Godbersen's conjecture for locally anti-blocking bodies

Shay Sadovsky

Tel Aviv University

Online AGA Seminar

Shay Sadovsky (Tel Aviv University)

Locally anti-blocking

May 2, 2024 1 / 24

Grünbaum gave the following classical definition for a measure of symmetry of convex sets, that it is a function, $f : \mathcal{K}^n \to [0, 1]$, such that

- **1** For any centrally-symmetric K, f(K) = 1.
- Ø f is invariant under affine transformations.
- I is continuous.

A well known example of a measure of symmetry is the following quantity,

$$f(K) = \frac{2^n \operatorname{Vol}(K)}{\operatorname{Vol}(K - K)}$$

which clearly satisfies (1)-(3). Rogers and Shephard showed that for K convex,

$$\operatorname{Vol}(\mathcal{K} - \mathcal{K}) \leq \binom{2n}{n} \operatorname{Vol}(\mathcal{K}),$$

with equality attained only for simplices, thus showing that simplices are also minimizers of $f(\cdot)$.

Recalling the definition of mixed volume,

$$\operatorname{Vol}(\mathcal{K} - \lambda \mathcal{K}) = \sum_{j=0}^{n} {n \choose j} \lambda^{j} V(\mathcal{K}[j], -\mathcal{K}[n-j]),$$

it is natural to ask whether the Rogers-Shephard inequality still holds for this polynomial,

(?)
$$\operatorname{Vol}(\mathcal{K} - \lambda \mathcal{K}) \leq \sum_{j=0}^{n} {\binom{n}{j}}^{2} \lambda^{j} \operatorname{Vol}(\mathcal{K}).$$

Conjecture (Godbersen's conjecture ('38), (Makai Jr. '74))

For any convex body $K \subset \mathbb{R}^n$ and $1 \leq j \leq n-1$,

$$V(\mathcal{K}[j], -\mathcal{K}[n-j]) \leq {n \choose j} \mathrm{Vol}(\mathcal{K})$$

with equality attained only for simplices.

4 ∃ ≥ 4

As more motivation for the conjecture, note that the following quanitiy is also a measure of symmetry,

$$g_j(K) = \frac{\operatorname{Vol}(K)}{V(K[j], -K[n-j])}.$$

Godbersen's conjecture implies that this measure of symmetry is also minimized only by simplices.

It also implies the following conjecture about the λ -difference body

$$\frac{\operatorname{Vol}(D_{\lambda}K)}{\operatorname{Vol}(K)} \leq \frac{\operatorname{Vol}(D_{\lambda}\Delta)}{\operatorname{Vol}(\Delta)_{n}},$$

where $\Delta_n = \operatorname{conv}(\{0\} \cup \{e_i\}_{i=1}^n)$ and $D_\lambda K = (1 - \lambda)K + \lambda(-K)$.

As more motivation for the conjecture, note that the following quanitiy is also a measure of symmetry,

$$g_j(K) = \frac{\operatorname{Vol}(K)}{V(K[j], -K[n-j])}.$$

Godbersen's conjecture implies that this measure of symmetry is also minimized only by simplices.

It also implies the following conjecture about the λ -difference body

$$\frac{\operatorname{Vol}(D_{\lambda}K)}{\operatorname{Vol}(K)} \leq \frac{\operatorname{Vol}(D_{\lambda}\Delta)}{\operatorname{Vol}(\Delta)_n},$$

where $\Delta_n = \operatorname{conv}\left(\{0\} \cup \{e_i\}_{i=1}^n\right)$ and $D_\lambda K = (1 - \lambda)K + \lambda(-K)$.

Previous work on Godebersen's conjecture has yeided the following partial results:

• (Artstein-Avidan, Einhorn, Florentin, and Ostrover)

$$\mathcal{W}(\mathcal{K}[j], -\mathcal{K}[n-j]) \leq \frac{n^n}{j^j(n-j)^{(n-j)}} \operatorname{Vol}(\mathcal{K}) \approx \binom{n}{j} \operatorname{Vol}(\mathcal{K}) \sqrt{2\pi \frac{j(n-j)}{n}}$$

• (Artstein-Avidan)

$$\sum_{j=0}^n \lambda^j (1-\lambda)^{n-j} V(K[j], -K[n-k]) \leq \operatorname{Vol}(K).$$

• (Artstein-Avidan, S, and Sanyal) The conjecture holds for a class called 'anti-blocking bodies' or 'convex corners'.

Definition

- A convex body K ⊆ ℝⁿ is called unconditional if (x₁,..., x_n) ∈ K implies (±x₁,..., ±x_n) ∈ K.
- A convex body K_+ is called **anti-blocking** if it is of the form $K_+ = K \cap \mathbb{R}^n_+$ when K is unconditional.
- A convex body K ⊆ ℝⁿ is called **locally anti-blocking** if, for any coordinate hyperplane E^c_J = sp{e_j}_{j∈J}, J ⊂ [n] (where {e_i}ⁿ_{i=1} is the standard basis), one has P_EK = K ∩ E.
 - Alternatively, they can be defined as bodies that are anti-blocking in each orthant.
 - **Denote** the anti-blocking in each orthant by K_{σ} for $\sigma \in \{-1, 1\}^n$.

Locally anti-blocking bodies support a few conjectures already: Mahler's Conjecture (Fradelizi and Meyer) and Kalai's 3^d conjecture (Sanyal and Winter).

Theorem

Godbersen's conjecture holds for locally anti-blocking bodies. Among these, equality holds only for simplices.

For the equality cases we also need this neat observation:

Lemma (Mixed volume of simplices)

Let $\alpha_1, \ldots, \alpha_n \ge 0$ and let $K = \operatorname{conv}(0, \alpha_1 e_1, \ldots, \alpha_n e_n)$. Then, for any $0 \le j \le n$,

$$V_n(K[j], \Delta_n[n-j]) = \frac{1}{n!} \max\left\{\prod_{i \in I} \alpha_i : |I| = j\right\}.$$

This allows one to compute the mixed volume of any two aligned simplices.

The proof of the inequality needs:

- (AA-S-S) Mixed volume formula for two anti-blocking bodies.
- ② Decomposition lemma of mixed volume for two locally anti-blocking bodies.
- Behavior of coordinate projections of locally anti-blocking bodies.
- (AA-S-S) A 'mixed' reverse Kleitman inequality.

(1) Mixed volume formula for two anti-blocking bodies

Let $K, K' \subseteq \mathbb{R}^n_+$ be anti-blocking bodies, let $0 \leq j \leq n$. Then

$$V_n(\mathcal{K}[j], -\mathcal{K}'[n-j]) = \binom{n}{j}^{-1} \sum_{\substack{E \text{ a } j \text{-dim.} \\ \text{coord. hyperplane}}} \operatorname{Vol}_j(\mathcal{P}_E \mathcal{K}) \cdot \operatorname{Vol}_{n-j}(\mathcal{P}_{E^{\perp}} \mathcal{K}').$$

Proof idea: A geometric decomposition of the sum K - K' into a disjoint union

$$\bigcup P_E(K) \times P_{E^{\perp}}(-K').$$

イロト イヨト イヨト イヨト

E a coord. hyperplane

Look at λK and compare coefficients.

Locally anti-blocking

May 2, 2024 12 / 24

(1) Mixed volume formula for two anti-blocking bodies

Let $K, K' \subseteq \mathbb{R}^n_+$ be anti-blocking bodies, let $0 \leq j \leq n$. Then

$$V_n(K[j], -K'[n-j]) = \binom{n}{j}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \operatorname{Vol}_j(P_E K) \cdot \operatorname{Vol}_{n-j}(P_{E^{\perp}} K').$$

Proof idea: A geometric decomposition of the sum K - K' into a disjoint union

$$\bigcup \quad P_E(K) \times P_{E^{\perp}}(-K').$$

E a coord. hyperplane

Look at λK and compare coefficients.

Locally anti-blocking

May 2, 2024 12 / 24

(2) Decomposition lemma of mixed volume

Let $K, K' \subseteq \mathbb{R}^n$ be locally anti-blocking bodies. Then,

$$\operatorname{Vol}(\mathcal{K}+\mathcal{K}') = \sum_{\sigma \in \{-1,1\}^n} \operatorname{Vol}(\mathcal{K}_{\sigma}+\mathcal{K}'_{\sigma})$$

and in fact,

$$V_n(K[j], K'[n-j]) = \sum_{\sigma \in \{-1,1\}^n} V_n(K_{\sigma}[j], K'_{\sigma}[n-j]).$$

Proof idea: Show that again there is a disjoint decomposition,

$$K + K' = \bigcup_{\sigma} K_{\sigma} + K'_{\sigma}.$$

Look at λK and compare coefficients.

(2) Decomposition lemma of mixed volume

Let $K, K' \subseteq \mathbb{R}^n$ be locally anti-blocking bodies. Then,

$$\operatorname{Vol}(\mathcal{K}+\mathcal{K}') = \sum_{\sigma \in \{-1,1\}^n} \operatorname{Vol}(\mathcal{K}_{\sigma}+\mathcal{K}'_{\sigma})$$

and in fact,

$$V_n(\mathcal{K}[j], \mathcal{K}'[n-j]) = \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], \mathcal{K}'_{\sigma}[n-j]).$$

Proof idea: Show that again there is a disjoint decomposition,

$$K + K' = \bigcup_{\sigma} K_{\sigma} + K'_{\sigma}.$$

Look at λK and compare coefficients.

(3) Coordinate projections of locally anti-blocking bodiess

Let $K \subset \mathbb{R}^n$ be locally anti-blocking, and let $E := \sup\{e_i : i \in I\} \subset \mathbb{R}^n$ for some $I \subset [n]$. Let $\tau, \sigma \in \{-1, +1\}^n$ be two orthant signs, such that $\tau|_I = \sigma|_I$. Then,

$$P_E K_{\sigma} = P_E K_{\tau}.$$

Proof idea: Use the fact that for anti-blocking bodies (and locally anti-blocking) $P_E K = K \cap E$ and use that $K_{\sigma} \cap E = K_{\tau} \cap E$.

< ロト < 同ト < ヨト < ヨト

(3) Coordinate projections of locally anti-blocking bodiess

Let $K \subset \mathbb{R}^n$ be locally anti-blocking, and let $E := \sup\{e_i : i \in I\} \subset \mathbb{R}^n$ for some $I \subset [n]$. Let $\tau, \sigma \in \{-1, +1\}^n$ be two orthant signs, such that $\tau|_I = \sigma|_I$. Then,

$$P_E K_{\sigma} = P_E K_{\tau}.$$

Proof idea: Use the fact that for anti-blocking bodies (and locally anti-blocking) $P_E K = K \cap E$ and use that $K_{\sigma} \cap E = K_{\tau} \cap E$.

(4) A 'mixed' reverse Kleitman inequality

Given two anti-blocking bodies, $K, T \subseteq \mathbb{R}^n_+$,

 $V_n(\mathcal{K}[j], \mathcal{T}[n-j]) \leq V_n(\mathcal{K}[j], -\mathcal{T}[n-j]).$

Proof idea: Apply Steiner symmetrization along coordinates to K and -T until they are unconditional, and show that the mixed volume only decreases along the symmetrization (Shephard's theorem for shadow systems).

(4) A 'mixed' reverse Kleitman inequality

Given two anti-blocking bodies, $K, T \subseteq \mathbb{R}^n_+$,

$$V_n(K[j], T[n-j]) \leq V_n(K[j], -T[n-j]).$$

Proof idea: Apply Steiner symmetrization along coordinates to K and -T until they are unconditional, and show that the mixed volume only decreases along the symmetrization (Shephard's theorem for shadow systems).

Proof

Let K be locally anti-blocking, $K = \bigcup_{\sigma} K_{\sigma}$ with each K_{σ} anti-blocking in $\sigma \mathbb{R}^n_+$.

Using the decomposition lemma (2),

$$\begin{split} V_n(\mathcal{K}[j], -\mathcal{K}[n-j]) &= \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], (-\mathcal{K})_{\sigma}[n-j]) \\ &= \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], -(\mathcal{K}_{-\sigma})[n-j]) \\ &\leq \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], (\mathcal{K}_{-\sigma})[n-j]). \end{split}$$

イロト イボト イヨト イヨ

Proof

Let K be locally anti-blocking, $K = \bigcup_{\sigma} K_{\sigma}$ with each K_{σ} anti-blocking in $\sigma \mathbb{R}^{n}_{+}$.

Using the decomposition lemma (2), since $(-K)_{\sigma} = -(K_{-\sigma})$

$$\begin{split} V_n(\mathcal{K}[j], -\mathcal{K}[n-j]) &= \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], (-\mathcal{K})_{\sigma}[n-j]) \\ &= \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], -(\mathcal{K}_{-\sigma})[n-j]) \\ &\leq \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], (\mathcal{K}_{-\sigma})[n-j]). \end{split}$$

イロト イボト イヨト イヨト

Proof

Let K be locally anti-blocking, $K = \bigcup_{\sigma} K_{\sigma}$ with each K_{σ} anti-blocking in $\sigma \mathbb{R}^{n}_{+}$.

Using the decomposition lemma (2), since $(-K)_{\sigma} = -(K_{-\sigma})$ and using the mixed reverse Kleitman inequality (4), we get

$$\begin{split} V_n(\mathcal{K}[j], -\mathcal{K}[n-j]) &= \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], (-\mathcal{K})_{\sigma}[n-j]) \\ &= \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], -(\mathcal{K}_{-\sigma})[n-j]) \\ &\leq \sum_{\sigma \in \{-1,1\}^n} V_n(\mathcal{K}_{\sigma}[j], (\mathcal{K}_{-\sigma})[n-j]). \end{split}$$

イロト イ押ト イヨト イヨ

Using our formula for mixed volumes of anti-blocking bodies (1) we see that

$$\sum_{\sigma \in \{-1,1\}^n} V_n(K_{\sigma}[j], (K_{-\sigma})[n-j])$$

=
$$\sum_{\sigma \in \{-1,1\}^n} {\binom{n}{j}}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \operatorname{Vol}_j(P_E K_{\sigma}) \operatorname{Vol}_{n-j}(P_{E^{\perp}} K_{-\sigma}).$$

With our observation about coordinates, we find that for the coordinate sign τ that is defined as $\tau|_E = \sigma|_E$ and $\tau|_{E^{\perp}} = -\sigma|_{E^{\perp}}$,

$$\operatorname{Vol}_{j}(P_{E}K_{\sigma})\operatorname{Vol}_{n-j}(P_{E^{\perp}}K_{-\sigma}) = \operatorname{Vol}_{j}(P_{E}K_{\tau})\operatorname{Vol}_{n-j}(P_{E^{\perp}}K_{\tau})$$

Using our formula for mixed volumes of anti-blocking bodies (1) we see that

$$\sum_{\sigma \in \{-1,1\}^n} V_n(K_{\sigma}[j], (K_{-\sigma})[n-j])$$

=
$$\sum_{\sigma \in \{-1,1\}^n} {\binom{n}{j}}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \operatorname{Vol}_j(P_E K_{\sigma}) \operatorname{Vol}_{n-j}(P_{E^{\perp}} K_{-\sigma}).$$

With our observation about coordinates, we find that for the coordinate sign τ that is defined as $\tau|_E = \sigma|_E$ and $\tau|_{E^{\perp}} = -\sigma|_{E^{\perp}}$,

$$\operatorname{Vol}_{j}(P_{\mathsf{E}}K_{\sigma})\operatorname{Vol}_{n-j}(P_{\mathsf{E}^{\perp}}K_{-\sigma}) = \operatorname{Vol}_{j}(P_{\mathsf{E}}K_{\tau})\operatorname{Vol}_{n-j}(P_{\mathsf{E}^{\perp}}K_{\tau})$$

Combining the former with the Rogers-Shephard inequality for sections and projections, $\operatorname{Vol}_{j}(K \cap K)\operatorname{Vol}_{n-j}(P_{E^{\perp}}K) \leq \binom{n}{j}\operatorname{Vol}(K)$, we continue

$$V_{n}(K[j], -K[n-j]) \leq \sum_{\sigma \in \{-1,1\}^{n}} {\binom{n}{j}}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \operatorname{Vol}_{j}(P_{E}K_{\sigma})\operatorname{Vol}_{n-j}(P_{E^{\perp}}K_{-\sigma})(\star)$$

$$= {\binom{n}{j}}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \sum_{\tau \in \{-1,1\}^{n}} \operatorname{Vol}_{j}(P_{E}K_{\tau})\operatorname{Vol}_{n-j}(P_{E^{\perp}}K_{\tau})$$

$$\leq {\binom{n}{j}}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \sum_{\tau \in \{-1,1\}^{n}} {\binom{n}{j}}\operatorname{Vol}_{n}(K_{\tau}) \quad (\star\star)$$

$$= \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \sum_{\tau \in \{-1,1\}^{n}} \operatorname{Vol}_{n}(K_{\tau}) = {\binom{n}{j}}\operatorname{Vol}(K)$$

< □ > < □ > < □</p>

Combining the former with the Rogers-Shephard inequality for sections and projections, $\operatorname{Vol}_{j}(K \cap K)\operatorname{Vol}_{n-j}(P_{E^{\perp}}K) \leq \binom{n}{j}\operatorname{Vol}(K)$, we continue

$$\begin{split} &V_n(\mathcal{K}[j], -\mathcal{K}[n-j]) \\ &\leq \sum_{\sigma \in \{-1,1\}^n} \binom{n}{j}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \operatorname{Vol}_j(P_E \mathcal{K}_{\sigma}) \operatorname{Vol}_{n-j}(P_{E^{\perp}} \mathcal{K}_{-\sigma})(\star) \\ &= \binom{n}{j}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \sum_{\tau \in \{-1,1\}^n} \operatorname{Vol}_j(P_E \mathcal{K}_{\tau}) \operatorname{Vol}_{n-j}(P_{E^{\perp}} \mathcal{K}_{\tau}) \\ &\leq \binom{n}{j}^{-1} \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \sum_{\tau \in \{-1,1\}^n} \binom{n}{j} \operatorname{Vol}_n(\mathcal{K}_{\tau}) \quad (\star\star) \\ &= \sum_{\substack{E \text{ a } j\text{-dim.} \\ \text{coord. hyperplane}}} \sum_{\tau \in \{-1,1\}^n} \operatorname{Vol}_n(\mathcal{K}_{\tau}) = \binom{n}{j} \operatorname{Vol}(\mathcal{K}) \end{split}$$

< □ > < □ > < □</p>

Notice that there were only two inequalities:

(**) was an application of the Rogers–Shephard inequality for sections and projections: It is simple to show that there is an equality for all subspaces E of dimension j only if K_{τ} is a simplex for all $\tau \in \{-1,1\}^n$.

 (\star) was due to the mixed reverse-Kleitman inequality. If both bodies are simplices, this becomes a computation, for which we needed

$$V_n(K[j], \Delta_n[n-j]) = \frac{1}{n!} \max\left\{\prod_{i \in I} \alpha_i : |I| = j\right\}.$$

Shay Sadovsky (Tel Aviv University)

Notice that there were only two inequalities:

(**) was an application of the Rogers–Shephard inequality for sections and projections: It is simple to show that there is an equality for all subspaces E of dimension j only if K_{τ} is a simplex for all $\tau \in \{-1, 1\}^n$.

 (\star) was due to the mixed reverse-Kleitman inequality. If both bodies are simplices, this becomes a computation, for which we needed

$$V_n(K[j], \Delta_n[n-j]) = \frac{1}{n!} \max\left\{\prod_{i \in I} \alpha_i : |I| = j\right\}.$$

Shay Sadovsky (Tel Aviv University)

Notice that there were only two inequalities:

(**) was an application of the Rogers–Shephard inequality for sections and projections: It is simple to show that there is an equality for all subspaces E of dimension j only if K_{τ} is a simplex for all $\tau \in \{-1, 1\}^n$.

 (\star) was due to the mixed reverse-Kleitman inequality. If both bodies are simplices, this becomes a computation, for which we needed

$$V_n(K[j], \Delta_n[n-j]) = \frac{1}{n!} \max\left\{\prod_{i \in I} \alpha_i : |I| = j\right\}.$$

To compute the mixed volume $V(K[j], \Delta_n[n-j])$ we use

Theorem (Bernstein–Khovanskii–Kouchnirenko (BKK))

Given polynomials $f_1, \ldots, f_n \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, let $P_i = NP(f_i)$ be the Newton polytope of f_i in \mathbb{R}^n . Then, for generic choices of the coefficients in the f_i , the number of common solutions (with multiplicity) is exactly $V_n(P_1, \ldots, P_n)$.

The Newton polytope of f is a convex hull of the set

 $\{(\alpha_1,\ldots,\alpha_n): x_1^{\alpha_1}\cdots x_n^{\alpha_n} \text{ is a monomial of } f\}$

イロト 不得下 イヨト イヨト

Recall that we want to compute the mixed volume of Δ , for which the generic polynomial is

$$f(x) = \sum_{i=1}^n c_i x_i + c_0, \quad c_i \in \mathbb{C},$$

with the simplex $K = \operatorname{conv}\{0, \alpha_1 e_1, \dots, \alpha_n e_n\}$ (assuming WLOG $\alpha_i \ge \alpha_{i+1}$) the generic polynomial for it is

$$g(x)=\sum_{i=1}^n c_i x_i^{lpha_i}+c_0, \ \ c_i\in\mathbb{C}.$$

We want to solve $f_1 = \cdots = f_{n-j} = g_1 = \cdots = g_j = 0$, and since f_1, \ldots, f_{n-j} are linearly independent, we have a system

$$\begin{cases} 0 = c_0^{\ell} + x_{\ell} + \sum_{i=1}^j c_i^{\ell} x_i & j+1 \le \ell \le n \\ g_{\ell} = 0 = c_0^{\ell} + \sum_{i=1}^j c_i^{\ell} x_i^{\alpha_i} + \sum_{i=j+1}^n c_i^{\ell} x_i^{\alpha_i} & 1 \le \ell \le j. \end{cases}$$

Recall that we want to compute the mixed volume of Δ , for which the generic polynomial is

$$f(x) = \sum_{i=1}^n c_i x_i + c_0, \quad c_i \in \mathbb{C},$$

with the simplex $K = \operatorname{conv}\{0, \alpha_1 e_1, \dots, \alpha_n e_n\}$ (assuming WLOG $\alpha_i \ge \alpha_{i+1}$) the generic polynomial for it is

$$g(x) = \sum_{i=1}^n c_i x_i^{\alpha_i} + c_0, \quad c_i \in \mathbb{C}.$$

We want to solve $f_1 = \cdots = f_{n-j} = g_1 = \cdots = g_j = 0$, and since f_1, \ldots, f_{n-j} are linearly independent, we have a system

$$\begin{cases} 0 = c_0^{\ell} + x_{\ell} + \sum_{i=1}^j c_i^{\ell} x_i & j+1 \le \ell \le n \\ g_{\ell} = 0 = c_0^{\ell} + \sum_{i=1}^j c_i^{\ell} x_i^{\alpha_i} + \sum_{i=j+1}^n c_i^{\ell} x_i^{\alpha_i} & 1 \le \ell \le j. \end{cases}$$

Plug $x_{\ell} = -c_0^{\ell} - \sum_{i=1}^j c_i^{\ell} x_i$ and get the equivalent

$$\begin{cases} f_{\ell} = 0 & j+1 \leq \ell \leq r \\ g_{\ell} = 0 = c_0^{\ell} + \sum_{i=1}^j c_i^{\ell} x_i^{\alpha_i} + \sum_{i=j+1}^n c_i^{\ell} (-c_0^i - \sum_{m=1}^j c_m^i x_m)^{\alpha_i} & 1 \leq \ell \leq j. \end{cases}$$

As before, $NP(f_{\ell}) = \Delta_n$, but what is $NP(g_{\ell})$?

$$\operatorname{conv}\left(\{\alpha_{i}e_{i}\}_{i=1}^{j}\cup\left\{\sum_{k=1}^{j}\beta_{k}e_{k}:\sum_{k=1}^{j}\beta_{k}=\alpha_{i}, \text{ for } i\geq j+1, \beta_{i}\geq 0\right\}\right)$$
$$=\operatorname{conv}\left(\{\alpha_{i}e_{i}\}_{i=1}^{j}\cup\bigcup_{i=j+1}^{n}\alpha_{i}\Delta_{j}\right).$$
$$\subseteq\operatorname{conv}\left(\{\alpha_{i}e_{i}\}_{i=1}^{j}\right)=\tilde{K}$$

The inclusion is due to the fact that if $i \ge j$ then by our assumption $\alpha_i \le \alpha_j$.

Plug $x_\ell = -c_0^\ell - \sum_{i=1}^j c_i^\ell x_i$ and get the equivalent

$$\begin{cases} f_{\ell} = 0 & j+1 \leq \ell \leq r \\ g_{\ell} = 0 = c_0^{\ell} + \sum_{i=1}^j c_i^{\ell} x_i^{\alpha_i} + \sum_{i=j+1}^n c_i^{\ell} (-c_0^i - \sum_{m=1}^j c_m^i x_m)^{\alpha_i} & 1 \leq \ell \leq j. \end{cases}$$

As before, $NP(f_{\ell}) = \Delta_n$, but what is $NP(g_{\ell})$?

$$\operatorname{conv}\left(\{\alpha_{i}\boldsymbol{e}_{i}\}_{i=1}^{j}\cup\left\{\sum_{k=1}^{j}\beta_{k}\boldsymbol{e}_{k}:\sum_{k=1}^{j}\beta_{k}=\alpha_{i}, \text{ for } i\geq j+1, \beta_{i}\geq 0\right\}\right)$$
$$=\operatorname{conv}\left(\{\alpha_{i}\boldsymbol{e}_{i}\}_{i=1}^{j}\cup\bigcup_{i=j+1}^{n}\alpha_{i}\Delta_{j}\right).$$
$$\subseteq\operatorname{conv}\left(\{\alpha_{i}\boldsymbol{e}_{i}\}_{i=1}^{j}\right)=\tilde{K}$$

The inclusion is due to the fact that if $i \ge j$ then by our assumption $\alpha_i \le \alpha_j$.

- 4 目 ト - 日 ト - 4

We found

$V_n(\tilde{K}[j], \Delta_n[n-j]) = V_n(K[j], \Delta_n[n-j]).$

Now using a classical computation, (K) is *j*-dimensional, so

$$V_n(\tilde{K}[j], \Delta_n[n-j]) = {\binom{n}{j}}^{-1} V_j(\tilde{K}[j]) V_{n-j}(P_{E^{\perp}} \Delta_n[n-j])) = \frac{j!(n-j)!}{n!} \operatorname{Vol}_j(\tilde{K}) \operatorname{Vol}_{n-j}(\Delta_{n-j}) = \frac{\prod_{i=1}^j \alpha_i}{n!}.$$

We found

$$V_n(\tilde{\mathcal{K}}[j], \Delta_n[n-j]) = V_n(\mathcal{K}[j], \Delta_n[n-j]).$$

Now using a classical computation, $\tilde{(K)}$ is *j*-dimensional, so

$$\begin{split} &V_n(\tilde{\mathcal{K}}[j], \Delta_n[n-j]) \\ &= \binom{n}{j}^{-1} V_j(\tilde{\mathcal{K}}[j]) V_{n-j}(P_{E^{\perp}} \Delta_n[n-j])) \\ &= \frac{j!(n-j)!}{n!} \operatorname{Vol}_j(\tilde{\mathcal{K}}) \operatorname{Vol}_{n-j}(\Delta_{n-j}) = \frac{\prod_{i=1}^j \alpha_i}{n!}. \end{split}$$

Shay Sadovsky (Tel Aviv University)

Corollary

Let $(\alpha_i)_{i=1}^n, (\beta_i)_{i=1}^n$ be two sequences of non-negative numbers, and let $K, T \subset \mathbb{R}^n$ be given by $K = \operatorname{conv}(0, \alpha_1 e_1, \ldots, \alpha_n e_n)$ and $T = \operatorname{conv}(0, \beta_1 e_1, \ldots, \beta_n e_n)$. Then, for any $0 \le j \le n$,

$$V_n(K[j], T[n-j]) = \frac{1}{n!} \max\left\{\prod_{i \in I} \alpha_i \prod_{j \in I^c} \beta_j : I \subset [n], |I| = j\right\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks for listening

shayas1@gmail.com

Shay Sadovsky (Tel Aviv University)

Locally anti-blocking

May 2, 2024 25 / 24