
Godbersen’s conjecture for locally anti-blocking bodies

Shay Sadovsky

Tel Aviv University

Online AGA Seminar

Shay Sadovsky (Tel Aviv University) Locally anti-blocking May 2, 2024 1 / 24



Grünbaum gave the following classical definition for a measure of
symmetry of convex sets, that it is a function, f : Kn → [0, 1], such that

1 For any centrally-symmetric K , f (K ) = 1.

2 f is invariant under affine transformations.

3 f is continuous.
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A well known example of a measure of symmetry is the following quantity,

f (K ) =
2nVol(K )

Vol(K − K )
.

which clearly satisfies (1)-(3).
Rogers and Shephard showed that for K convex,

Vol(K − K ) ≤
(

2n

n

)
Vol(K ),

with equality attained only for simplices, thus showing that simplices are
also minimizers of f (·).
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Recalling the definition of mixed volume,

Vol(K − λK ) =
n∑

j=0

(
n

j

)
λjV (K [j ],−K [n − j ]),

it is natural to ask whether the Rogers-Shephard inequality still holds for
this polynomial,

(?) Vol(K − λK ) ≤
n∑

j=0

(
n

j

)2

λjVol(K ).
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Conjecture (Godbersen’s conjecture (’38), (Makai Jr. ’74) )

For any convex body K ⊂ Rn and 1 ≤ j ≤ n − 1,

V (K [j ],−K [n − j ]) ≤
(
n

j

)
Vol(K )

with equality attained only for simplices.
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As more motivation for the conjecture, note that the following quanitiy is
also a measure of symmetry,

gj(K ) =
Vol(K )

V (K [j ],−K [n − j ])
.

Godbersen’s conjecture implies that this measure of symmetry is also
minimized only by simplices.
It also implies the following conjecture about the λ-difference body

Vol(DλK )

Vol(K )
≤ Vol(Dλ∆)

Vol(∆)n
,

where ∆n = conv ({0} ∪ {ei}ni=1) and DλK = (1− λ)K + λ(−K ).
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Previous work on Godebersen’s conjecture has yeided the following partial
results:

• (Artstein-Avidan, Einhorn, Florentin, and Ostrover)

V (K [j ],−K [n−j ]) ≤ nn

j j(n − j)(n−j)
Vol(K ) ≈

(
n

j

)
Vol(K )

√
2π

j(n − j)

n
.

• (Artstein-Avidan)

n∑
j=0

λj(1− λ)n−jV (K [j ],−K [n − k]) ≤ Vol(K ).

• (Artstein-Avidan, S, and Sanyal) The conjecture holds for a class
called ‘anti-blocking bodies’ or ‘convex corners’.
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Definition
• A convex body K ⊆ Rn is called unconditional if (x1, . . . , xn) ∈ K

implies (±x1, . . . ,±xn) ∈ K .

• A convex body K+ is called anti-blocking if it is of the form
K+ = K ∩ Rn

+ when K is unconditional.
• A convex body K ⊆ Rn is called locally anti-blocking if, for any

coordinate hyperplane E c
J = sp{ej}j∈J , J ⊂ [n] (where {ei}ni=1 is the

standard basis), one has PEK = K ∩ E .
• Alternatively, they can be defined as bodies that are anti-blocking in

each orthant.
• Denote the anti-blocking in each orthant by Kσ for σ ∈ {−1, 1}n.
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Locally anti-blocking bodies support a few conjectures already:
Mahler’s Conjecture (Fradelizi and Meyer) and Kalai’s 3d conjecture
(Sanyal and Winter).

Theorem

Godbersen’s conjecture holds for locally anti-blocking bodies. Among
these, equality holds only for simplices.

Shay Sadovsky (Tel Aviv University) Locally anti-blocking May 2, 2024 9 / 24



For the equality cases we also need this neat observation:

Lemma (Mixed volume of simplices)

Let α1, . . . , αn ≥ 0 and let K = conv(0, α1e1, . . . , αnen). Then, for any
0 ≤ j ≤ n,

Vn(K [j ],∆n[n − j ]) =
1

n!
max

{∏
i∈I

αi : |I | = j

}
.

This allows one to compute the mixed volume of any two aligned simplices.
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Proof of theorem

The proof of the inequality needs:

1 (AA-S-S) Mixed volume formula for two anti-blocking bodies.

2 Decomposition lemma of mixed volume for two locally anti-blocking
bodies.

3 Behavior of coordinate projections of locally anti-blocking bodies.

4 (AA-S-S) A ‘mixed’ reverse Kleitman inequality.
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(1) Mixed volume formula for two anti-blocking bodies

Let K ,K ′ ⊆ Rn
+ be anti-blocking bodies, let 0 ≤ j ≤ n. Then

Vn(K [j ],−K ′[n − j ])

=

(
n

j

)−1 ∑
E a j-dim.

coord. hyperplane

Volj(PEK ) ·Voln−j(PE⊥K ′).

Proof idea: A geometric decompostion of
the sum K − K ′ into a disjoint union⋃

E a coord.
hyperplane

PE (K )× PE⊥(−K ′).

Look at λK and compare coefficients.
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(2) Decomposition lemma of mixed volume

Let K ,K ′ ⊆ Rn be locally anti-blocking bodies. Then,

Vol(K + K ′) =
∑

σ∈{−1,1}n
Vol(Kσ + K ′σ)

and in fact,

Vn(K [j ],K ′[n − j ]) =
∑

σ∈{−1,1}n
Vn(Kσ[j ],K ′σ[n − j ]).

Proof idea: Show that again there is a disjoint decomposition,

K + K ′ =
⋃
σ

Kσ + K ′σ.

Look at λK and compare coefficients.
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(3) Coordinate projections of locally anti-blocking bodiess

Let K ⊂ Rn be locally anti-blocking, and let E := sp{ei : i ∈ I} ⊂ Rn for
some I ⊂ [n]. Let τ, σ ∈ {−1,+1}n be two orthant signs, such that
τ |I = σ|I . Then,

PEKσ = PEKτ .

Proof idea: Use the fact that for
anti-blocking bodies (and locally
anti-blocking) PEK = K ∩ E and use that
Kσ ∩ E = Kτ ∩ E .
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(4) A ‘mixed’ reverse Kleitman inequality

Given two anti-blocking bodies, K ,T ⊆ Rn
+,

Vn(K [j ],T [n − j ]) ≤ Vn(K [j ],−T [n − j ]).

Proof idea: Apply Steiner symmetrization along coordinates to K and −T
until they are unconditional, and show that the mixed volume only
decreases along the symmetrization (Shephard’s theorem for shadow
systems).
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Proof

Let K be locally anti-blocking, K = ∪σKσ with each Kσ anti-blocking in
σRn

+.
Using the decomposition lemma (2),

since (−K )σ = −(K−σ) and using
the mixed reverse Kleitman inequality (4), we get

Vn(K [j ],−K [n − j ]) =
∑

σ∈{−1,1}n
Vn(Kσ[j ], (−K )σ[n − j ])

=
∑

σ∈{−1,1}n
Vn(Kσ[j ],−(K−σ)[n − j ])

≤
∑

σ∈{−1,1}n
Vn(Kσ[j ], (K−σ)[n − j ]). (?)
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Using our formula for mixed volumes of anti-blocking bodies (1) we see
that ∑

σ∈{−1,1}n
Vn(Kσ[j ], (K−σ)[n − j ])

=
∑

σ∈{−1,1}n

(
n

j

)−1 ∑
E a j-dim.

coord. hyperplane

Volj(PEKσ)Voln−j(PE⊥K−σ).

With our observation about coordinates, we find that for the coordinate
sign τ that is defined as τ |E = σ|E and τ |E⊥ = −σ|E⊥ ,

Volj(PEKσ)Voln−j(PE⊥K−σ) = Volj(PEKτ )Voln−j(PE⊥Kτ )
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Combining the former with the Rogers-Shephard inequality for sections
and projections, Volj(K ∩ K )Voln−j(PE⊥K ) ≤

(n
j

)
Vol(K ), we continue

Vn(K [j ],−K [n − j ])

≤
∑

σ∈{−1,1}n

(
n

j

)−1 ∑
E a j-dim.

coord. hyperplane

Volj(PEKσ)Voln−j(PE⊥K−σ)(?)

=

(
n

j

)−1 ∑
E a j-dim.

coord. hyperplane

∑
τ∈{−1,1}n

Volj(PEKτ )Voln−j(PE⊥Kτ )

≤
(
n

j

)−1 ∑
E a j-dim.

coord. hyperplane

∑
τ∈{−1,1}n

(
n

j

)
Voln(Kτ ) (??)

=
∑

E a j-dim.
coord. hyperplane

∑
τ∈{−1,1}n

Voln(Kτ ) =

(
n

j

)
Vol(K )
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What about the equality cases?

Notice that there were only two inequalities:

(??) was an application of the Rogers–Shephard inequality for sections and
projections: It is simple to show that there is an equality for all subspaces
E of dimension j only if Kτ is a simplex for all τ ∈ {−1, 1}n.

(?) was due to the mixed reverse-Kleitman inequality. If both bodies are
simplices, this becomes a computation, for which we needed

Vn(K [j ],∆n[n − j ]) =
1

n!
max

{∏
i∈I

αi : |I | = j

}
.
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Mixed volume computation

To compute the mixed volume V (K [j ],∆n[n − j ]) we use

Theorem (Bernstein–Khovanskii–Kouchnirenko (BKK))

Given polynomials f1, . . . , fn ∈ C[x±11 , . . . , x±1n ], let Pi = NP(fi ) be the
Newton polytope of fi in Rn. Then, for generic choices of the coefficients
in the fi , the number of common solutions (with multiplicity) is exactly
Vn(P1, ...,Pn).

The Newton polytope of f is a convex hull of the set

{(α1, . . . , αn) : xα1
1 · · · x

αn
n is a monomial of f }
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Recall that we want to compute the mixed volume of ∆, for which the
generic polynomial is

f (x) =
n∑

i=1

cixi + c0, ci ∈ C,

with the simplex K = conv{0, α1e1, . . . αnen} (assuming WLOG
αi ≥ αi+1) the generic polynomial for it is

g(x) =
n∑

i=1

cix
αi
i + c0, ci ∈ C.

We want to solve f1 = · · · = fn−j = g1 = · · · = gj = 0, and since
f1, . . . fn−j are linearly independent, we have a system{

0 = c`0 + x` +
∑j

i=1 c
`
i xi j + 1 ≤ ` ≤ n

g` = 0 = c`0 +
∑j

i=1 c
`
i x
αi
i +

∑n
i=j+1 c

`
i x
αi
i 1 ≤ ` ≤ j .
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Plug x` = −c`0 −
∑j

i=1 c
`
i xi and get the equivalent{

f` = 0 j + 1 ≤ ` ≤ n

g` = 0 = c`0 +
∑j

i=1 c
`
i x
αi
i +

∑n
i=j+1 c

`
i (−c i0 −

∑j
m=1 c

i
mxm)αi 1 ≤ ` ≤ j .

As before, NP(f`) = ∆n, but what is NP(g`)?

conv

(
{αiei}ji=1 ∪

{
j∑

k=1

βkek :

j∑
k=1

βk = αi , for i ≥ j + 1, βi ≥ 0

})

= conv

{αiei}ji=1 ∪
n⋃

i=j+1

αi∆j

 .

⊆ conv
(
{αiei}ji=1

)
= K̃

The inclusion is due to the fact that if i ≥ j then by our assumption
αi ≤ αj .
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We found
Vn(K̃ [j ],∆n[n − j ]) = Vn(K [j ],∆n[n − j ]).

Now using a classical computation, (̃K ) is j-dimensional, so

Vn(K̃ [j ],∆n[n − j ])

=

(
n

j

)−1
Vj(K̃ [j ])Vn−j(PE⊥∆n[n − j ]))

=
j!(n − j)!

n!
Volj(K̃ )Voln−j(∆n−j) =

∏j
i=1 αi

n!
.
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Corollary

Let (αi )
n
i=1, (βi )

n
i=1 be two sequences of non-negative numbers, and let

K ,T ⊂ Rn be given by K = conv(0, α1e1, . . . , αnen) and
T = conv(0, β1e1, . . . , βnen). Then, for any 0 ≤ j ≤ n,

Vn(K [j ],T [n − j ]) =
1

n!
max

∏
i∈I

αi

∏
j∈I c

βj : I ⊂ [n], |I | = j

 .
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Thanks for listening

shayas1@gmail.com
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