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High-dimensional	statistics

Can	fast	algorithms	use	noisy	data	to	give	solid	conclusions?

algorithm𝑥!, … , 𝑥" ∈ ℝ#

data

conclusions



Simple	planted	models

We	(simply,	but	faithfully)	model	our	data	as	signal +	noise
e.g.	the	spiked	Wigner	matrix	model
observe:	𝑀 = 𝜆 ⋅ 𝑢𝑢& + 𝐺 ∈ ℝ'×',	with	i.i.d.	𝐺)* = 𝐺*) ∼ 𝑁 0, +

'
goal(s):

• detection:	Is	the	signal	𝑢 present?	(hypothesis	testing	with	null	hypothesis	𝑀 ∼ 𝑁 0, !"
"×"

)
• estimation/recovery:	find	𝑢' with	 𝑢 − 𝑢' as	small	as	possible

Several	variations	on	a	theme
• Sparse	PCA:	i.i.d.	𝑢$ ∼ !

% ⋅ Ber %
" ⋅ Rad !

&  

• Planted	Dense	Submatrix:	i.i.d.	𝑢$ ∼ !
% ⋅ Ber %

"

These	models	are	*famous*!
[Johnstone-Lu’09,	Baik-Ben-Arous-Peche’05,	
Brennan-Bresler’19,	Chen-Xu’16,	Ding-Kunisky-Wein-
Bandeira’19,	Deshpande-Montanari’14,Holtzman-
Soffer-Vilenchik’20,	Butucea-Ingster’13,	Barbier-
Macris-Rush’20,	plus	dozens	more…]



Information-computation	gaps

When	are	detection	and	recovery	possible	(with	fast	algorithms)?	

𝑀 = !
!""𝑢𝑢# + 𝐺 ∈ ℝ$×$,	𝐺&' = 𝐺'& ∼ 𝑁 0, !$

Sparse	PCA:	𝑢& ∼ !
( ⋅ Ber (

$ ⋅ Rad !
)  

Planted	Dense	Submatrix:	𝑢& ∼ !
( ⋅ Ber (

$

signal-to-noise	parameter:	 #
$

(|signal	entry|/|noise	entry|)

[Johnstone-Lu’09],[Paul-Johnstone’12],[Cai-Ma-Wu’13],[Lesieur-Krazakala-Zdeborova’15],	
[Kolar-Balakrishnan-Rinaldo-Singh’11],[Butucea-Ingster-Suslina’15],[Chen-Xu’16],…

𝑂+
1
𝑑 𝑂-(1)



Another	simple	model

Planted	dense	subgraph:
Observe	a	graph	𝐺 = (𝑉, 𝐸) on	𝑑 vertices	with	a	hidden	subgraph	on	𝑆 ⊂ 𝑉,	 𝑆 = 𝑘 where	

Pr 𝑖, 𝑗 ∈ 𝐸 𝐺 =  ?𝑝   if  𝑖, 𝑗 ∈ 𝑆
𝑞 otherwise

signal-to-noise	parameter:	 %$
&"

(avg	degree	in	S	/	std.	dev.	of	degree	in	G)

[Bhaskara-Charikar-Chlamtac-Feige-Vijayraghavan’10],	[Ames’13],	[Hajek-Wu-Xu’15],	[	Verzelen-Arias-Castro’15],	[Chen-Xu’16],	…

𝑂-(1)𝑂+
1
𝑛 𝑂+

𝑛
𝑘



Explaining	intractability

Can	we	give	rigorous	evidence	for	computational	barriers?

1. Reductions
[Ma-Wu’15],	[Chen-Xu’16],	[Brennan-Bresler’19],	[Brennan-Bresler-Huleihel’19],	etc…	

2. Lower	bounds	against	restricted	models	of	computation
statistical	query	lower	bounds,	convex	program	(sum-of-squares)	lower	
bounds,	approximate	message	passing/belief	propagation	lower	bounds,	
“energy	barriers”,	low-degree	polynomials



Low-degree	polynomials

Classical	complexity	theory:	𝑓: {0,1}1 → {0,1}.	
What	is	the	degree	of	𝑓 as	a	polynomial	(over	ℝ,	𝔽2)?
How	well	can	a	degree-𝑑 polynomial	approximate	𝑓?

Complexity	of	statistics:
How	well	can	a	degree-𝑑 polynomial	detect/estimate?



Low-degree	polynomials	in	high-dimensional	statistics

Why	low-degree	polynomials?

• Many	algorithms	are	(approximately)	low-degree
e.g.	many	spectral	algorithms,	message	passing,	[folklore]
“reasonable”	statistical	query	algorithms	[Brennan-Bresler-Hopkins-Li-S’20],	
sum-of-squares	semidefinite	programs	?	[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin’16]

Conclusion:	if	we	rule	out	low-degree	polynomials,	it	is	unlikely	that	other	go-to	algorithms	work

• Accurately	predict	current	computational	thresholds	for	detection!
degree	𝜔 log 𝑛 required	above	known	computational	threshold



Computational	barriers	to	detection from	low-
degree	polynomials

Predictions	consistent	with	the	detection	threshold	for	many	problems:
Planted	Clique	[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin’16],	sparse	PCA	[Ding-
Bandeira-Kunisky-Wein’19],	tensor	PCA	[Bandeira-Kunisky-Wein’19],	community	
detection	in	block	models	[Hopkins-Steurer’17],	random	CSPs…	

Convenient	closed	form	solution	for	detection	when	testing	against	null	
measure	with	product	structure	(e.g.	sparse	PCA,	null	=	𝑁(0, I'))

But for	some	problems,	we	observe	a	detection-recovery	gap
planted	dense	submatrix,	planted	dense	subgraph,	overcomplete	tensor	
decomposition,	graph	matching	in	mildly	correlated	random	graphs,…	



Our	results:	computational	barriers	to	
estimation from	low-degree	polynomials

Theorem (Planted	Submatrix):	
If	 𝑑 𝑘⁄ ≤ 𝑑45,	no	degree-𝑂 𝑑6(() polynomial	outperforms	the	trivial	estimator	
(which	guesses	every	coordinate	is	equally	likely	to	be	in	the	support)

Theorem (Planted	Dense	Subgraph):
If	𝑝𝑘 𝑞𝑛⁄ ≤ 𝑛45,	no	degree-𝑂 𝑛6(() polynomial	outperforms	the	trivial	estimator	
(which	guesses	every	coordinate	is	equally	likely	to	be	in	the	subgraph)

Both	derive	from	more	general	result characterizing	the	minimum	mean	
squared	error	of	best	degree-ℓ estimator	in	additive	Gaussian or	binary	
observation model.

resolve	open	problems	from	
[Kolar-Balakrishnan-Rinaldo-Singh’11],	[Ma-Wu’15],	[Chen-Xu’16]



Outline

• Background:	degree	lower	bounds	for	detection
• Degree	lower	bounds	for	estimation
• Framework
• Results	for	additive	gaussian	and	binary	observation	models



Degree	lower	bounds	for	detection	(background)

Setting:	“null”	model	𝑄 (e.g.	𝑁(0, I1))	and	“planted”	model	𝑃 (e.g.	∫ 𝑁 𝜇, I1 𝑑𝜇)
Goal:	find	𝑓 ∈ ℝ 𝑥 3ℓ with	 𝔼5𝑓 − 𝔼6𝑓 ≫ max(𝕍6𝑓, 𝕍5𝑓) 

Convex	program:

max
*∈ℝ - !ℓ

 𝔼.𝑓

s. t. 𝔼/𝑓 = 0, 

𝕍/𝑓 ≤ 1, 

𝕍.𝑓 ≤ 1.

Lemma:	the	optimizer	is	𝑓∗ ∝ #.
#/

− 1
1ℓ

Proof:	for	𝑎, 𝑏: ℝ0 → ℝ,	let	 𝑎, 𝑏 1 = 𝔼2∼1𝑎 𝑥 𝑏 𝑥 and	Πℓ the	orthog.	projection	to	ℝ 𝑥 5ℓ.

re-writing	the	program:	

max
*

 𝑓, #.
#/ /

s.t. 𝑓, 1 / = 0,	 I − Πℓ 𝑓 = 0,	and	 Πℓ𝑓 /
3 ≤ 1.

linear	algebra	dictates	a	closed-form	solution.

,	with	objective	value	 #.
#/

− 1
1ℓ

/
.

Conclusion:	if	 #.
#/ 

− 1
1ℓ

/
= 𝑜(1),	then	there	is	no	degree-ℓ polynomial	

which	meets	our	criteria
(no	tests	with	difference	in	mean	larger	than	the	standard	deviation)



Degree	lower	bounds	for	detection

Strategy:	compute	 >?
>@

− 1
Aℓ

@
,	rule	out	degree-ℓ polynomials	if	𝑜 1 .

This	framework	was	used	to	give	consistent	detection	lower	bounds	for	many	problems.
Planted	clique	[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin’16],	sparse	PCA	[Ding-Bandeira-Kunisky-Wein’19],	tensor	PCA	
[Bandeira-Kunisky-Wein’19],	community	detection	in	block	models	[Hopkins-Steurer’17],	random	CSPs…	

Successful	when	ℝ 𝑥 Aℓ has	a	nice	orthogonal	(w.r.t	 ⋅,⋅ @)	basis	(e.g.	product	measures).

Also,	used	to	give	new	algorithms!	(Evaluate	 >?
>@

− 1
Aℓ
and	threshold)

Overlapping	block	models	[Hopkins-Steurer’17],	graph	matching	[Barak-Chou-Lei-S-Sheng’19]



Outline

• Background:	degree	lower	bounds	for	detection
• Degree	lower	bounds	for	estimation
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• Results	for	additive	gaussian	and	binary	observation	models



Degree	lower	bounds	for	estimation

Setting:	“planted”	model	𝑃 (e.g.	∫ 𝑁 𝜇, II 𝑑𝜇)

Goal:	find	𝑔 ∈ ℝ 𝑥 Jℓ ⊗I
with	𝔼 M,N ∼O 𝑔 𝑥 − 𝜇 P = 𝑜(𝔼M∼O 𝜇 P)

degree-ℓMMSE:

min
5∈ ℝ - !ℓ ⊗$

 𝔼. 𝑔 𝑥 − 𝜇 3

max
6∈ ℝ - !ℓ ⊗$

 𝔼.⟨ℎ 𝑥 , 𝜇⟩

s. t.  𝔼. ℎ 𝑥 3 ≤ 1

∀𝑖 ∈ [𝑛], OPT7 = max
6%∈ℝ - !ℓ

 𝔼.ℎ7 𝑥 𝜇7

s. t.  𝔼.ℎ7 𝑥 3 ≤ 1

Lemma:	OPT8 =  𝜇7
1ℓ

.
.

scaling

OPT7 = max
6%

 ℎ7 , 𝜇7
1ℓ

.

s. t.  ℎ7 . ≤ 1

symmetry

rewriting

Conclusion:	if	for	all	𝑖,		OPT8 ≤ 𝛼 ⋅ 𝔼.𝜇7
3,	error	≥ 1 − 𝛼 ⋅ 𝔼. 𝜇 3.



A	familiar	story?

So…	why	not	just	compute	 𝜇)
3ℓ

5 for	each	𝑖?	(like	for	detection)

For	planted	distributions	of	interest,	ℝ 𝑥 3ℓ has	a	nasty	orthogonal	basis	w.r.t	 ⋅,⋅ 5!

Compare	to	hypothesis	testing	of	𝑄 = 𝑁(0, I) vs.	𝑃 = 𝔼[𝑁(𝜇, I).

OPT7 = max
6%

 ℎ7 , 𝜇7
1ℓ

.

s. t.  ℎ7 . ≤ 1

OPT7 = max
*%

 𝑓7 ,
𝑑𝑃
𝑑𝑄 𝜇7

1ℓ

/

s. t.  𝐵𝑓7 / ≤ 1
OPT7 = 𝐵9! : 𝑑𝑃

𝑑𝑄 𝜇7

1ℓ

/

change-of-
basis

closed	
form



A	solution	for	additive	Gaussian	models

Suppose	𝑃 = 𝔼'𝑁(𝜇, I).	

For	𝑥 = 𝜇 + 𝐺 ∼ 𝑃,	think	of	first	sampling	the	signal	𝜇,	then	the	noise	G ∼ 𝑄 = 𝑁 0, I .

∀𝑖 ∈ [𝑛], OPT7 = max
6%∈ℝ - !ℓ

 𝔼-∼.ℎ7 𝑥 𝜇7

s. t.  𝔼-∼.ℎ7 𝑥 3 ≤ 1

∀𝑖 ∈ [𝑛], rOPT7 = max
6%∈ℝ - !ℓ

 𝔼<,>ℎ7 𝜇 + 𝐺 𝜇7

s. t.  𝔼> 𝔼<ℎ7 𝜇 + 𝐺 3 ≤ 1
relaxation,	by	Jensen

Let	𝑓7 𝐺 = 𝔼<ℎ7 𝜇 + 𝐺 ;	in	additive	Gaussian	models,	we	can	write	𝑓7 = 𝐴ℎ7 for	𝐴 upper	triangular.

∀𝑖 ∈ [𝑛], rOPT7 = 𝐴9! ?𝑐7 / is	tractable	to	compute,	and	we	get	a	closed	form.

intuitively:	not	too	lossy	when	recovery	is	impossible	



Estimation	lower	bounds	in	additive	Gaussian	
+	Binary	observation	models

Closed	form	for	OPT! for	additive	Gaussian planted	models
in	which	we	observe	𝑥 ∼ 𝑃 = 𝔼C𝑁(𝜇, ID)

Also	for	Binary	observation	models
in	which	𝜇 ∼ 𝐷( 0,1 D),	we	observe	𝑥E ∼ Ber 𝜇E  ∀𝑖 (e.g.	planted	dense	subgraph)

Exact	expression	for	degree-ℓMMSE.
Special	case:	lower	bounds	for	estimation	in	planted	submatrix and	planted	
dense	subgraph.



Conclusion

tl;dr :	we	extend	methods	for	lower	bounding	the	polynomial	degree of	hypothesis	
tests	to	lower	bounding	the	polynomial	degree	of	estimators.	
We	give	the	first(ish) rigorous	evidence for	hardness	(against	a	restricted	class	of	
algorithms)	of	planted	submatrix and	planted	dense	subgraph below	known	
algorithmic	thresholds.

Open:
• Optimal	degree-vs.-estimation	tradeoff?
• Estimation	lower	bounds	for	other	models	with	detection-recovery	gaps?	
(favorite	problem:	overcomplete	tensor	decomposition)

• Extending	consequences	to	other	models	
(degree	lower	bounds	imply	SoS lower	bounds?)



Thank	you!


