# Godbersen's conjecture for locally anti-blocking bodies 

Shay Sadovsky

Tel Aviv University

Online AGA Seminar

Grünbaum gave the following classical definition for a measure of symmetry of convex sets, that it is a function, $f: \mathcal{K}^{n} \rightarrow[0,1]$, such that
(1) For any centrally-symmetric $K, f(K)=1$.
(2) $f$ is invariant under affine transformations.
(3) $f$ is continuous.

A well known example of a measure of symmetry is the following quantity,

$$
f(K)=\frac{2^{n} \operatorname{Vol}(K)}{\operatorname{Vol}(K-K)} .
$$

which clearly satisfies (1)-(3).
Rogers and Shephard showed that for $K$ convex,

$$
\operatorname{Vol}(K-K) \leq\binom{ 2 n}{n} \operatorname{Vol}(K)
$$

with equality attained only for simplices, thus showing that simplices are also minimizers of $f(\cdot)$.

Recalling the definition of mixed volume,

$$
\operatorname{Vol}(K-\lambda K)=\sum_{j=0}^{n}\binom{n}{j} \lambda^{j} V(K[j],-K[n-j]),
$$

it is natural to ask whether the Rogers-Shephard inequality still holds for this polynomial,
(?) $\quad \operatorname{Vol}(K-\lambda K) \leq \sum_{j=0}^{n}\binom{n}{j}^{2} \lambda^{j} \operatorname{Vol}(K)$.

## Conjecture (Godbersen's conjecture ('38), (Makai Jr. '74) )

For any convex body $K \subset \mathbb{R}^{n}$ and $1 \leq j \leq n-1$,

$$
V(K[j],-K[n-j]) \leq\binom{ n}{j} \operatorname{Vol}(K)
$$

with equality attained only for simplices.

As more motivation for the conjecture, note that the following quanitiy is also a measure of symmetry,

$$
g_{j}(K)=\frac{\operatorname{Vol}(K)}{V(K[j],-K[n-j])} .
$$

Godbersen's conjecture implies that this measure of symmetry is also minimized only by simplices.
It also implies the following conjecture about the $\lambda$-difference body

where $\Delta_{n}=\operatorname{conv}\left(\{0\} \cup\left\{e_{i}\right\}_{i=1}^{n}\right)$ and $D_{\lambda} K=(1-\lambda) K+\lambda(-K)$.

As more motivation for the conjecture, note that the following quanitiy is also a measure of symmetry,

$$
g_{j}(K)=\frac{\operatorname{Vol}(K)}{V(K[j],-K[n-j])} .
$$

Godbersen's conjecture implies that this measure of symmetry is also minimized only by simplices.
It also implies the following conjecture about the $\lambda$-difference body

$$
\frac{\operatorname{Vol}\left(D_{\lambda} K\right)}{\operatorname{Vol}(K)} \leq \frac{\operatorname{Vol}\left(D_{\lambda} \Delta\right)}{\operatorname{Vol}(\Delta)_{n}}
$$

where $\Delta_{n}=\operatorname{conv}\left(\{0\} \cup\left\{e_{i}\right\}_{i=1}^{n}\right)$ and $D_{\lambda} K=(1-\lambda) K+\lambda(-K)$.

Previous work on Godebersen's conjecture has yeided the following partial results:

- (Artstein-Avidan, Einhorn, Florentin, and Ostrover)

$$
V(K[j],-K[n-j]) \leq \frac{n^{n}}{j j(n-j)^{(n-j)}} \operatorname{Vol}(K) \approx\binom{n}{j} \operatorname{Vol}(K) \sqrt{2 \pi \frac{j(n-j)}{n}} .
$$

- (Artstein-Avidan)

$$
\sum_{j=0}^{n} \lambda^{j}(1-\lambda)^{n-j} V(K[j],-K[n-k]) \leq \operatorname{Vol}(K)
$$

- (Artstein-Avidan, S, and Sanyal) The conjecture holds for a class called 'anti-blocking bodies' or 'convex corners'.


## Definition

- A convex body $K \subseteq \mathbb{R}^{n}$ is called unconditional if $\left(x_{1}, \ldots, x_{n}\right) \in K$ implies $\left( \pm x_{1}, \ldots, \pm x_{n}\right) \in K$.
- A convex body $K_{+}$is called anti-blocking if it is of the form $K_{+}=K \cap \mathbb{R}_{+}^{n}$ when $K$ is unconditional.
- A convex body $K \subseteq \mathbb{R}^{n}$ is called locally anti-blocking if, for any coordinate hyperplane $E_{J}^{c}=\operatorname{sp}\left\{e_{j}\right\}_{j \in J,} J \subset[n]$ (where $\left\{e_{i}\right\}_{i=1}^{n}$ is the standard basis), one has $P_{E} K=K \cap E$.
- Alternatively, they can be defined as bodies that are anti-blocking in each orthant.
- Denote the anti-blocking in each orthant by $K_{\sigma}$ for $\sigma \in\{-1,1\}^{n}$.


Locally anti-blocking

Locally anti-blocking bodies support a few conjectures already:
Mahler's Conjecture (Fradelizi and Meyer) and Kalai's $3^{d}$ conjecture (Sanyal and Winter).

## Theorem

Godbersen's conjecture holds for locally anti-blocking bodies. Among these, equality holds only for simplices.



For the equality cases we also need this neat observation:

## Lemma (Mixed volume of simplices)

Let $\alpha_{1}, \ldots, \alpha_{n} \geq 0$ and let $K=\operatorname{conv}\left(0, \alpha_{1} e_{1}, \ldots, \alpha_{n} e_{n}\right)$. Then, for any $0 \leq j \leq n$,

$$
V_{n}\left(K[j], \Delta_{n}[n-j]\right)=\frac{1}{n!} \max \left\{\prod_{i \in I} \alpha_{i}:|I|=j\right\} .
$$

This allows one to compute the mixed volume of any two aligned simplices.

## Proof of theorem

The proof of the inequality needs:
(1) (AA-S-S) Mixed volume formula for two anti-blocking bodies.
(2) Decomposition lemma of mixed volume for two locally anti-blocking bodies.
(3) Behavior of coordinate projections of locally anti-blocking bodies.
(4) (AA-S-S) A 'mixed' reverse Kleitman inequality.

## (1) Mixed volume formula for two anti-blocking bodies

Let $K, K^{\prime} \subseteq \mathbb{R}_{+}^{n}$ be anti-blocking bodies, let $0 \leq j \leq n$. Then

$$
\begin{aligned}
& V_{n}\left(K[j],-K^{\prime}[n-j]\right) \\
& =\binom{n}{j}^{-1} \sum_{\begin{array}{r}
E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }
\end{array}} \operatorname{Vol}_{j}\left(P_{E} K\right) \cdot \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K^{\prime}\right) .
\end{aligned}
$$

## Proof idea: A geometric decompostion of the sum $K-K^{\prime}$ into a disjoint union



Look at $\lambda K$ and compare coefficients.

## (1) Mixed volume formula for two anti-blocking bodies

Let $K, K^{\prime} \subseteq \mathbb{R}_{+}^{n}$ be anti-blocking bodies, let $0 \leq j \leq n$. Then

$$
\begin{aligned}
& V_{n}\left(K[j],-K^{\prime}[n-j]\right) \\
& =\binom{n}{j}^{-1} \sum_{\begin{array}{r}
E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }
\end{array}} \operatorname{Vol}_{j}\left(P_{E} K\right) \cdot \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K^{\prime}\right) .
\end{aligned}
$$



Proof idea: A geometric decompostion of the sum $K-K^{\prime}$ into a disjoint union

$$
\bigcup_{\substack{E \text { a coord. } \\ \text { hyperplane }}} P_{E}(K) \times P_{E^{\perp}}\left(-K^{\prime}\right) .
$$

Look at $\lambda K$ and compare coefficients.

## (2) Decomposition lemma of mixed volume

Let $K, K^{\prime} \subseteq \mathbb{R}^{n}$ be locally anti-blocking bodies. Then,

$$
\operatorname{Vol}\left(K+K^{\prime}\right)=\sum_{\sigma \in\{-1,1\}^{n}} \operatorname{Vol}\left(K_{\sigma}+K_{\sigma}^{\prime}\right)
$$

and in fact,

$$
V_{n}\left(K[j], K^{\prime}[n-j]\right)=\sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j], K_{\sigma}^{\prime}[n-j]\right) .
$$

Proof idea: Show that again there is a disjoint decomposition,


## Look at $\lambda K$ and compare coefficients.

## (2) Decomposition lemma of mixed volume

Let $K, K^{\prime} \subseteq \mathbb{R}^{n}$ be locally anti-blocking bodies. Then,

$$
\operatorname{Vol}\left(K+K^{\prime}\right)=\sum_{\sigma \in\{-1,1\}^{n}} \operatorname{Vol}\left(K_{\sigma}+K_{\sigma}^{\prime}\right)
$$

and in fact,

$$
V_{n}\left(K[j], K^{\prime}[n-j]\right)=\sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j], K_{\sigma}^{\prime}[n-j]\right) .
$$

Proof idea: Show that again there is a disjoint decomposition,

$$
K+K^{\prime}=\bigcup_{\sigma} K_{\sigma}+K_{\sigma}^{\prime}
$$

Look at $\lambda K$ and compare coefficients.

## (3) Coordinate projections of locally anti-blocking bodiess

Let $K \subset \mathbb{R}^{n}$ be locally anti-blocking, and let $E:=\operatorname{sp}\left\{e_{i}: i \in I\right\} \subset \mathbb{R}^{n}$ for some $I \subset[n]$. Let $\tau, \sigma \in\{-1,+1\}^{n}$ be two orthant signs, such that $\left.\tau\right|_{I}=\left.\sigma\right|_{I}$. Then,

$$
P_{E} K_{\sigma}=P_{E} K_{\tau}
$$

## (3) Coordinate projections of locally anti-blocking bodiess

Let $K \subset \mathbb{R}^{n}$ be locally anti-blocking, and let $E:=\operatorname{sp}\left\{e_{i}: i \in I\right\} \subset \mathbb{R}^{n}$ for some $I \subset[n]$. Let $\tau, \sigma \in\{-1,+1\}^{n}$ be two orthant signs, such that $\left.\tau\right|_{I}=\left.\sigma\right|_{I}$. Then,

$$
P_{E} K_{\sigma}=P_{E} K_{\tau}
$$



Proof idea: Use the fact that for anti-blocking bodies (and locally anti-blocking) $P_{E} K=K \cap E$ and use that $K_{\sigma} \cap E=K_{\tau} \cap E$.
(4) A 'mixed' reverse Kleitman inequality

Given two anti-blocking bodies, $K, T \subseteq \mathbb{R}_{+}^{n}$,

$$
V_{n}(K[j], T[n-j]) \leq V_{n}(K[j],-T[n-j]) .
$$

Proof idea: Apply Steiner symmetrization along coordinates to $K$ and $-T$ until they are unconditional, and show that the mixed volume only decreases along the symmetrization (Shephard's theorem for shadow systems).

## (4) A 'mixed' reverse Kleitman inequality

Given two anti-blocking bodies, $K, T \subseteq \mathbb{R}_{+}^{n}$,

$$
V_{n}(K[j], T[n-j]) \leq V_{n}(K[j],-T[n-j]) .
$$

Proof idea: Apply Steiner symmetrization along coordinates to $K$ and $-T$ until they are unconditional, and show that the mixed volume only decreases along the symmetrization (Shephard's theorem for shadow systems).

## Proof

Let $K$ be locally anti-blocking, $K=\cup_{\sigma} K_{\sigma}$ with each $K_{\sigma}$ anti-blocking in $\sigma \mathbb{R}_{+}^{n}$.
Using the decomposition lemma (2),

$$
V_{n}(K[j],-K[n-j])=\sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],(-K)_{\sigma}[n-j]\right)
$$



## Proof

Let $K$ be locally anti-blocking, $K=\cup_{\sigma} K_{\sigma}$ with each $K_{\sigma}$ anti-blocking in $\sigma \mathbb{R}_{+}^{n}$.
Using the decomposition lemma (2), since $(-K)_{\sigma}=-\left(K_{-\sigma}\right)$

$$
\begin{aligned}
V_{n}(K[j],-K[n-j]) & =\sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],(-K)_{\sigma}[n-j]\right) \\
& =\sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],-\left(K_{-\sigma}\right)[n-j]\right) \\
& \leq \sum_{n}\left(K_{\sigma}[j],\left(K_{-\sigma}\right)[n-j]\right)
\end{aligned}
$$

## Proof

Let $K$ be locally anti-blocking, $K=\cup_{\sigma} K_{\sigma}$ with each $K_{\sigma}$ anti-blocking in $\sigma \mathbb{R}_{+}^{n}$.
Using the decomposition lemma (2), since $(-K)_{\sigma}=-\left(K_{-\sigma}\right)$ and using the mixed reverse Kleitman inequality (4), we get

$$
\begin{align*}
V_{n}(K[j],-K[n-j]) & =\sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],(-K)_{\sigma}[n-j]\right) \\
& =\sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],-\left(K_{-\sigma}\right)[n-j]\right) \\
& \leq \sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],\left(K_{-\sigma}\right)[n-j]\right) .
\end{align*}
$$

Using our formula for mixed volumes of anti-blocking bodies (1) we see that

$$
\begin{aligned}
& \sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],\left(K_{-\sigma}\right)[n-j]\right) \\
= & \sum_{\sigma \in\{-1,1\}^{n}}\binom{n}{j}^{-1} \sum_{\begin{array}{c}
E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }
\end{array}} \operatorname{Vol}_{j}\left(P_{E} K_{\sigma}\right) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K_{-\sigma}\right) .
\end{aligned}
$$

With our observation about coordinates, we find that for the coordinate sign $\tau$ that is defined as $\left.\tau\right|_{E}=\left.\sigma\right|_{E}$ and $\left.\tau\right|_{E^{\perp}}=-\left.\sigma\right|_{E^{\perp}}$,

$$
\operatorname{Vol}_{j}\left(P_{E} K_{\sigma}\right) \operatorname{Vol}_{n-j}\left(P_{E} K K-\sigma\right)=\operatorname{Vol}_{j}\left(P_{E} K_{T}\right) \operatorname{Vol}_{n-j}\left(P_{E}+K_{T}\right)
$$

Using our formula for mixed volumes of anti-blocking bodies (1) we see that

$$
\begin{aligned}
& \sum_{\sigma \in\{-1,1\}^{n}} V_{n}\left(K_{\sigma}[j],\left(K_{-\sigma}\right)[n-j]\right) \\
= & \sum_{\sigma \in\{-1,1\}^{n}}\binom{n}{j}^{-1} \sum_{\begin{array}{c}
E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }
\end{array}} \operatorname{Vol}_{j}\left(P_{E} K_{\sigma}\right) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K_{-\sigma}\right)
\end{aligned}
$$

With our observation about coordinates, we find that for the coordinate sign $\tau$ that is defined as $\left.\tau\right|_{E}=\left.\sigma\right|_{E}$ and $\left.\tau\right|_{E^{\perp}}=-\left.\sigma\right|_{E^{\perp}}$,

$$
\operatorname{Vol}_{j}\left(P_{E} K_{\sigma}\right) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K_{-\sigma}\right)=\operatorname{Vol}_{j}\left(P_{E} K_{\tau}\right) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K_{\tau}\right)
$$

Combining the former with the Rogers-Shephard inequality for sections and projections, $\operatorname{Vol}_{j}(K \cap K) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K\right) \leq\binom{ n}{j} \operatorname{Vol}(K)$, we continue

$$
V_{n}(K[j],-K[n-j])
$$

$$
\leq \sum_{\sigma \in\{-1,1\}^{n}}\binom{n}{j}^{-1} \sum_{\begin{array}{c}
E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }
\end{array}} \operatorname{Vol}_{j}\left(P_{E} K_{\sigma}\right) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K_{-\sigma}\right)
$$



Combining the former with the Rogers-Shephard inequality for sections and projections, $\operatorname{Vol}_{j}(K \cap K) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K\right) \leq\binom{ n}{j} \operatorname{Vol}(K)$, we continue

$$
\begin{aligned}
& V_{n}(K[j],-K[n-j]) \\
& \leq \sum_{\sigma \in\{-1,1\}^{n}}\binom{n}{j}^{-1} \sum_{\begin{array}{c}
E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }
\end{array}} \operatorname{Vol}_{j}\left(P_{E} K_{\sigma}\right) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K_{-\sigma}\right)(\star) \\
& =\binom{n}{j}^{-1} \sum_{\substack{E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }}} \sum_{\tau \in\{-1,1\}^{n}} \operatorname{Vol}_{j}\left(P_{E} K_{\tau}\right) \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K_{\tau}\right) \\
& \leq\binom{ n}{j}^{-1} \sum_{\substack{E \text { a } j \text {-dim. } \\
\text { coord. hyperplane }}} \sum_{\tau \in\{-1,1\}^{n}}\binom{n}{j} \operatorname{Vol}_{n}\left(K_{\tau}\right) \quad(\star \star) \\
& =\sum_{\begin{array}{c}
E \text { a aj-dim. } \\
\text { coord. hyperplane }
\end{array}} \sum_{\tau \in\{-1,1\}^{n}} \operatorname{Vol}_{n}\left(K_{\tau}\right)=\binom{n}{j} \operatorname{Vol}(K)
\end{aligned}
$$

## What about the equality cases?

Notice that there were only two inequalities:
( $* *$ ) was an application of the Rogers-Shephard inequality for sections and projections: It is simple to show that there is an equality for all subspaces $E$ of dimension $j$ only if $K_{\tau}$ is a simplex for all $\tau \in\{-1,1\}^{n}$
$(\star)$ was due to the mixed reverse-Kleitman inequality. If both bodies are simplices, this becomes a computation, for which we needed

$$
V_{n}\left(K[j], \Delta_{n}[n-j]\right)=\frac{1}{n!} \max \left\{\prod_{i \in I} \alpha_{i}:|I|=j\right\}
$$

## What about the equality cases?

Notice that there were only two inequalities:
( $\star \star$ ) was an application of the Rogers-Shephard inequality for sections and projections: It is simple to show that there is an equality for all subspaces $E$ of dimension $j$ only if $K_{\tau}$ is a simplex for all $\tau \in\{-1,1\}^{n}$.
> (*) was due to the mixed reverse-Kleitman inequality. If both bodies are simplices, this becomes a computation, for which we needed


## What about the equality cases?

Notice that there were only two inequalities:
( $\star \star$ ) was an application of the Rogers-Shephard inequality for sections and projections: It is simple to show that there is an equality for all subspaces $E$ of dimension $j$ only if $K_{\tau}$ is a simplex for all $\tau \in\{-1,1\}^{n}$.
$(\star)$ was due to the mixed reverse-Kleitman inequality. If both bodies are simplices, this becomes a computation, for which we needed

$$
V_{n}\left(K[j], \Delta_{n}[n-j]\right)=\frac{1}{n!} \max \left\{\prod_{i \in I} \alpha_{i}:|I|=j\right\} .
$$

## Mixed volume computation

To compute the mixed volume $V\left(K[j], \Delta_{n}[n-j]\right)$ we use

## Theorem (Bernstein-Khovanskii-Kouchnirenko (BKK))

Given polynomials $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, let $P_{i}=N P\left(f_{i}\right)$ be the Newton polytope of $f_{i}$ in $\mathbb{R}^{n}$. Then, for generic choices of the coefficients in the $f_{i}$, the number of common solutions (with multiplicity) is exactly $V_{n}\left(P_{1}, \ldots, P_{n}\right)$.

The Newton polytope of $f$ is a convex hull of the set

$$
\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right): x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \text { is a monomial of } f\right\}
$$

Recall that we want to compute the mixed volume of $\Delta$, for which the generic polynomial is

$$
f(x)=\sum_{i=1}^{n} c_{i} x_{i}+c_{0}, \quad c_{i} \in \mathbb{C}
$$

with the simplex $K=\operatorname{conv}\left\{0, \alpha_{1} e_{1}, \ldots \alpha_{n} e_{n}\right\}$ (assuming WLOG $\left.\alpha_{i} \geq \alpha_{i+1}\right)$ the generic polynomial for it is

$$
g(x)=\sum_{i=1}^{n} c_{i} x_{i}^{\alpha_{i}}+c_{0}, \quad c_{i} \in \mathbb{C}
$$

We want to solve $f_{1}=\cdots=f_{n-j}=g_{1}=\cdots=g_{j}=0$, and since $f_{1}, \ldots f_{n-j}$ are linearly independent, we have a system


Recall that we want to compute the mixed volume of $\Delta$, for which the generic polynomial is

$$
f(x)=\sum_{i=1}^{n} c_{i} x_{i}+c_{0}, \quad c_{i} \in \mathbb{C}
$$

with the simplex $K=\operatorname{conv}\left\{0, \alpha_{1} e_{1}, \ldots \alpha_{n} e_{n}\right\}$ (assuming WLOG $\left.\alpha_{i} \geq \alpha_{i+1}\right)$ the generic polynomial for it is

$$
g(x)=\sum_{i=1}^{n} c_{i} x_{i}^{\alpha_{i}}+c_{0}, \quad c_{i} \in \mathbb{C}
$$

We want to solve $f_{1}=\cdots=f_{n-j}=g_{1}=\cdots=g_{j}=0$, and since $f_{1}, \ldots f_{n-j}$ are linearly independent, we have a system

$$
\begin{cases}0=c_{0}^{\ell}+x_{\ell}+\sum_{i=1}^{j} c_{i}^{\ell} x_{i} & j+1 \leq \ell \leq n \\ g_{\ell}=0=c_{0}^{\ell}+\sum_{i=1}^{j} c_{i}^{\ell} x_{i}^{\alpha_{i}}+\sum_{i=j+1}^{n} c_{i}^{\ell} x_{i}^{\alpha_{i}} & 1 \leq \ell \leq j\end{cases}
$$

Plug $x_{\ell}=-c_{0}^{\ell}-\sum_{i=1}^{j} c_{i}^{\ell} x_{i}$ and get the equivalent

$$
\begin{cases}f_{\ell}=0 & j+1 \leq \ell \leq \\ g_{\ell}=0=c_{0}^{\ell}+\sum_{i=1}^{j} c_{i}^{\ell} x_{i}^{\alpha_{i}}+\sum_{i=j+1}^{n} c_{i}^{\ell}\left(-c_{0}^{i}-\sum_{m=1}^{j} c_{m}^{i} x_{m}\right)^{\alpha_{i}} & 1 \leq \ell \leq j .\end{cases}
$$

As before, $N P\left(f_{\ell}\right)=\Delta_{n}$, but what is $N P\left(g_{\ell}\right)$ ?


The inclusion is due to the fact that if $i \geq j$ then by our assumption

Plug $x_{\ell}=-c_{0}^{\ell}-\sum_{i=1}^{j} c_{i}^{\ell} x_{i}$ and get the equivalent

$$
\begin{cases}f_{\ell}=0 & j+1 \leq \ell \leq \\ g_{\ell}=0=c_{0}^{\ell}+\sum_{i=1}^{j} c_{i}^{\ell} x_{i}^{\alpha_{i}}+\sum_{i=j+1}^{n} c_{i}^{\ell}\left(-c_{0}^{i}-\sum_{m=1}^{j} c_{m}^{i} x_{m}\right)^{\alpha_{i}} & 1 \leq \ell \leq j\end{cases}
$$

As before, $N P\left(f_{\ell}\right)=\Delta_{n}$, but what is $N P\left(g_{\ell}\right)$ ?

$$
\begin{aligned}
& \operatorname{conv}\left(\left\{\alpha_{i} e_{i}\right\}_{i=1}^{j} \cup\left\{\sum_{k=1}^{j} \beta_{k} e_{k}: \sum_{k=1}^{j} \beta_{k}=\alpha_{i}, \text { for } i \geq j+1, \beta_{i} \geq 0\right\}\right) \\
& =\operatorname{conv}\left(\left\{\alpha_{i} e_{i}\right\}_{i=1}^{j} \cup \bigcup_{i=j+1}^{n} \alpha_{i} \Delta_{j}\right) \\
& \subseteq \operatorname{conv}\left(\left\{\alpha_{i} e_{i}\right\}_{i=1}^{j}\right)=\tilde{K}
\end{aligned}
$$

The inclusion is due to the fact that if $i \geq j$ then by our assumption $\alpha_{i} \leq \alpha_{j}$.

We found

$$
V_{n}\left(\tilde{K}[j], \Delta_{n}[n-j]\right)=V_{n}\left(K[j], \Delta_{n}[n-j]\right)
$$

Now using a classical computation, $(K)$ is $j$-dimensional, so


We found

$$
V_{n}\left(\tilde{K}[j], \Delta_{n}[n-j]\right)=V_{n}\left(K[j], \Delta_{n}[n-j]\right) .
$$

Now using a classical computation, $\tilde{( } K)$ is $j$-dimensional, so

$$
\begin{aligned}
& V_{n}\left(\tilde{K}[j], \Delta_{n}[n-j]\right) \\
& \left.=\binom{n}{j}^{-1} V_{j}(\tilde{K}[j]) V_{n-j}\left(P_{E^{\perp}} \Delta_{n}[n-j]\right)\right) \\
& =\frac{j!(n-j)!}{n!} \operatorname{Vol}_{j}(\tilde{K}) \operatorname{Vol}_{n-j}\left(\Delta_{n-j}\right)=\frac{\prod_{i=1}^{j} \alpha_{i}}{n!} .
\end{aligned}
$$

## Corollary

Let $\left(\alpha_{i}\right)_{i=1}^{n},\left(\beta_{i}\right)_{i=1}^{n}$ be two sequences of non-negative numbers, and let $K, T \subset \mathbb{R}^{n}$ be given by $K=\operatorname{conv}\left(0, \alpha_{1} e_{1}, \ldots, \alpha_{n} e_{n}\right)$ and $T=\operatorname{conv}\left(0, \beta_{1} e_{1}, \ldots, \beta_{n} e_{n}\right)$. Then, for any $0 \leq j \leq n$,

$$
V_{n}(K[j], T[n-j])=\frac{1}{n!} \max \left\{\prod_{i \in I} \alpha_{i} \prod_{j \in I^{c}} \beta_{j}: I \subset[n],|I|=j\right\} .
$$

# Thanks for listening 

shayas1@gmail.com

