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High-dimensional statistics
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Can fast algorithms use noisy data to give solid conclusions?

}A@Vmwkrb‘\/\ — QMPW%W ‘k‘ruﬁﬁom




Simple planted models

We (simply, but faithfully) model our data as signal + noise
e.g. the spiked Wigner matrix model

Observe: M = A . uuT + (; € RdXd, Wlth ||d Gl] — G]l ~N (O;l)
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goal(s):
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* detection: Is the signal 1 present? (hypothesis testing with null hypothesis M ~ N (0 1) )

 estimation/recovery: find @i with ||z — || as small as possible

Several variations on a theme These models are *famous*!

e Sparse PCA:i.i.d. u; ~ \/% - Ber (E) - Rad (%) [Johnstone-Lu’09, Baik-Ben-Arous-Peche’05,

- a 1 K Brennan-Bresler’19, Chen-Xu’16, Ding-Kunisky-Wein-
* Planted Dense Submatrix: i.i.d. u; ~ \/; - Ber (E) Bandeira’19, Deshpande-Montanari’14,Holtzman-
Soffer-Vilenchik’20, Butucea-Ingster’13, Barbier-
Macris-Rush’20, plus dozens more...]




Information-computation gaps

When are detection and recovery possible (with fast algorithms)?
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signal-to-noise parameter: — M= Flo”u +6ER G =Gy~ N (0

Sparse PCA: u; ~ f Ber (S) Rad(

[Johnstone-Lu’09],[Paul-Johnstone’12],[Cai-Ma-Wu’13],[Lesieur-Krazakala-Zdeborova’15], Planted Dense Submatrix: 1; ~ Ber _
[Kolar-Balakrishnan-Rinaldo-Singh’11],[Butucea-Ingster-Suslina’15],[Chen-Xu’16],...




Another simple model

Sy OIS
Planted dense subgraph: V\ Ak

Observe a graph G = (V, E) on ¥ vertices with a hidden subgraphon S c V, |S| = k where
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Pri(i,/) € E(G] =10 otherwise
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[Bhaskara-Charikar-Chlamtac-Feige-Vijayraghavan’10], [Ames’13], [Hajek-Wu-Xu’15], [ Verzelen-Arias-Castro’15], [Chen-Xu’16], ...



oL . Plowked Prrte
Explaining intractability Lo

p=t

T
Can we give rigorous evidence for computational barriers?

1. Reductions PROBLEM PROBLEM.

[Ma-Wu’15], [Chen-Xu’16], [Brennan-Bresler’19], [Brennan-Bresler-Huleihel’19], etc... %

2. Lower bounds against restricted models of computation

statistical query lower bounds, convex program (sum-of-squares) lower
bounds, approximate message passing/belief propagation lower bounds,
“energy barriers”, low-degree polynomials
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Classical complexity theory: f:{0,1}" - {0,1}.
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What is the degree of f as a polynomial (over R, [F,)?
T dame Vl

How well can a degree-d polynomial approximate f?

Complexity of statistics:

How well can a degree-d polynomial detect/estimate?

Q: Asda. = concluston




Low-degree polynomials in high-dimensional statistics
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* Many algorithms are (approximately) low-degree_
e.g. many spectral algorithms, message passing, O(leg "‘3

“reasonable” statistical query algorithms 201,
sum-of-squares semidefinite programs ?

Conclusion: if we rule out low-degree polynomials, it is unlikely that other go-to algorithms work

e Accurately predict current computational thresholds for
degree w(log n) required above known computational threshold




Computational barriers to detection from low-
degree polynomials ol
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Predictions consistent with the detection threshold for many problems:

Planted Clique , sparse PCA

, tensor PCA ,community
detection in block models , random CSPs...

Convenient closed form solution for detection when testing against null
measure with product structure (e.g. sparse PCA, null = N(0,1,))

But for some problems, we observe a detection-recovery gap
planted dense submatrix, planted dense subgraph




Our results: computational barriers to
estimation from low-degree polynomials o) -«
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Theorem (Planted Submatrix): 4 ¢: K o L
IfVd/k < d=°, no degree-0(d%®) polynomial outperforms the trivial estimator

Theorem (Planted Dense Subgraph):
/7 If pk /gt < n=%, no degree-0(n¥®) polynomial outperforms the trivial estimator

Both derive from more general result characterizing the minimum mean
squared error of best degree-f estimator in additive Gaussian or binary
observation model. _—
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Outline

* Background: degree lower bounds for detection

* Degree lower bounds for estimation
* Framework
* Results for additive gaussian and binary observation models




Degree lower bounds for detection (background)

Setting: “null” model Q (e.g. N(0,,,)) and “planted” model P (e.g. | N(u, 1,,))du)
Goal: find f € R[x]=* with |Epf — Eqf| » \/max(Vyf, Vpf) <
—_ ~ —
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Convex program:
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G*va('ﬂs‘ﬁ’ um?(" &Lemma: the optimizeris f* « (d—P — 1) , With objective value ‘(Q — 1)
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St]EQf == O,

<t
Vof =1, Conclusion: if ||(§—g = 1) = 0(1), then there is no degree-£ polynomial
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& ; o
V}fé' which meets our criteria

(no tests with difference in mean larger than the standard deviation)




Degree lower bounds for detection

<¢
Strategy: compute (Z—Z — 1) , rule out degree-£ polynomials if o(1).
Q
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This framework was used to give consistent detection lower bounds for many problems.

Successful when R[x]=* has a nice orthogonal (w.r.t (-,-)Q) basis

dP =4
Also, used to give new algorithms! (Evaluate (— — 1) and threshold)
Overlapping block models [Hopkins-Steurer’ 1%‘1’, graph matching [Barak-Chou-Lei-S-Sheng’19]
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* Background: degree lower bounds for detection v

* Degree lower bounds for estimation
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* Results for additive gaussian and binary observation models




Degree lower bounds for estimation }

Setting: “planted” model P (e.g. fN(L‘: I,)du)
: <\
Goal: find g € (R[x]*¢)" " with Eux)~pllg(x) —ﬁ”Z = 0(E,-pllull*)

degree-f MMSE:

OPT. = Il()=¢
min _ Epllg() - ull Lemma: OPT; = [|(k) ]}

g€(R[x]=?)
l scaling

max . Ep(h(x), 1) symmetry Conclusion: if for all i, OPT; < / - Epuf, error = (1 — a) - Ep|lull®.
he(R[x]=t) —)
s.t. EpllhGolI? < 1




A familiar story?

So... why not just compute ||(,ui)s‘€||P for each i? (like for detection)

For planted distributions of interest, R[x]=¢ has a nasty orthogonal basis w.r.t (-,-)p!

Compare to hypothesis testing of Q = N(0,I) vs. P = E,N (i, I).

. <f change-of-
OPT; = max (h, i), s
l

)




A solution for additive Gaussian models

Suppose P = E,N(u, I).

For x = u + (G ~ P, think of first sampling the signal 1, then the noise = N(0,]).

Vi € [n], OPT; = m?)i , E,..ph; () Vi € [n], rOPT; = hié?[%?;ﬁg E,chi(u+ Gu;
h;eR|[x =

2
s.t. E,_ph;(x)?2 <1 | > s.t. B [Eh(u+6)] <1
= - —— —— et

intuitively: not too lossy when recovery is impossible

Let f;(G) = E,h;(u + G); in additive Gaussian models, we can write f; = Ah; for A

Vi € [n], rOPT; = ||(A71)" ¢l is tractable to compute, and we get a closed form.
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Estimation lower bounds in additive Gaussian
+ Binary observation models

Closed form for OPT; for additive Gaussian planted models
in which we observe x ~ P = E,N(y,1,,)

Also for Binary observation models
in which u ~ D([0,1]™), we observe x; ~ Ber(u;) Vi (e.g. planted dense subgraph)
P L—————/——‘-—Q

Exact expression for degree-f MMSE.
Special case: lower bounds for estimation in




Conclusion

tl;dr : we extend methods for lower bounding the polynomial degree of hypothesis
tests to lower bounding the polynomial degree of estimators.

We give the first(ish) rigorous evidence for hardness (against a restricted class of
algorithms) of planted submatrix and planted dense subgraph below known
algorithmic thresholds.

Open: Yiale
e Optimal degree-vs.-estimation tradeoff?

* Estimation lower bounds for other models with detection-recovery gaps?
(favorite problem: overcomplete tensor decomposition)

e Extending consequences to other models
(degree lower bounds imply SoS lower bounds?)




Thank youl!



