Riemannian manifold, $A_0, A_1 \subseteq M$ Borel, nonempty, $0 < \lambda < 1$, $\operatorname{Ric}_g \geqslant 0 \implies$

$$\operatorname{Vol}_{g}(A_{\lambda})^{1/n} \ge (1-\lambda)\operatorname{Vol}_{g}(A_{\circ})^{1/n} + \lambda \operatorname{Vol}_{g}(A_{1})^{1/n}.$$

• $\operatorname{Ric}_{g} \geq K \in \mathbb{R} \implies$ "distorted Brunn-Minkowski" (depends on A_{0}, A_{1})

 BACKCROUND
 MAGNETIC GEODESICS
 MAGNETIC BM AND BBL
 PROOF OUTLINE
 FUTURE STUDY

 0000000
 0000
 00000000
 0
 0
 0

The Brunn-Minkowski inequality

(M,g) Riemannian manifold, $A_0, A_1 \subseteq M, \ 0 < \lambda < 1.$

 $A_{\lambda} := \left\{ \begin{array}{c} \gamma(\lambda) \\ geodesic, \end{array} \right| \begin{array}{c} \gamma: [\mathsf{o}, \mathsf{I}] \to M \text{ constant speed minimizing} \\ geodesic, \end{array} \right\}$

Theorem (Cordero-Erausquin, McCann & Schmuckenschläger '01, Sturm '06)

(M,g) complete *n*-dim Riemannian manifold, $A_0, A_1 \subseteq M$ Borel, nonempty, $0 < \lambda < 1$, $\operatorname{Ric}_g \geqslant 0 \implies$

$$\operatorname{Vol}_{g}(A_{\lambda})^{1/n} \ge (1-\lambda)\operatorname{Vol}_{g}(A_{\circ})^{1/n} + \lambda \operatorname{Vol}_{g}(A_{1})^{1/n}.$$

- $\operatorname{Ric}_{g} \geq K \in \mathbb{R} \implies$ "distorted Brunn-Minkowski" (depends on A_{0}, A_{1})
- ⇐ Magnabosco, Portinale, Rossi '22.

BACKGROUND 00●0000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	Proof outline	
The Bore	ll-Brascamp-Lie	eb inequality		
	$\mathbf{M}_{q}(a,b;\lambda) = \begin{cases} \\ \end{cases}$	$ \begin{pmatrix} (1-\lambda)a^{q}+\lambda b^{q} \end{pmatrix}^{1/q} \\ a^{1-\lambda}b^{\lambda} \\ \max\{a,b\} \\ \min\{a,b\} \end{cases} $	$q \in \mathbb{R} \setminus \{0\}$ $q = 0$ $q = +\infty$	

 $\max\{a, b\} \qquad q = +\infty$ $\min\{a, b\} \qquad q = -\infty$

Theorem (Cordero-Erausquin, McCann, Schmuckenschläger '01)

(M, g) complete *n*-dim Riemannian manifold, $q \in [-1/n, \infty]$, $0 < \lambda < 1$, $f_0, f_\lambda, f_1 : M \to [0, \infty)$ integrable such that

 $f_{\lambda}(\gamma(\lambda)) \ge \mathbf{M}_q(f_0(\gamma(0)), f_1(\gamma(1)); \lambda)$ for every min. geo. $\gamma : [0, 1] \to M$.

If
$$\operatorname{Ric}_g \ge \operatorname{o}$$
 then: $\int_M f_\lambda d\operatorname{Vol}_g \ge \mathbf{M}_{\frac{q}{1+qN}}\left(\int_M f_\circ d\operatorname{Vol}_g, \int_M f_1 d\operatorname{Vol}_g; \lambda\right).$

(In Euclidean space due to Henstock & Macbeath '53, Borell '75, Brascamp & Lieb '76).

BACKGROUND 0000000	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	
The Borell	-Brascamp-Lie	eb inequality		
	$\mathbf{M}_q(a,b;\lambda) = \begin{cases} \\ \end{cases}$	$ \begin{pmatrix} (1-\lambda)a^{q}+\lambda b^{q} \end{pmatrix}^{1/q} \\ a^{1-\lambda}b^{\lambda} \\ \max\{a,b\} \\ \min\{a,b\} \end{cases} $	$q \in \mathbb{R} \setminus \{o\}$ $q = o$ $q = +\infty$ $q = -\infty$	

Theorem (Cordero-Erausquin, McCann, Schmuckenschläger '01)

(M,g) complete *n*-dim Riemannian manifold, $q \in [-1/n, \infty]$, $0 < \lambda < 1$, $f_0, f_\lambda, f_1 : M \to [0, \infty)$ integrable such that

 $f_{\lambda}(\gamma(\lambda)) \ge \mathbf{M}_q(f_0(\gamma(0)), f_1(\gamma(1)); \lambda)$ for every min. geo. $\gamma : [0, 1] \to M$.

If
$$\operatorname{Ric}_g \ge \operatorname{o}$$
 then: $\int_M f_\lambda d\operatorname{Vol}_g \ge \mathbf{M}_{\frac{q}{1+qN}}\left(\int_M f_\circ d\operatorname{Vol}_g, \int_M f_1 d\operatorname{Vol}_g; \lambda\right).$

(In Euclidean space due to Henstock & Macbeath '53, Borell '75, Brascamp & Lieb '76).

Finsler manifolds (Ohta '09), Metric measure spaces (Bacher '10), Heisenberg groups (Balogha, Kristályb, Sipos '16)...

Horocyclic Brunn-Minkowski inequality

 $\mathbf{H}^2 :=$ the hyperbolic plane. Let $A_0, A_1 \subseteq \mathbf{H}^2$.

$$A_{\lambda} := \left\{ \begin{array}{cc} \gamma(\lambda) \\ \gamma(o) \in A_{o}, \quad \gamma(1) \in A_{I} \end{array} \right\}$$

Horocyclic Brunn-Minkowski inequality

 $\mathbf{H}^2 :=$ the hyperbolic plane. Let $A_0, A_1 \subseteq \mathbf{H}^2$.

Horocyclic Brunn-Minkowski inequality

Theorem (A., Klartag '22)

For every $A_0, A_1 \subseteq \mathbf{H}^2$ Borel, nonempty, and $0 < \lambda < 1$,

 $\operatorname{Area}(A_{\lambda})^{1/2} \geqslant (1-\lambda)\operatorname{Area}(A_{0})^{1/2} + \lambda\operatorname{Area}(A_{1})^{1/2}$

Horocyclic Brunn-Minkowski inequality

Theorem (A., Klartag '22)

For every $A_0, A_1 \subseteq \mathbf{H}^2$ Borel, nonempty, and $0 < \lambda < 1$,

$$\operatorname{Area}(A_{\lambda})^{1/2} \geqslant (1-\lambda)\operatorname{Area}(A_{0})^{1/2} + \lambda\operatorname{Area}(A_{1})^{1/2}$$

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	

M manifold, Γ collection of curves on *M*,

 μ measure on *M*, $q \in \mathbb{R}$.

 $A_{\mathsf{o}}, A_1 \subseteq M$, $\mathsf{o} < \lambda < \mathsf{1}$.

$$A_{\lambda} := \{\gamma(\lambda) \mid \gamma \in \Gamma, \gamma(0) \in A_0, \gamma(1) \in A_1\}.$$

When is it true that

 $\mu(A_{\lambda}) \geq \mathbf{M}_{q}(\mu(A_{o}), \mu(A_{1}); \lambda)$

for every Borel nonempty $A_0, A_1 \subseteq M$?

BACKGROUND OOOOO●O	Magnetic geodesics 0000	Magnetic BM and BBL 00000	Proof outline	

M manifold, Γ collection of curves on *M*,

 μ measure on *M*, $q \in \mathbb{R}$.

 $A_{0}, A_{1} \subseteq M$, $0 < \lambda < 1$.

$$A_{\lambda} := \{\gamma(\lambda) \mid \gamma \in \Gamma, \gamma(0) \in A_0, \gamma(1) \in A_1\}.$$

When is it true that

$$\mu(A_{\lambda}) \geq \mathbf{M}_{q}(\mu(A_{o}), \mu(A_{1}); \lambda)$$

for every Borel nonempty $A_0, A_1 \subseteq M$?

• Displacement interpolations from a Hamiltonian point of view, Lee '13.

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	

M manifold, Γ collection of curves on M,

 μ measure on *M*, $q \in \mathbb{R}$.

 $A_{\mathsf{o}}, A_{\mathsf{1}} \subseteq M$, $\mathsf{o} < \lambda < \mathsf{1}$.

$$A_{\lambda} := \{\gamma(\lambda) \mid \gamma \in \Gamma, \gamma(0) \in A_0, \gamma(1) \in A_1\}.$$

When is it true that

$$\mu(A_{\lambda}) \geq \mathbf{M}_{q}(\mu(A_{o}), \mu(A_{1}); \lambda)$$

for every Borel nonempty $A_0, A_1 \subseteq M$?

- Displacement interpolations from a Hamiltonian point of view, Lee '13.
- On the curvature and heat flow on Hamiltonian systems, Ohta '14

Theorem (A. '23)

Let (M, g) be a Riemannian surface (i.e. dim M = 2). $\Gamma \approx$ collection of constant-speed curves such that each $x, y \in M$ are joined by a unique curve $\gamma \in \Gamma$ (+ assumptions).

 $A_{\mathsf{o}}, A_{\mathtt{I}} \subseteq M \qquad A_{\lambda} := \{\gamma(\lambda) \ | \ \gamma \in \Gamma, \ \gamma(\mathsf{o}) \in A_{\mathsf{o}}, \ \gamma(\mathtt{I}) \in A_{\mathtt{I}} \}.$

Theorem (A. '23)

Let (M, g) be a Riemannian surface (i.e. dim M = 2). $\Gamma \approx$ collection of constant-speed curves such that each $x, y \in M$ are joined by a unique curve $\gamma \in \Gamma$ (+ assumptions).

$$A_{\mathsf{o}}, A_{\mathsf{i}} \subseteq M \qquad A_{\lambda} := \{\gamma(\lambda) \ | \ \gamma \in \Gamma, \ \gamma(\mathsf{o}) \in A_{\mathsf{o}}, \ \gamma(\mathsf{i}) \in A_{\mathsf{i}} \}.$$

TFAE:

1. For every pair of Borel, nonempty subsets $A_{\rm O}, A_{\rm I}\subseteq {\it M}$ and every 0 $<\lambda<$ 1,

$$\operatorname{Vol}_{g}(A_{\lambda})^{1/2} \ge (1-\lambda) \cdot \operatorname{Vol}_{g}(A_{\circ})^{1/2} + \lambda \cdot \operatorname{Vol}_{g}(A_{1})^{1/2},$$

2. There exists a smooth function $\kappa: M \to \mathbb{R}$ such that

$$\Gamma = \left\{ \text{solutions to the ODE} \quad \nabla_{\dot{\gamma}} \dot{\gamma} = \kappa \cdot |\dot{\gamma}| \cdot \dot{\gamma}^{\perp} \right\},$$

and moreover $K + \kappa^2 - |\nabla \kappa| \ge 0$, where *K* is the Gauss curvature of *g*.

BACKGROUND MACNETIC GEODESICS MACNETIC BM AND BBL PROF OUTLINE FUTURE S' 0000000 ●000 000000 0 000000 000000 0	ND MAGNETI	MAGNETIC GEODESICS MAGNETIC BM OOOO 00000	AND BBL PROOF OUTLINE	
--	------------	--	-----------------------	--

ACKGROUND	Magnetic geodesics ©000	Magnetic BM and BBL 00000	Proof outline	
000000	0000	00000	0000000	0

Riemannian manifold (M, g);

BACKGROUND MAGNETIC GEODESICS MAGNETIC BM AND BBL 0000000 ●000 00000	Proof outline 0000000	
---	--------------------------	--

Riemannian manifold (M, g); one-form η ("magnetic potential");

BACKGROUND MAGNETIC GEODESICS	Magnetic BM and BBL 00000	Proof outline	
-------------------------------	------------------------------	---------------	--

Riemannian manifold (M, g); one-form η ("magnetic potential"); $\Omega = d\eta$.

BACKGROUND	MAGNETIC GEODESICS	Magnetic BM and BBL	Proof outline	
0000000	OOO	00000	0000000	

Riemannian manifold (M, g); one-form η ("magnetic potential"); $\Omega = d\eta$.

Geodesics

Magnetic geodesics

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	
0000000	●000	00000	0000000	
Magnetic g	eodesics			

Riemannian manifold (M, g); one-form η ("magnetic potential"); $\Omega = d\eta$.

Geodesics	Magnetic geodesics
Minimizers of	Minimizers of
$Len[\gamma];$	$S[\gamma] := Len[\gamma] - \int_{\gamma} \eta.$

BACKGROUND 0000000	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline 0000000			
Magnetic geodesics						
Riema	nnian manifold (<i>M</i> , g	r); one-form η ("magr	netic potential"); ($\Omega = d\eta$.		

	8
Minimizers of	Minimizers of
Len[γ];	$S[\gamma] := Len[\gamma] - \int_{\gamma} \eta.$

Solutions to

 $\nabla_{\dot{\gamma}}\dot{\gamma} = 0;$

Geodesics

When parametrized by arclength, solutions to

Magnetic geodesics

$$\left< \nabla_{\dot{\gamma}} \dot{\gamma}, \cdot \right> = \Omega(\dot{\gamma}, \cdot).$$

BACKGRO 00000	OO	Magnetic geodesics ●000	Magnetic BM and BBL 00000	Proof outline	Future study O
Ma	gnetic g	eodesics			
	Riemannia	an manifold (<i>M</i> , g	η); one-form η ("magn	etic potential"); ($\Omega = d\eta$.
	Geodesi	CS	Magnetic g	geodesics	
	Minimiz	ers of	Minimizers	s of	
		Len[γ];	$S[\gamma]$:	$= \operatorname{Len}[\gamma] - \int_{\gamma} \eta$].
	Solution	s to	When para	metrized by arcl	ength,

solutions to

$$\langle \nabla_{\dot{\gamma}} \dot{\gamma}, \cdot \rangle = \Omega(\dot{\gamma}, \cdot).$$

Integral curves of the Hamiltonian flow on T^*M with the Hamiltonian g and the canonical symplectic form ω ;

 $\nabla_{\dot{\gamma}}\dot{\gamma} = 0;$

Integral curves of the Hamiltonian flow on T^*M with the Hamiltonian g and the symplectic form $\omega_{\Omega} := \omega + \pi^*\Omega$.

BACKGROUND 0000000	Magnetic geodesics 0●00	Magnetic BM and BBL 00000	PROOF OUTLINE	
_				

Examples

• $\eta = 0$: geodesics.

BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	Proof outline	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$.

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	
0000000	0●00	00000	0000000	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$. Magnetic geodesics are arcs of circles of radius $1/\kappa$.

BACKGROUND 0000000	Magnetic geodesics ○●○○	Magnetic BM and BBL 00000	PROOF OUTLINE	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$. Magnetic geodesics are arcs of circles of radius $1/\kappa$.
- $M = \mathbb{R}^2$, $\Omega = \kappa(x, y) dx \wedge dy$.

BACKGROUND 0000000	Magnetic geodesics ○●○○	Magnetic BM and BBL 00000	PROOF OUTLINE	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$. Magnetic geodesics are arcs of circles of radius $1/\kappa$.
- $M = \mathbb{R}^2$, $\Omega = \kappa(x, y) dx \wedge dy$. Unit-speed magnetic geodesics solve

 $\ddot{\gamma} = \kappa i \dot{\gamma}.$

BACKGROUND OOOOOOO	Magnetic geodesics 0000	Magnetic BM and BBL 00000	Proof outline	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$. Magnetic geodesics are arcs of circles of radius $1/\kappa$.
- $M = \mathbb{R}^2$, $\Omega = \kappa(x, y) dx \wedge dy$. Unit-speed magnetic geodesics solve

 $\ddot{\gamma} = \kappa \, i \, \dot{\gamma}.$

• $M = \mathbf{H}^2$, $\Omega =$ hyperbolic area form.

BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	PROOF OUTLINE	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$. Magnetic geodesics are arcs of circles of radius $1/\kappa$.
- $M = \mathbb{R}^2$, $\Omega = \kappa(x, y) dx \wedge dy$. Unit-speed magnetic geodesics solve

$$\ddot{\gamma} = \kappa i \dot{\gamma}.$$

M = H², Ω = hyperbolic area form. Magnetic geodesics are oriented horocycles.
BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	PROOF OUTLINE	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$. Magnetic geodesics are arcs of circles of radius $1/\kappa$.
- $M = \mathbb{R}^2$, $\Omega = \kappa(x, y) dx \wedge dy$. Unit-speed magnetic geodesics solve

$$\ddot{\gamma} = \kappa i \dot{\gamma}.$$

- M = H², Ω = hyperbolic area form. Magnetic geodesics are oriented horocycles.
- (M, ω) Kähler manifold. $\Omega = \kappa \omega$, where ω is the Kähler form and $\kappa \in \mathbb{R}$.

BACKGROUND 0000000	Magnetic geodesics 0●00	Magnetic BM and BBL 00000	PROOF OUTLINE	
Examples				

- $\eta = 0$: geodesics.
- $M = \mathbb{R}^2$, $\Omega = \kappa \, dx \wedge dy$, $\kappa \in \mathbb{R}$. Can take e.g. $\eta = \kappa x dy$. Magnetic geodesics are arcs of circles of radius $1/\kappa$.
- $M = \mathbb{R}^2$, $\Omega = \kappa(x, y) dx \wedge dy$. Unit-speed magnetic geodesics solve

$$\ddot{\gamma} = \kappa i \dot{\gamma}.$$

- M = H², Ω = hyperbolic area form. Magnetic geodesics are oriented horocycles.
- (M, ω) Kähler manifold. $\Omega = \kappa \omega$, where ω is the Kähler form and $\kappa \in \mathbb{R}$. Unit-speed magnetic geodesics solve

$$abla_{\dot{\gamma}}\dot{\gamma} = \kappa \, \mathrm{J}\dot{\gamma},$$

where J is the complex structure.

BACKGROUND MACNETIC CEODESICS MACNETIC BM AND BBL PROOF OUTLINE 0000000 00●0 00000 000000 Future study O

Magnetic Ricci curvature

BACKGROUND 0000000	Magnetic geodesics oo●o	Magnetic BM and BBL 00000	Proof outline	

 $\Omega(\mathbf{v}, \mathbf{w}) = \langle \mathbf{Y}\mathbf{v}, \mathbf{w} \rangle$, $\mathbf{v}, \mathbf{w} \in T_x M$, $x \in M$.

Y is the "Lorentz force": unit-speed magnetic geodesics satisfy $abla_{\dot{\gamma}}\dot{\gamma} = Y\dot{\gamma}$.

BACKGROUND 0000000	MAGNETIC GEODESICS	Magnetic BM and BBL 00000	PROOF OUTLINE	

$$\Omega(\mathbf{v}, \mathbf{w}) = \langle \mathbf{Y}\mathbf{v}, \mathbf{w} \rangle$$
, $\mathbf{v}, \mathbf{w} \in T_x M$, $x \in M$.

Y is the "Lorentz force": unit-speed magnetic geodesics satisfy $abla_{\dot{\gamma}}\dot{\gamma} = Y\dot{\gamma}$.

$$mRic(v) := Ric(v) - (\delta\Omega)(v) + \frac{|\Omega|^2}{4} + \frac{|Yv|^2}{2}, \qquad v \in SM$$

BACKGROUND OOOOOOO	MAGNETIC GEODESICS	Magnetic BM and BBL 00000	Proof outline 0000000	

 $\Omega(\mathbf{v},\mathbf{w}) = \langle \mathbf{Y}\mathbf{v},\mathbf{w}
angle$, $\mathbf{v},\mathbf{w} \in T_x M$, $x \in M$.

Y is the "Lorentz force": unit-speed magnetic geodesics satisfy $\nabla_{\dot{\gamma}}\dot{\gamma} = Y\dot{\gamma}$.

$$mRic(v) := Ric(v) - (\delta\Omega)(v) + \frac{|\Omega|^2}{4} + \frac{|Yv|^2}{2}, \qquad v \in SM$$

• If dim M = 2 and $\Omega = \kappa \operatorname{Vol}_g$ for some $\kappa : M \to \mathbb{R}$, then

$$\operatorname{mRic}(v) = K(x) - \langle iv, \nabla \kappa \rangle_x + \kappa(x)^2, \quad v \in T_x M, \quad x \in M.$$

BACKGROUND 0000000	MAGNETIC GEODESICS	Magnetic BM and BBL 00000	Proof outline 0000000	

 $\Omega(\mathbf{v},\mathbf{w}) = \langle \mathbf{Y}\mathbf{v},\mathbf{w}\rangle, \qquad \mathbf{v},\mathbf{w}\in T_{\mathbf{x}}M, \quad \mathbf{x}\in M.$

Y is the "Lorentz force": unit-speed magnetic geodesics satisfy $abla_{\dot{\gamma}}\dot{\gamma} = Y\dot{\gamma}$.

$$mRic(v) := Ric(v) - (\delta\Omega)(v) + \frac{|\Omega|^2}{4} + \frac{|Yv|^2}{2}, \qquad v \in SM$$

• If dim M = 2 and $\Omega = \kappa \operatorname{Vol}_g$ for some $\kappa : M \to \mathbb{R}$, then

$$\operatorname{mRic}(v) = K(x) - \langle iv, \nabla \kappa \rangle_x + \kappa(x)^2, \quad v \in T_x M, \quad x \in M.$$

• If (M, ω) is a Kähler manifold of complex dimension n and $\Omega = \kappa \omega$ where $\kappa \equiv \text{const}$, then

$$\operatorname{mRic}(v) = \operatorname{Ric}(v) + \frac{n+1}{2} \cdot \kappa^2, \quad v \in SM.$$

BACKGROUND 0000000	MAGNETIC GEODESICS	Magnetic BM and BBL 00000	PROOF OUTLINE	

 $\Omega(\mathbf{v},\mathbf{w}) = \langle \mathbf{Y}\mathbf{v},\mathbf{w}\rangle, \qquad \mathbf{v},\mathbf{w}\in T_{\mathbf{x}}M, \quad \mathbf{x}\in M.$

Y is the "Lorentz force": unit-speed magnetic geodesics satisfy $abla_{\dot{\gamma}}\dot{\gamma} = Y\dot{\gamma}$.

$$mRic(v) := Ric(v) - (\delta\Omega)(v) + \frac{|\Omega|^2}{4} + \frac{|Yv|^2}{2}, \qquad v \in SM$$

• If dim M = 2 and $\Omega = \kappa \operatorname{Vol}_g$ for some $\kappa : M \to \mathbb{R}$, then

 $\operatorname{mRic}(v) = K(x) - \langle iv, \nabla \kappa \rangle_x + \kappa(x)^2, \quad v \in T_x M, \quad x \in M.$

• If (M, ω) is a Kähler manifold of complex dimension n and $\Omega = \kappa \omega$ where $\kappa \equiv \text{const}$, then

$$\operatorname{mRic}(v) = \operatorname{Ric}(v) + \frac{n+1}{2} \cdot \kappa^2, \quad v \in SM.$$

Gouda '97, Grognet '99, Wojtkowski '00, Adachi '11, Assenza '23.

MAGNETIC GEODESICS		
0000		

Let V be a vector field satisfying $|V| \equiv 1$ and $\nabla_V V = YV$.

BACKGROUND MACNETIC GEODESICS 0000000 000	Magnetic BM and BBL 00000	PROOF OUTLINE	
--	------------------------------	---------------	--

Let V be a vector field satisfying $|V| \equiv 1$ and $\nabla_V V = YV$. The (1, 1)-tensor ∇V satisfies the *Riccati equation*

$$\nabla_{V}(\nabla V) + (\nabla V)^{2} = R(V, \cdot)V + \nabla(YV).$$

BACKGROUND 0000000	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	

Let V be a vector field satisfying $|V| \equiv 1$ and $\nabla_V V = YV$. The (1, 1)-tensor ∇V satisfies the *Riccati equation*

$$\nabla_V (\nabla V) + (\nabla V)^2 = R(V, \cdot)V + \nabla(YV).$$

$$\implies V \operatorname{div} V + \frac{(\operatorname{div} V)^2}{n-1} + m \operatorname{Ric}(V) \leq 0.$$

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	

Let V be a vector field satisfying $|V| \equiv 1$ and $\nabla_V V = YV$. The (1, 1)-tensor ∇V satisfies the *Riccati equation*

$$\nabla_V (\nabla V) + (\nabla V)^2 = R(V, \cdot)V + \nabla(YV).$$

$$\implies$$
 $V \operatorname{div} V + \frac{(\operatorname{div} V)^2}{n-1} + \operatorname{mRic}(V) \leq 0.$

lf

$$J_t := \det d\Phi_t,$$

where Φ is the flow of V,

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL 00000	PROOF OUTLINE	
000000	0000	00000	0000000	0

Let V be a vector field satisfying $|V| \equiv 1$ and $\nabla_V V = YV$. The (1, 1)-tensor ∇V satisfies the *Riccati equation*

$$\nabla_V (\nabla V) + (\nabla V)^2 = R(V, \cdot)V + \nabla(YV).$$

$$\implies$$
 $V \operatorname{div} V + \frac{(\operatorname{div} V)^2}{n-1} + \operatorname{mRic}(V) \leq 0.$

lf

 $J_t := \det d\Phi_t$,

where Φ is the flow of *V*, then div $V = d(\log J_t)/dt$,

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	
0000000	0000	00000	0000000	0

Let V be a vector field satisfying $|V| \equiv 1$ and $\nabla_V V = YV$. The (1, 1)-tensor ∇V satisfies the *Riccati equation*

$$\nabla_V (\nabla V) + (\nabla V)^2 = R(V, \cdot)V + \nabla(YV).$$

$$\implies V \operatorname{div} V + \frac{(\operatorname{div} V)^2}{n-1} + m \operatorname{Ric}(V) \leqslant 0.$$

lf

 $J_t := \det d\Phi_t$,

where Φ is the flow of *V*, then div $V = d(\log J_t)/dt$, so

$$\frac{d^2}{dt^2} \left(\log J_t\right) + \frac{\left(\frac{d}{dt}\log J_t\right)^2}{n-1} + \operatorname{mRic}(V) \leqslant 0.$$

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	
0000000	0000	00000	0000000	0

Let *V* be a vector field satisfying $|V| \equiv 1$ and $\nabla_V V = YV$. The (1, 1)-tensor ∇V satisfies the *Riccati equation*

$$\nabla_V (\nabla V) + (\nabla V)^2 = R(V, \cdot)V + \nabla(YV).$$

$$\implies V \operatorname{div} V + \frac{(\operatorname{div} V)^2}{n-1} + m \operatorname{Ric}(V) \leqslant 0.$$

lf

 $J_t := \det d\Phi_t$,

where Φ is the flow of *V*, then div $V = d(\log J_t)/dt$, so

$$\frac{d^2}{dt^2} \left(\log J_t\right) + \frac{\left(\frac{d}{dt}\log J_t\right)^2}{n-1} + \operatorname{mRic}(V) \leqslant 0.$$

In particular, if mRic ≥ 0 then J_t is $\frac{1}{n-1}$ -concave (hence log-concave) in t.

000000 0000 0000 0	BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL ●0000	Proof outline	
--------------------	-----------------------	----------------------------	------------------------------	---------------	--

Let (M, g) be a complete, connected, oriented, *n*-dimensional Riemannian manifold, endowed with a one-form η . We assume

- Let (M, g) be a complete, connected, oriented, *n*-dimensional Riemannian manifold, endowed with a one-form η . We assume
 - **Magnetic convexity**: Every *x*, *y* ∈ *M* can be joined by a minimizing magnetic geodesic.

- Let (M, g) be a complete, connected, oriented, *n*-dimensional Riemannian manifold, endowed with a one-form η . We assume
 - **Magnetic convexity**: Every *x*, *y* ∈ *M* can be joined by a minimizing magnetic geodesic.
 - **Supercriticality**: For every closed curve γ ,

$$S[\gamma] > 0$$
 where $S[\gamma] := Len[\gamma] - \int_{\gamma} \eta$.

- Let (M, g) be a complete, connected, oriented, *n*-dimensional Riemannian manifold, endowed with a one-form η . We assume
 - **Magnetic convexity**: Every *x*, *y* ∈ *M* can be joined by a minimizing magnetic geodesic.
 - **Supercriticality**: For every closed curve γ ,

$$S[\gamma] > 0$$
 where $S[\gamma] := Len[\gamma] - \int_{\gamma} \eta$.

• **Properness**: For every compact $A \subseteq M$ there exists a compact $\tilde{A} \supseteq A$ such that every minimizing magnetic geodesic with endpoints in A is contained in \tilde{A} .

$$\begin{split} A_{\mathsf{o}}, A_{\mathsf{I}} &\subseteq M, \mathsf{o} < \lambda < \mathsf{I}. \\ A_{\lambda} &:= \left\{ \left. \begin{array}{c} \gamma(\lambda) \right| & \gamma : [\mathsf{o}, \mathsf{I}] \to M \, \mathsf{constant} \, \mathsf{speed} \, \mathsf{minimizing} \\ \mathsf{magnetic} \, \mathsf{geodesic}, & \gamma(\mathsf{o}) \in A_{\mathsf{o}}, \quad \gamma(\mathsf{I}) \in A_{\mathsf{I}} \end{array} \right\} \end{split}$$

$$\begin{split} A_{\mathsf{o}}, A_{\mathsf{I}} &\subseteq \mathsf{M}, \mathsf{o} < \lambda < \mathsf{I}. \\ A_{\lambda} &:= \left\{ \left. \begin{array}{c} \gamma(\lambda) \right| & \gamma : [\mathsf{o}, \mathsf{I}] \to \mathsf{M} \text{ constant speed minimizing} \\ & \mathsf{magnetic geodesic}, & \gamma(\mathsf{o}) \in A_{\mathsf{o}}, & \gamma(\mathsf{I}) \in A_{\mathsf{I}} \end{array} \right\}. \end{split}$$

Theorem (A. '24)mRic $\geq 0 \implies \forall A_0, A_1 \subseteq M$ Borel, nonempty, $0 < \lambda < 1$,

$$\operatorname{Vol}_{\mathcal{G}}(A_{\lambda})^{1/n} \ge (1-\lambda)\operatorname{Vol}_{\mathcal{G}}(A_{\circ})^{1/n} + \lambda \operatorname{Vol}_{\mathcal{G}}(A_{1})^{1/n}.$$

$$A_{ extsf{o}}, A_{ extsf{1}} \subseteq M$$
 , $extsf{o} < \lambda <$ 1.

 $A_{\lambda} := \left\{ \begin{array}{c} \gamma(\lambda) \ \middle| \quad \gamma : [\mathsf{o}, \mathsf{I}] \to \mathit{M} \text{ constant speed minimizing} \\ \text{magnetic geodesic,} \quad \gamma(\mathsf{o}) \in \mathit{A}_\mathsf{o}, \quad \gamma(\mathsf{I}) \in \mathit{A}_\mathsf{I} \end{array} \right\}.$

Theorem (A. '24) mRic $\geq 0 \implies \forall A_0, A_1 \subseteq M$ Borel, nonempty, $0 < \lambda < 1$,

$$\operatorname{Vol}_{\mathcal{G}}(A_{\lambda})^{1/n} \ge (1-\lambda)\operatorname{Vol}_{\mathcal{G}}(A_{\circ})^{1/n} + \lambda \operatorname{Vol}_{\mathcal{G}}(A_{1})^{1/n}$$

 $mRic \ge K \in \mathbb{R} \implies$ "distorted Magnetic Brunn-Minkowski".

BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	Proof outline	

Example: complex hyperbolic space

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	
0000000	0000	00●00	0000000	

Example: complex hyperbolic space

The unit ball $M = \{z \in \mathbb{C}^n \mid |z| < 1\}$ with the symplectic form and metric

$$\omega := \frac{i}{2} \partial \bar{\partial} \log(1-|z|^2), \quad g := 4 \cdot \frac{(1-|z|^2) \sum_i dz_i d\bar{z}_i + (\sum_i \bar{z}_i dz_i) \left(\sum_i z_i d\bar{z}_i\right)}{(1-|z|^2)^2}.$$

is the complex hyperbolic space $\mathbb{C}\mathbf{H}^n$, satisfying $\operatorname{Ric} \equiv -\frac{n+1}{2}$.

BACKCROUND MAGNETIC GEODESICS MAGNETIC BM AND BBL PROOF OUTLINE FUTURE STUDY 0000000 0000 0000 000000 0

Example: complex hyperbolic space

The unit ball $M = \{z \in \mathbb{C}^n \ | \ |z| < \mathbf{I}\}$ with the symplectic form and metric

$$\omega := \frac{i}{2} \partial \bar{\partial} \log(1 - |z|^2), \quad g := 4 \cdot \frac{(1 - |z|^2) \sum_i dz_i d\bar{z}_i + (\sum_i \bar{z}_i dz_i) (\sum_i z_i d\bar{z}_i)}{(1 - |z|^2)^2}.$$

is the complex hyperbolic space $\mathbb{C}\mathbf{H}^n$, satisfying $\operatorname{Ric}\equiv -rac{n+1}{2}$. Set

$$\Omega = \omega = d\eta \qquad \text{where} \qquad \eta := -\frac{1}{2}d^c \log(1-|z|^2) = \frac{i}{4} \cdot \frac{\sum_i \bar{z}_i dz_i - z_i d\bar{z}_i}{1-|z|^2}$$

BACKCROUND MAGNETIC GEODESICS MAGNETIC BM AND BBL PROOF OUTLINE FUTURE STUDY 0000000 0000 0000 000000 0

Example: complex hyperbolic space

The unit ball $M = \{z \in \mathbb{C}^n \mid |z| < 1\}$ with the symplectic form and metric

$$\omega := \frac{i}{2} \partial \bar{\partial} \log(1 - |z|^2), \quad g := 4 \cdot \frac{(1 - |z|^2) \sum_i dz_i d\bar{z}_i + (\sum_i \bar{z}_i dz_i) (\sum_i z_i d\bar{z}_i)}{(1 - |z|^2)^2}.$$

is the complex hyperbolic space $\mathbb{C}\mathbf{H}^n$, satisfying $\operatorname{Ric}\equiv -rac{n+1}{2}$. Set

$$\Omega = \omega = d\eta \qquad \text{where} \qquad \eta := -\frac{1}{2}d^c \log(1-|z|^2) = \frac{i}{4} \cdot \frac{\sum_i \bar{z}_i dz_i - z_i d\bar{z}_i}{1-|z|^2}$$

Then mRic = Ric $+ \frac{n+1}{2} = -\frac{n+1}{2} + \frac{n+1}{2} = 0.$

BACKGROUND MAGNETIC GEODESICS MAGNETIC BM AND BBL PROOF OUTLINE FUTURE STUDY 0000000 0000 00000 0 000000 000000 0

Example: complex hyperbolic space

The unit ball $M = \{z \in \mathbb{C}^n \mid |z| < 1\}$ with the symplectic form and metric

$$\omega := \frac{i}{2} \partial \bar{\partial} \log(1 - |z|^2), \quad g := 4 \cdot \frac{(1 - |z|^2) \sum_i dz_i d\bar{z}_i + (\sum_i \bar{z}_i dz_i) (\sum_i z_i d\bar{z}_i)}{(1 - |z|^2)^2}.$$

is the complex hyperbolic space $\mathbb{C}\mathbf{H}^n$, satisfying $\operatorname{Ric}\equiv -rac{n+1}{2}$. Set

$$\Omega = \omega = d\eta \qquad \text{where} \qquad \eta := -\frac{1}{2}d^c \log(1-|z|^2) = \frac{i}{4} \cdot \frac{\sum_i \bar{z}_i dz_i - z_i d\bar{z}_i}{1-|z|^2}$$

Then mRic = Ric $+ \frac{n+1}{2} = -\frac{n+1}{2} + \frac{n+1}{2} = 0.$

For each $z, w \in M$ there is a unique minimizing magnetic geodesic joining z to w, which lies on a totally geodesic hyperbolic plane (a *complex geodesic*).

BACKGROUND MAGNETIC GEODESICS MAGNETIC BM AND BBL PROOF OUTLINE FUTURE STUDY 0000000 0000 00000 0 000000 000000 0

Example: complex hyperbolic space

The unit ball $M = \{z \in \mathbb{C}^n \mid |z| < 1\}$ with the symplectic form and metric

$$\omega := \frac{i}{2} \partial \bar{\partial} \log(1 - |z|^2), \quad g := 4 \cdot \frac{(1 - |z|^2) \sum_i dz_i d\bar{z}_i + (\sum_i \bar{z}_i dz_i) (\sum_i z_i d\bar{z}_i)}{(1 - |z|^2)^2}.$$

is the complex hyperbolic space $\mathbb{C}\mathbf{H}^n$, satisfying $\operatorname{Ric}\equiv -rac{n+1}{2}$. Set

$$\Omega = \omega = d\eta \qquad \text{where} \qquad \eta := -\frac{1}{2}d^c \log(1-|z|^2) = \frac{i}{4} \cdot \frac{\sum_i \bar{z}_i dz_i - z_i d\bar{z}_i}{1-|z|^2}$$

Then mRic = Ric $+ \frac{n+1}{2} = -\frac{n+1}{2} + \frac{n+1}{2} = 0.$

For each $z, w \in M$ there is a unique minimizing magnetic geodesic joining z to w, which lies on a totally geodesic hyperbolic plane (a *complex geodesic*).

$$\implies \qquad \operatorname{Vol}_{g}(A_{\lambda})^{1/n} \geqslant (1-\lambda)\operatorname{Vol}_{g}(A_{\circ})^{1/n} + \lambda \operatorname{Vol}_{g}(A_{1})^{1/n}.$$

Weighted Borell-Brascamp-Lieb

Weighted Borell-Brascamp-Lieb

Theorem (Coredero-Erqusquin, McCann, Schmuckenschläger '01)

- (*M*, *g*) complete *n*-dimensional Riemannian manifold.
- μ measure on *M* with a smooth positive density.
- $N\in(n,\infty]$, $q\in[-1/N,\infty]$, $K\in\mathbb{R}$, $0<\lambda<1.$
- $f_0, f_\lambda, f_1 : M \to [0, \infty)$ integrable such that for every minimizing geodesic $\gamma : [0, 1] \to M$,

$$f_{\lambda}(\gamma(\lambda)) \geqslant \mathbf{M}_{q}\left(\frac{f_{\mathsf{o}}(\gamma(\mathsf{o}))}{\beta_{1-\lambda}^{K,N}(\ell)}, \frac{f_{1}(\gamma(1))}{\beta_{\lambda}^{K,N}(\ell)}; \lambda\right), \qquad \text{where } \ell = \operatorname{Len}[\gamma].$$

Then, if $\operatorname{Ric}_{\mu,N} \ge K$ then

$$\int_{M} f_{\lambda} d\mu \geq \mathbf{M}_{\frac{q}{1+qN}} \left(\int_{M} f_{0} d\mu, \int_{M} f_{1} d\mu; \lambda \right).$$

Weighted magnetic Borell-Brascamp-Lieb

Theorem (A. '24)

- (M, g, η) satisfying the assumptions.
- μ measure on *M* with a smooth positive density.
- $N\in(n,\infty]$, $q\in[-1/n,\infty]$, $K\in\mathbb{R}$, $0<\lambda<1.$
- $f_0, f_\lambda, f_1 : M \to [0, \infty)$ integrable such that for every minimizing magnetic geodesic $\gamma : [0, 1] \to M$,

$$f_{\lambda}(\gamma(\lambda)) \geqslant \mathbf{M}_{q}\left(\frac{f_{o}(\gamma(o))}{\beta_{1-\lambda}^{K,N}(\ell)}, \frac{f_{1}(\gamma(1))}{\beta_{\lambda}^{K,N}(\ell)}; \lambda\right), \quad \text{where } \ell = \operatorname{Len}[\gamma].$$

Then, if mRic_{μ,N} $\geq K$ then

$$\int_{M} f_{\lambda} d\mu \geq \mathbf{M}_{\frac{q}{1+qN}} \left(\int_{M} f_{0} d\mu, \int_{M} f_{1} d\mu; \lambda \right).$$

Proof outline

BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	PROOF OUTLINE	
-----------------------	----------------------------	------------------------------	---------------	--

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	
0000000	0000	00000	○●○○○○○	
			000000	

Let $f:M \to \mathbb{R}$ be a compactly supported integrable function satisfying $\int_M f d\mu = 0.$

Let $f: M \to \mathbb{R}$ be a compactly supported integrable function satisfying $\int_M f d\mu = 0$. There exist a collection $\{\mu_\alpha\}_{\alpha \in \mathscr{A}}$ of Borel measures on M and a measure ν on the set \mathscr{A} such that:

Let $f: M \to \mathbb{R}$ be a compactly supported integrable function satisfying $\int_M f d\mu = 0$. There exist a collection $\{\mu_{\alpha}\}_{\alpha \in \mathscr{A}}$ of Borel measures on M and a measure ν on the set \mathscr{A} such that:

1. Each measure μ_{α} is supported on a magnetic geodesic $\gamma_{\alpha}.$
Let $f: M \to \mathbb{R}$ be a compactly supported integrable function satisfying $\int_M f d\mu = 0$. There exist a collection $\{\mu_{\alpha}\}_{\alpha \in \mathscr{A}}$ of Borel measures on M and a measure ν on the set \mathscr{A} such that:

- 1. Each measure μ_{α} is supported on a magnetic geodesic $\gamma_{\alpha}.$
- 2. For every Borel measurable function $h:M
 ightarrow\mathbb{R}$,

$$\int_{M} h d\mu = \int_{\mathscr{A}} \left(\int_{M} h d\mu_{\alpha} \right) d\nu(\alpha).$$

Let $f: M \to \mathbb{R}$ be a compactly supported integrable function satisfying $\int_M f d\mu = 0$. There exist a collection $\{\mu_{\alpha}\}_{\alpha \in \mathscr{A}}$ of Borel measures on M and a measure ν on the set \mathscr{A} such that:

- 1. Each measure μ_{α} is supported on a magnetic geodesic $\gamma_{\alpha}.$
- 2. For every Borel measurable function $h:M
 ightarrow\mathbb{R}$,

$$\int_{M} h d\mu = \int_{\mathscr{A}} \left(\int_{M} h d\mu_{\alpha} \right) d\nu(\alpha).$$

3. For ν -almost every $\alpha \in \mathscr{A}$,

$$\int_M f d\mu_\alpha = 0.$$

Let $f: M \to \mathbb{R}$ be a compactly supported integrable function satisfying $\int_M f d\mu = 0$. There exist a collection $\{\mu_{\alpha}\}_{\alpha \in \mathscr{A}}$ of Borel measures on M and a measure ν on the set \mathscr{A} such that:

- 1. Each measure μ_{α} is supported on a magnetic geodesic $\gamma_{\alpha}.$
- 2. For every Borel measurable function $h:M
 ightarrow\mathbb{R}$,

$$\int_M h d\mu = \int_{\mathscr{A}} \left(\int_M h d\mu_\alpha \right) d\nu(\alpha).$$

3. For ν -almost every $\alpha \in \mathscr{A}$,

$$\int_M f d\mu_\alpha = 0.$$

Evans-Gangbo '99, ... , Klartag '14, Ohta '15. Magnetic geodesics are reparametrizations of geodesics of the Finsler metric $F(v) := |v| - \eta(v)$.

Lemma

For v-a.e. $\alpha \in \mathscr{A}$ and every $N \in (-\infty, \infty] \setminus [1, n]$, the density $d\mu_{\alpha}/d\mathfrak{H}^1 =: e^{-\psi_{\alpha}}$ of the needle μ_{α} satisfies

$$\ddot{\psi}_{\alpha} \ge m \operatorname{Ric}_{\mu,N}(\dot{\gamma}_{\alpha}) + \frac{\dot{\psi}_{\alpha}^{2}}{N-1},$$

where dots indicate differentiation with respect to arclength along γ_{α} .

Lemma

For v-a.e. $\alpha \in \mathscr{A}$ and every $N \in (-\infty, \infty] \setminus [1, n]$, the density $d\mu_{\alpha}/d\mathfrak{H}^1 =: e^{-\psi_{\alpha}}$ of the needle μ_{α} satisfies

$$\ddot{\psi}_{\alpha} \ge m \operatorname{Ric}_{\mu,N}(\dot{\gamma}_{\alpha}) + \frac{\dot{\psi}_{\alpha}^{2}}{N-1},$$

where dots indicate differentiation with respect to arclength along $\gamma_{\alpha}.$

Lemma

For ν -almost every $\alpha \in \mathscr{A}$,

$$\int_{M} f_{\lambda} d\mu_{\alpha} \geq \mathbf{M}_{q'} \left(\int_{M} f_{0} d\mu_{\alpha}, \int_{M} f_{1} d\mu_{\alpha}; \lambda \right).$$

More applications of the magnetic needle decomposition

Theorem (Magnetic Poincaré inequality)

Assume that $m\operatorname{Ric}_{\mu,\infty} \geqslant$ 0. Then for every C^1 function $f: M \to \mathbb{R}$,

$$\int_{M} f \, d\mu = 0 \qquad \Longrightarrow \qquad \int_{M} f^{2} d\mu \leqslant \frac{D^{2}}{\pi^{2}} \int_{M} |\nabla f|^{2} d\mu,$$

where D is the length of the longest minimizing magnetic geodesic in M.

More applications of the magnetic needle decomposition

Theorem (Magnetic Poincaré inequality)

Assume that $\operatorname{mRic}_{\mu,\infty} \geqslant 0$. Then for every C^1 function $f: M \to \mathbb{R}$,

$$\int_{M} f \, d\mu = 0 \qquad \Longrightarrow \qquad \int_{M} f^{2} d\mu \leqslant \frac{D^{2}}{\pi^{2}} \int_{M} |\nabla f|^{2} d\mu,$$

where D is the length of the longest minimizing magnetic geodesic in M.

• Log-Sobolev inequalities

...

• Isoperimetric inequalities (Lévy-Gromov, Bakry-Ledoux)

	PROOF OUTLINE	
	0000000	

Lagrangians and Hamiltonians

A Lagrangian is a function $L:TM \to \mathbb{R}$. Associated to each Lagrangian is the Hamiltonian

 $H(p) := \sup\{p(v) - L(v) \mid v \in T_x M\} \qquad p \in T_x^* M, x \in M.$

BACKGROUND MAGNETIC GEODESICS MAGNETIC BM AND BBL PROOF OUTLINE F 0000000 0000 0000 00000 00000 00000 0000	
---	--

Lagrangians and Hamiltonians

A Lagrangian is a function $L:TM \to \mathbb{R}$. Associated to each Lagrangian is the Hamiltonian

 $H(p) := \sup\{p(v) - L(v) \mid v \in T_x M\} \qquad p \in T_x^* M, x \in M.$

The magnetic Lagrangian and its associated Hamiltonian are

$$L(v) = \frac{|v|^2 + 1}{2} - \eta(v), \quad v \in TM; \qquad H(p) = \frac{|p + \eta|^2 - 1}{2}, \quad p \in T^*M.$$

BACKGROUND MAGNETIC GEODESICS MAGNETIC BM AND BBL Proof outline Future s	AGNETIC BM AND BBL PROOF OUTLINE FUTURE STUDY	Magnet	Magnetic geodesics	BACKGROUND
0000000 0000 0000 00000 00000 00000 0000	0000 0000000 0	00000	0000	0000000

Lagrangians and Hamiltonians

A Lagrangian is a function $L:TM \to \mathbb{R}$. Associated to each Lagrangian is the Hamiltonian

 $H(p) := \sup\{p(v) - L(v) \mid v \in T_x M\} \qquad p \in T_x^* M, x \in M.$

The magnetic Lagrangian and its associated Hamiltonian are

$$\begin{split} L(\nu) &= \frac{|\nu|^2 + 1}{2} - \eta(\nu), \quad \nu \in TM; \qquad H(p) = \frac{|p + \eta|^2 - 1}{2}, \quad p \in T^*M. \end{split}$$
 Recall S := Len - $\int \eta$.

Lemma

Let $T > \mathsf{o}$. Let $\gamma : [\mathsf{o}, T] o M$ be a piecewise- C^1 curve. Then

$$S[\gamma] \leqslant \int_{0}^{T} L(\dot{\gamma}(t)) dt,$$

with equality if and only if γ is parametrized by arclength.

BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	PROOF OUTLINE	
-----------------------	----------------------------	------------------------------	---------------	--

Dominated functions and the Hamilton-Jacobi equation

Let $L: TM \to \mathbb{R}$ be a nice Lagrangian.

Dominated functions and the Hamilton-Jacobi equation

Let $L: TM \to \mathbb{R}$ be a nice Lagrangian. A function $u: M \to \mathbb{R}$ is *L*-dominated if for every piecewise- C^1 curve $\gamma: [a, b] \to M$,

$$u(\gamma(b)) - u(\gamma(a)) \leq \int_a^b L(\dot{\gamma}(t)) dt.$$

Dominated functions and the Hamilton-Jacobi equation

Let $L: TM \to \mathbb{R}$ be a nice Lagrangian. A function $u: M \to \mathbb{R}$ is *L*-dominated if for every piecewise- C^1 curve $\gamma: [a, b] \to M$,

$$u(\gamma(b)) - u(\gamma(a)) \leqslant \int_{a}^{b} L(\dot{\gamma}(t)) dt$$

If *u* is *L*-dominated then it is locally Lipschitz and satisfies

 $H(du) \leqslant 0$

whenever it is differentiatiable, where $H: T^*M \to \mathbb{R}$ is the Hamiltonian associated to *L*.

Dominated functions and the Hamilton-Jacobi equation

Let $L: TM \to \mathbb{R}$ be a nice Lagrangian. A function $u: M \to \mathbb{R}$ is *L*-dominated if for every piecewise- C^1 curve $\gamma: [a, b] \to M$,

$$u(\gamma(b)) - u(\gamma(a)) \leqslant \int_{a}^{b} L(\dot{\gamma}(t)) dt$$

If *u* is *L*-dominated then it is locally Lipschitz and satisfies

 $H(du) \leq 0$

whenever it is differentiatiable, where $H: T^*M \to \mathbb{R}$ is the Hamiltonian associated to *L*.

Lemma (Contreras-Iturriaga-Paternain-Paternain '98)

Assume that there exists $\varepsilon_0 > 0$ such that $\int_{\gamma} \eta \leq (1 - \varepsilon_0) \cdot \text{Len}[\gamma]$ for every closed curve γ on M. Then there exist $\varepsilon_1 > 0$ and a smooth function $\vartheta: M \to \mathbb{R}$ which is a strict Hamilton-Jacobi subsolution, i.e.

$$|d\vartheta + \eta| \leqslant 1 - \varepsilon_1. \tag{1}$$

Dominated functions and the Hamilton-Jacobi equation

Let u be an L-dominated function. A curve $\gamma:[a,b] \to M$ is calibrated if

$$u(\gamma(t')) - u(\gamma(t)) = \int_{t'}^{t} L(\dot{\gamma}(s)) ds \quad \forall \quad a \leq t < t' \leq b.$$

Dominated functions and the Hamilton-Jacobi equation

Let u be an L-dominated function. A curve $\gamma:[a,b]
ightarrow M$ is calibrated if

$$u(\gamma(t')) - u(\gamma(t)) = \int_{t'}^{t} L(\dot{\gamma}(s)) ds \quad \forall \quad a \leq t < t' \leq b.$$

For each $\varepsilon > 0$, let $S_{\varepsilon} := \bigcup \gamma([a + \varepsilon, b - \varepsilon])$ where the union is over all calibrated curves $\gamma : [a, b] \to M$.

Dominated functions and the Hamilton-Jacobi equation

Let u be an L-dominated function. A curve $\gamma:[a,b]
ightarrow M$ is calibrated if

$$u(\gamma(t')) - u(\gamma(t)) = \int_{t'}^{t} L(\dot{\gamma}(s)) ds \quad \forall \quad a \leq t < t' \leq b.$$

For each $\varepsilon > 0$, let $S_{\varepsilon} := \bigcup \gamma([a + \varepsilon, b - \varepsilon])$ where the union is over all calibrated curves $\gamma : [a, b] \to M$.

Theorem (Fathi '03, Bernard-Zavidovique '13, Klartag '14)

Let *L* be a Tonelli or Finsler Lagrangian on a manifold *M*, and let *u* be an *L*-dominated function. For every $\varepsilon > 0$ there exists a $C^{1,1}$ function $u_{\varepsilon} : M \to \mathbb{R}$ such that

$$u_{\varepsilon} \equiv u$$
 and $du_{\varepsilon} \equiv du$ on S_{ε} ,

and for a.e. $x \in S_{\varepsilon}$, the Hessian Hess u_{ε} exists and varies differentiably (and if *L* is Finsler, smoothly) on the calibrated curve through *x*.

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	FUTURE STUDY
0000000	0000	00000	0000000	

BACKGROUND 0000000	Magnetic geodesics	Magnetic BM and BBL 00000	Proof outline	Future study ●
	_			

1. Removing assumptions (completeness, properness?)

BACKGROUND	Magnetic geodesics	Magnetic BM and BBL	Proof outline	FUTURE STUDY
0000000	0000	00000	0000000	

- 1. Removing assumptions (completeness, properness?)
- 2. The Lorentzian case (Displacement convexity for timelike optimal transport, McCann '23)

BACKGROUND 0000000	Magnetic geodesics 0000	Magnetic BM and BBL 00000	Proof outline	FUTURE STUDY
_				

- 1. Removing assumptions (completeness, properness?)
- 2. The Lorentzian case (Displacement convexity for timelike optimal transport, McCann '23)
- 3. Non-magnetic sprays. (In dimension two, among constant-speed sprays, only magnetic sprays can satisfy Brunn-Minkowski).

Thank You!