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This talk is based on the joint work with Hiroshi Tsuji (Osaka).
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Overview

@ Brascamp-Lieb inequality has fruitful connections to convex geometry.
E.g. Brascamp-Lieb — volume ratio/ reverse isoperimetric problem/
Buseman—Petty problem; discovered by K. Ball.
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@ Brascamp-Lieb inequality has fruitful connections to convex geometry.
E.g. Brascamp-Lieb — volume ratio/ reverse isoperimetric problem/
Buseman—Petty problem; discovered by K. Ball.

@ We point out another link to convex geometry:
Brascamp—Lieb <> a study of the volume product of a convex body K:

v(K) = |K|IK®|, K°:={x €R": sup (x,y) <1}
yeR?
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@ Brascamp-Lieb inequality has fruitful connections to convex geometry.
E.g. Brascamp-Lieb — volume ratio/ reverse isoperimetric problem/
Buseman—Petty problem; discovered by K. Ball.

@ We point out another link to convex geometry:
Brascamp—Lieb <> a study of the volume product of a convex body K:

v(K) = |K|IK®|, K°:={x €R": sup (x,y) <1}
yeR?

and exhibit of a wealth of this new link.

. . —1ix2
@ All results are based on a simple observation: for fx(x) :=e 2 lxlli,

im CS(/]R" fic dx) 5

S

Z:s(y) = v(K)

P.[()%]]

where ps ~ 2s,gs ~ —2s and c¢; is explicit. A source of the idea of
this identity: Bobkov—Gentil-Ledoux (Hamilton—Jacobi equation).
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Inequalities of the volume product

o (Blaschke—Santalé inequality)

sup  v(K) = v(B3).
K:K=—K
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Inequalities of the volume product

o (Blaschke—Santalé inequality)

sup  v(K) = v(B3).
K:K=—K

o (Inverse Santalé inequality, Mahler's conjecture)

4n
: _ m 4
K:igiK v(K) =7 v(B) = n’

@ The case n = 2 was proved by Mahler. After partial progresses by
Barthe—Fradelizi, Bourgain—Milman, Fradelizi-Meyer, Kurperberg,
Nazarov—Petrov—Ryabogin—Zvavitch,.. the case n = 3 was solved by
Iriyeh—Shibata '20 and short proof was give by
Fradelizi-Hubard—Meyer—Roldan-Pensado—Zvavitch '22.
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Functional volume product

o Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn—Minkowski — Prékopa—Leindler ineq ) initiated by
K. Ball. ~» This leads to “better” formulation of the problem.

Shohei Nakamura (Osaka University / UniverFunctional volume product, regularizing effect November 9, 2023 5/28



Functional volume product

o Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn—Minkowski — Prékopa—Leindler ineq ) initiated by
K. Ball. ~» This leads to “better” formulation of the problem.

@ (Norm of a convex body) For a symmetric convex body K,

x|k :=inf{r>0: xerK}, xeR"

K|
B3]

- /e—%nxnidX:(zw)g
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Functional volume product

o Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn—Minkowski — Prékopa—Leindler ineq ) initiated by
K. Ball. ~» This leads to “better" formulation of the problem.

@ (Norm of a convex body) For a symmetric convex body K,

x|k :=inf{r>0: xerK}, xeR"

K|
B3]

- / e 3l g = (2m)3
o (Polar body <+ Legendre tranform)

¢*(x) == sup ((x,y) — o(y))

yeRn
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Functional volume product

o Upgrading geometric ineq about volume of convex body to functional
ineq (e.g. Brunn—Minkowski — Prékopa—Leindler ineq ) initiated by
K. Ball. ~» This leads to “better" formulation of the problem.

@ (Norm of a convex body) For a symmetric convex body K,

x|k :=inf{r>0: xerK}, xeR"

K|
B3]

- / e 3l g = (2m)3
o (Polar body <+ Legendre tranform)

o 1 .1
¢*(x) = sup (o) =) ~ Gl 1E)" =51 ke
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Functional volume product

o (Ball and Artstein-Avidan—Klartag—Milman) For f = e=¢ : R" — R,

v(f) 2:/ fdx/ f°dx ::/ e_¢dx/ e " dx.
n n Rn n
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Functional volume product

o (Ball and Artstein-Avidan—Klartag—Milman) For f = e=¢ : R" — R,

v(f) 2:/ fdx/ f°dx ::/ e_¢dx/ e " dx.
n n Rn n

o (Passage from functional volume product to geometrical one)

_1. 2m)"
v(e 2l ”%<) =cyv(K), cni= ﬁ
2
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Functional Blaschke-Santalé inequality

Theorem 1 (Ball, Artstein-Avidan—Klartag—Milman, Fradelizi-Meyer,

Lehec)

For any even function f,

v(f) < v(y) = (2m)"

and equality iff f = ya(x) := (det 27TA)—%e—%<X7A_1X>

for some A > 0.
Assumption on f can be weakened to [ xf dx = 0.
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Functional Blaschke-Santalé inequality

Theorem 1 (Ball, Artstein-Avidan—Klartag—Milman, Fradelizi-Meyer,

Lehec)

For any even function f,

v(f) < v(y) = (2m)"

and equality iff f = ya(x) := (det 27TA)_%e_%<X’A_1X> for some A > 0.
Assumption on f can be weakened to [ xf dx = 0.

o Reminds Ent (f) < Ent(y) + SEnt (e®f) > 0. (reverse LSI:
Artstein-Avidan—Klartag—Schiitt—-Werner, symmetric Talagrand:
Fathi)

e Any monotonicity statment of v(f)?

e E.g. It is monotone increasing via Steiner symmetrization
(Artstein-Avidan—Klartag-Milman) which reduces to the case n = 1.

~> Suggest heat flow monotonicity.
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Monotonicity of the functional volume product

For an initial data fy € L'(dx), let f; (t > 0) be a Fokker—Planck flow:

Otfy = L*f := Afy + (x, V) + nfy.

Theorem 2 (N—Tsuji)

For all even fy,
[0,00) > t > v(ft)

is monotone increasing.
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Monotonicity of the functional volume product

For an initial data fy € L'(dx), let f; (t > 0) be a Fokker—Planck flow:

Otfy = L*f := Afy + (x, V) + nfy.

Theorem 2 (N—Tsuji)

For all even fy,
[0,00) > t > v(ft)

is monotone increasing.

One (technical?) difficulty: v(e=?) = [e~?dx [ e~ suPy))1=¢Y) dx
involves sup ~» doesn’t behave well for the integration by parts etc.
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Functional volume product <> inverse Brascamp—Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb

Shohei Nakamura (Osaka University / UniverFunctional volume product, regularizing effect November 9, 2023 9 /28



Functional volume product <> inverse Brascamp—Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1 1 /01
E-)-FOOa pst—>_2ﬂ_ <1 O) as s 0.

. —2s . 1 0 —e*
Eg. psi=1—e"°~2s, Qs:= Tnps | _g—s 0 /)
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Functional volume product <> inverse Brascamp—Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1 1 /01
E-)-FOOa pst—>_2ﬂ_ <1 O) as s 0.

.S
Eg psi=1—e2~2s Q= %ps <_2_5 i) ) So for f; = e~ %,

1 1
(/2 efﬂ'(X,QsX>fl(X1)Ps f2(X2)PS dX)pS
R
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Functional volume product <> inverse Brascamp—Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1 1 /01
E-)-FOOa pst—>_2ﬂ_ <1 O) as s 0.

.S
Eg psi=1—e2~2s Q= %ps <_2_5 i) ) So for f; = e~ %,

(/2 efﬂ'<ngsX> f]_(Xl)pis f'2(X2)P% dx)Ps — He77T<X7PstX>fi(Xl)f2(X2)HL1{P52
A X1 5 X

— sup €Y2f(x1)h(x)
x1,x2€R
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Functional volume product <> inverse Brascamp—Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1 1 /01
E-)-FOOa pst—>_2ﬂ_ <1 O) as s 0.

.S
Eg psi=1—e2~2s Q= %ps <_2_5 i) ) So for f; = e~ %,

(/2 efﬂ'<ngsX> f]_(Xl)pis f'2(X2)P% dx)Ps — He77T<X7PstX>fi(Xl)f2(X2)HL1{P52
A X1 5 X

— Sup eX1X2ﬁ_(X]_)f2(X2) — sup e_¢1(X1)+¢§(X1)'

x1,%ER X1
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Functional volume product <> inverse Brascamp—Lieb

New idea: regard the functional BS as a limiting case of Brascamp-Lieb
For each s > 0 (small), take ps > 0 and symmetric matrix Qs s.t.

1 1 /01
E-)-FOOa pst—>_2ﬂ_ (1 O) as s 0.

.S
Eg psi=1—e2~2s Q= %ps <_2_5 i) ) So for f; = e~ %i

(/2 efﬂ'<X795X> f]_(Xl)pis f'2(X2)P% dx)Ps — Hef7T<X7PstX>fi(Xl)f2(X2)HL1{P52
A X1 5 X

— Sup eX1X2ﬁ_(X]_)f2(X2) — sup e_¢1(X1)+¢§(X1)'

x1,%ER X1

s]0 R2

Shohei Nakamura (Osaka University / UniverFunctional volume product, regularizing effect

November 9, 2023 9 /28



Functional volume product <> inverse Brascamp—Lieb

o Ifi=e? and f, = e ¢ then

l ~m6 Q%) £ (1) 75 fy(x0) 75 dx)” = 1.
et
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Functional volume product <> inverse Brascamp—Lieb

o Ifi=e? and f, = e ¢ then

l ~m6 Q%) £ (1) 75 fy(x0) 75 dx)” = 1.
et

@ BL. > 0: the largest const of the ineq of

1
/2 e "9 (x1) 7 fo(x2) 7 dx > BLq [] (/ fidx;) o, Vi € LY.
R i=12 YR
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Functional volume product <> inverse Brascamp—Lieb

o Ifi=e? and f, = e ¢ then

l ~m6 Q%) £ (1) 75 fy(x0) 75 dx)” = 1.
et

@ BL. > 0: the largest const of the ineq of

1
/2 e "9 (x1) 7 fo(x2) 7 dx > BLq [] (/ fidx;) o, Vi € LY.
R i=12 YR

Then

v(e ?) = /e¢ dx/ e ¥ dx < liﬂ; BL_ "
S
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Functional volume product <> inverse Brascamp—Lieb

o Ifi=e? and f, = e ¢ then

l ~m6 Q%) £ (1) 75 fy(x0) 75 dx)” = 1.
et

@ BL. > 0: the largest const of the ineq of

1
/2 e "9 (x1) 7 fo(x2) 7 dx > BLq [] (/ fidx;) o, Vi € LY.
R i=12 YR

Then
V(eiqs) — /e¢ dX/ e*(ﬁ* dX S |IITO1 BL;PS ? :? (27_[.)n
S
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Functional volume product <> inverse Brascamp—Lieb

o Ifi=e? and f, = e ¢ then

l ~m6 Q%) £ (1) 75 fy(x0) 75 dx)” = 1.
et

@ BL. > 0: the largest const of the ineq of

1
/2 e "9 (x1) 7 fo(x2) 7 dx > BLq [] (/ fidx) e, Vi € L.
R i=12 YR

Then
V(eiqs) — /e¢ dX/ e*(ﬁ* dX S |IITO1 BL;PS ? :? (27_[.)n
S
@ Apply Lieb's type theorem (the best cosnt is exhausted by centered

Gaussians) and identify BLs ...7 — A study of the inverse
Brascamp—Lieb inequality.
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Functional volume product <> inverse Brascamp—Lieb

o Ifi=e? and f, = e ¢ then

l ~m6 Q%) £ (1) 75 fy(x0) 75 dx)” = 1.
et

@ BL. > 0: the largest const of the ineq of

1
/2 e "9 (x1) 7 fo(x2) 7 dx > BLq [] (/ fidx) e, Vi € L.
R i=12 YR

Then

V(eiqs) :/e¢ dx/e¢* dX S |IITO1 BL;PS ? :? (27_[.)n
S

@ Apply Lieb's type theorem (the best cosnt is exhausted by centered
Gaussians) and identify BLs ...7 — A study of the inverse
Brascamp—Lieb inequality.

@ Prékopa—Leindler = limiting case of the sharp reverse Young
(Brascamp-Lieb).
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General theory on inverse Brascamp—Lieb: Barthe—Wolff

@ IF one could have Lieb's type result for this specific BL data:

1 1
o Jaon €T (xq) P o(x0) P dx
i Rt e,
’ ITizi2 (Jien fi di) P b

for each s > 0, then this would be enough to derive v(f) < v(7).
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General theory on inverse Brascamp—Lieb: Barthe—Wolff

@ IF one could have Lieb's type result for this specific BL data:

) (x,Qsx) fl X1 Ps f2 X2 PS dx .
inf L L) B02)” ey |2f 0A5(7A1’7A2)7
fiel [Tz (o fi dxi) > ps i

for each s > 0, then this would be enough to derive v(f) < v(7).
o Comprehensive study of the inverse BL ineq by Barthe-Wolff: let
Li:R" - R", ¢c,...,cm € R\ {0}, and Q: n x n symmetric. Then

a2 T2, (L) o
inf =
fieL! 170 (Jen fi dxi)

= inf A
AI,-n>0 (’yAla a’YAm)7
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General theory on inverse Brascamp—Lieb: Barthe—Wolff

@ IF one could have Lieb's type result for this specific BL data:

) (x,Qsx) fl X1 Ps f2 X2 PS dx .
inf L L) B02)” ey |2f 0A5(7A1’7A2)7
fiel [Tz (o fi dxi) > ps i

for each s > 0, then this would be enough to derive v(f) < v(7).
o Comprehensive study of the inverse BL ineq by Barthe-Wolff: let
Li:R" - R", ¢c,...,cm € R\ {0}, and Q: n x n symmetric. Then
a2 T2, (L) o
inf = inf A e ,
fleL1 I, (fR,, f; dx,)c' AI> (va VAn)

if the data satisfies the non-degenerate condition:

my
OlkerL, >0, n> s+(Q)+Z nj where Li(x):=(Lix,...,Lm x).
i=1
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General theory on inverse Brascamp—Lieb: Barthe—Wolff

@ IF one could have Lieb's type result for this specific BL data:

) (x,Qsx) fl X1 Ps f2 X2 PS dx .
inf L L) B02)” ey |2f OAS(VA”PYAQ%
fiel [Tz (o fi dxi) > ps i

for each s > 0, then this would be enough to derive v(f) < v(7).
o Comprehensive study of the inverse BL ineq by Barthe-Wolff: let
Li:R" - R", ¢c,...,cm € R\ {0}, and Q: n x n symmetric. Then
a2 T2, (L) o
inf = inf A e ,
fleL1 I, (fR,, f; dx,)c' AI> (va VAn)

if the data satisfies the non-degenerate condition:

my
OlkerL, >0, n> s+(Q)+Z nj where Li(x):=(Lix,...,Lm x).
i=1

@ Our specific data fails to satisfy the non-degenerate condition ~~
Need to go beyond the condition to enter convex geometry world!
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Functional volume product <+ regularization of OU flow

1
ps :=1— e—2s’ Qs = (
27 ps

0 — e_sian
—e *idgn 0 )

@ For the purpose of deriving v(f), the specific form of ps and Qs in
the above is not important;
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Functional volume product <+ regularization of OU flow

1
ps :=1— e—2s’ Qs = (
27 ps

0 — e_sian
—e *idgn 0 )

@ For the purpose of deriving v(f), the specific form of ps and Qs in
the above is not important; indeed the argument works as long as

1 /0 -1
ps — 0, psQS%g(_l 0> as s —0.
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Functional volume product <+ regularization of OU flow

1 0 —e*idgn
1 _ 525 — R
ps :=1—e"° Qs: e (—e‘sian 0 ) :

@ For the purpose of deriving v(f), the specific form of ps and Qs in
the above is not important; indeed the argument works as long as

1 /0 -1
ps — 0, psQS%g(_l O> as s —0.

@ However, for our proof of the monotonicity of v(f), this specific
choice is crucial.
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Functional volume product <+ regularization of OU flow

1 0 —e*idgn
1 _ 525 — R
ps :=1—e"° Qs: e (—e‘sian 0 ) :

@ For the purpose of deriving v(f), the specific form of ps and Qs in
the above is not important; indeed the argument works as long as

1 /0 -1
ps — 0, Pst%g(_l 0> as s —0.

@ However, for our proof of the monotonicity of v(f), this specific
choice is crucial.

@ In fact, we are guided to this specific choice of ps and Qs by a nature
of the Orntein—Uhlenbeck flow: for each s > 0,

Pog(x) = / gle*x +V1—eBy)dy(y), xR,

which is a sol to Osus = Aus — x - Vus, g = g.
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Functional volume product <+ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given fy

—7T<X,Q5X> is Ls — @ Ls
Cs - e fi(x1)rs fo(x2)ps dx = HPs[(V)” ]Hqu(y)

for
f‘

A= 600 = [P P ] 0
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Functional volume product <+ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given fy

—T(X,dsX L = f o
C, [ © Q£ (xy ) bs fo(x0) P dx = HPs[(;O)”] Hqu(y)
for £ £
A=t 500 =PI P A1 W0,
(st o)1
gs=p,=1-€*<0, G:= ((%)1 _” ej2s )"
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Functional volume product <+ regularization of OU flow

In fact, our BL is a dual form of the reverse hypercontractivity: for given fy

—T(X,dsX L -~ f o
C, [ © Q£ (xy ) bs fo(x0) P dx = HPs[(go)”] Hqu(y)
for £ £
fi=h 600 = [P 7]k, P (2)7]* (or(o).
-
gs ‘= PQ —1-e*< 0, G:= ((27r)1 _p ej2s )n

1
Our inverse BL: [ &™) f (xq) fo(xp) o dx > BL [Ty o ([ £) 7 is
reduced to the LP — L9 bound of Ps:

I1Ps[(

fo, L BL; fc 1
2wy 2 & (/n_odv)ps.
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Borell's reverse hypercontractivity

o A family of inequalities of the form ||Psg||a() > [lg]l1p(y) for
g <0 < p<1isknown as Borell's reverse hypercontractivity.
What is a manifestation of the ineq?
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Borell's reverse hypercontractivity

o A family of inequalities of the form ||Psg||a() > [lg]l1p(y) for
g <0 < p<1isknown as Borell's reverse hypercontractivity.
What is a manifestation of the ineq?

@ P.g solves a heat equation Jsu = (A — x - V)u with us := Psg.
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Borell's reverse hypercontractivity

o A family of inequalities of the form ||Psg|l1a(y) > |1&llLe () for
g <0 < p<1isknown as Borell's reverse hypercontractivity.
What is a manifestation of the ineq?

@ P.g solves a heat equation Jsu = (A — x - V)u with us := Psg.

o (Regularizing property of Ps: Qualitative)
Dirac delta dp ¢ L* and dp = 0 a lot ~» Psdg € L* and Pgdy > 0.
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Borell's reverse hypercontractivity

o A family of inequalities of the form ||Psg|l1a(y) > |1&llLe () for
g <0 < p<1isknown as Borell's reverse hypercontractivity.
What is a manifestation of the ineq?
@ P.g solves a heat equation Jsu = (A — x - V)u with us := Psg.
o (Regularizing property of Ps: Qualitative)
Dirac delta dp ¢ L* and dp = 0 a lot ~» Psdg € L* and Pgdy > 0.
@ The rev heypercontractivity is a quantitative statement of the
regularizing property of Ps
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Borell's reverse hypercontractivity

® |[hl|a(y) > 0 for very small g < 0 = h is very positive:
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Borell's reverse hypercontractivity

@ ||h[|La(y) > O for very small g < 0 = his very positive: If h = x[_1 1],
then ||A|| a(,) = 00! = 0 for any g < 0. More quantitatively,

1
consider hg(x) = e 2 X [ hgllLa+e(y) > 0 but [[hg[[La—=(,) = 0.
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Borell's reverse hypercontractivity

@ ||h[|La(y) > O for very small g < 0 = his very positive: If h = x[_1 1],
then ||A|| a(,) = 00! = 0 for any g < 0. More quantitatively,

I B

consider hg(x) = e 290"« || hg|l are(y) > O but | hglle—c() = O.
o (Borell's reverse hypercontractivity) Suppose s > 0 and

g <0 < p <1 satisfy

(Nelson's time) g > q(s,p), q(s,p) =1+ e*(p—1).
Then for all g > 0,

1PsgllLacy) = gllie(y)-
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Borell's reverse hypercontractivity

@ ||h[|La(y) > O for very small g < 0 = his very positive: If h = x[_1 1],
then ||A|| a(,) = 00! = 0 for any g < 0. More quantitatively,

I B
consider hg(x) = e 290"« || hg|l are(y) > O but | hglle—c() = O.
o (Borell's reverse hypercontractivity) Suppose s > 0 and
g <0 < p <1 satisfy

(Nelson's time) g > q(s,p), q(s,p) =1+ e*(p—1).
Then for all g > 0,
1PsgllLagyy = lgllLe(y)-

o (Nelson's time) is necessary:

PS a-x

=0.
acR" ||| 1p(+)
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Borell's reverse hypercontractivity

@ ||h[|La(y) > O for very small g < 0 = his very positive: If h = x[_1 1],
then ||A|| a(,) = 00! = 0 for any g < 0. More quantitatively,

I B
consider hg(x) = e 290"« || hg|l are(y) > O but | hglle—c() = O.
o (Borell's reverse hypercontractivity) Suppose s > 0 and
g <0 < p <1 satisfy

(Nelson's time) g > q(s,p), q(s,p) =1+ e*(p—1).
Then for all g > 0,
1PsgllLagyy = lgllLe(y)-

o (Nelson's time) is necessary:

PS a-x

=0.
acR" ||| 1p(+)

~> Rev HC for smaller g < 0 quantifies stronger regularization of Ps.
Limitation of the regularization is up to g > q(s, p).
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Improvement of Borell's reverse hypercontractivity

@ Our expected rev HC:

fo. L BL £ 1
HPS[(;O)PS] |qu(7) > Cs (/R 0 dfy) s ps = 1—6_257 s = 1_e2s
s n
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Improvement of Borell's reverse hypercontractivity

@ Our expected rev HC:

f BL f
HP [(,;)) ] 'y)> Cs(/I‘{ ,;)d ) ps = 1_6_25, qszl_e2s
s n

However, gs < q(s, ps): beyond Nelson's time. ~» Need more
regularization from Ps which is impossible in general.
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Improvement of Borell's reverse hypercontractivity

@ Our expected rev HC:
fe BL f;
HP [(,;)) ] ’7)> Cs(/I‘{ ,;)d ) p53:1—6_25, qszl_e2s
s n

However, gs < q(s, ps): beyond Nelson's time. ~» Need more
regularization from Ps which is impossible in general.
@ So BL; = 0 if one takes account of all f; > 0.
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Improvement of Borell's reverse hypercontractivity

@ Our expected rev HC:

f BL f
HP [(,;)) ] ’7)> Cs(/I‘{ ,;)d ) ps = 1_6_25, qszl_e2s
s n

However, gs < q(s, ps): beyond Nelson's time. ~» Need more
regularization from Ps which is impossible in general.

@ So BL; = 0 if one takes account of all f; > 0.

@ Recall that the Blaschke—Santalé ineq required some symmetry ~~
possibly BLs > 0 by restricting attention to even fj...7
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Improvement of Borell's reverse hypercontractivity

@ Our expected rev HC:
P ¥ iy = 2 ([ e, poim 16, g =1-e¥
However, gs < q(s, ps): beyond Nelson's time. ~» Need more
regularization from Ps which is impossible in general.

@ So BL; = 0 if one takes account of all f; > 0.

@ Recall that the Blaschke—Santalé ineq required some symmetry ~~
possibly BLs > 0 by restricting attention to even fj...7

Theorem 3 (N-Tsuji)
lets>0and1—e*<qg<0<p<1l—e2. Then for any even fy,

IPIE) Moy 2 ([ 2.

Moreover, the range of g < 0 < p is best possible. Equality when fy = ~

November 9, 2023 16 / 28
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Monotonicity statement

@ The convex geometrical argument due to Lehec (Prékopa—Leindler +
Yao—Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, g is not sharp: ¢ > —pand p <1 — e~ 25,
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Monotonicity statement

@ The convex geometrical argument due to Lehec (Prékopa—Leindler +
Yao—Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, g is not sharp: ¢ > —pand p <1 — e~ 25,
Need a new idea to complete the possible range of p, g.

d
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Monotonicity statement

@ The convex geometrical argument due to Lehec (Prékopa—Leindler +
Yao—Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, g is not sharp: ¢ > —pand p <1 — e~ 25,
Need a new idea to complete the possible range of p, g.

d

@ Our improved rev HC is a consequence from stronger monotonicity
statement along Fokker—Planck flow.
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Monotonicity statement

@ The convex geometrical argument due to Lehec (Prékopa—Leindler +
Yao—Yao equipartition) is applicable to the problem of rev HC but the
yielding range of p, g is not sharp: ¢ > —pand p<1—e 25 ~»
Need a new idea to complete the possible range of p, g

@ Our improved rev HC is a consequence from stronger monotonicity

statement along Fokker—Planck flow.

Theorem 4 (N—Tsuji)
Let s >0 and ps :==1— e 25, qs = p, =1 — e*. Then for any even fy,

[0,00) 3 t > Qs(t) —HP[(;) ‘]

gs
L9s ()

is monotone increasing where f; is FP flow: Oif; = (A + x -V + n)f;.
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Monotonicity of the functional volume product (again)

@ Recall our observation:

iy ([ €O 0) % ) o) = sup A5 (1)
S R2n X

Shohei Nakamura (Osaka University / UniverFunctional volume product, regularizing effect November 9, 2023 18 / 28



Monotonicity of the functional volume product (again)

@ Recall our observation:

iy ([ €O 0) % ) o) = sup A5 (1)
S R2n X

o Following similar idea, one can show
fo

Iimcs(/Rnfodx)gz Ps[(v)?s]\ﬁs(v) = v(fp) :—/fodX/fOOdX

sl0
for some explicit Cs. This is how we prove the monotonicity of the
functional volume product.
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Monotonicity of the functional volume product (again)

@ Recall our observation:

iy ([ €O 0) % ) o) = sup A5 (1)
S R2n X

o Following similar idea, one can show

lim cs(/ fo dx)fl%z
Rn

sl0

%)pﬁ] fo)_/fodx/fo dx

for some explicit Cs. This is how we prove the monotonicity of the
functional volume product.

Ps(

@ The monotonicity scheme Qs(t) := HP [( ) 15] Zf,s(,y)

by Aokl—Bennett—Bez—Mach|hara Matsuura—Shiraki where they
proved the monotonicity under Nelson's time condition.

is introduced
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Proof of the monotonicity

Goal: %bvs(t) > 0 where (ps,qs) = (1 — e 25,1 — %) and
f 1
Ps

Qs(t) := log Q(s) = log | Ps[( 7) <17 Oefy = (A + x -V + n)fy.

()
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Proof of the monotonicity

Goal: %bvs(t) > 0 where (ps,qs) = (1 — e 25,1 — %) and
f 1
Ps

Qs(t) := log Q(s) = log | Ps[( 7) <17 Oefy = (A + x -V + n)fy.

()

@ Although the rev HC at (p, g) = (ps, gs) is the strongest ineq, it
appears to be the “easiest” to prove (things becomes canonical).

Shohei Nakamura (Osaka University / UniverFunctional volume product, regularizing effect November 9, 2023 19 / 28



Proof of the monotonicity

Goal: %E\)vs(t) > 0 where (ps,qs) = (1 — e 25,1 — %) and
f 1
Ps

Rl

Qs(t) := log Q(s) = log | Ps[( Otfe = (A + x -V + n)f;.

()

@ Although the rev HC at (p, g) = (ps, gs) is the strongest ineq, it
appears to be the “easiest” to prove (things becomes canonical).
@ A virtue of this specific choice: from 0;f; = L*f;,

Coe QS :——/ X2F dx—= ——1)/Ff’(x/er17xzft(z)

T

(log fi(z
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Proof of the monotonicity

Goal: %E\)vs(t) > 0 where (ps,qs) = (1 — e 25,1 — %) and
f 1
Ps

Qs(t) := log Q(s) = log | Ps[( 7) <17 Oefy = (A + x -V + n)fy.

()

@ Although the rev HC at (p, g) = (ps, gs) is the strongest ineq, it
appears to be the “easiest” to prove (things becomes canonical).
@ A virtue of this specific choice: from 0;f; = L*f;,

Coe QS :——/ X2F dx—= ——1)/Ff’(x/er17xzft(z)

—/XZFt(X)qS dx
R
1y 1 1
(1= p) [ ([ (@)% (108 £)()" de) i)™ o,
1 1., i 1y 1
Fi(x) := 7/Reps fi(z)ps dz, Z;:= H/Reps fe(z)es dzHqu(dX).

t

T

(log fi(z
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Proof of the monotonicity

Cs%b:(t) = —/szFt(x)qs dx_(l_ps)/...

@ New tools: (i) Brascamp—-Lieb inequality generalizing Poincaré ineq
and (ii) Cremér—Rao ineq:
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Proof of the monotonicity

Cs%b:(t) = —/szFt(x)qs dx — (1 _ps)/...

@ New tools: (i) Brascamp—-Lieb inequality generalizing Poincaré ineq
and (ii) Cremér-Rao ineq: for a log-concave F s.t. [ Fdx =1,

/¢>2 Fdx — ( /¢Fdx _/mw%dx,

Shohei Nakamura (Osaka University / UniverFunctional volume product, regularizing effect November 9, 2023 20 / 28



Proof of the monotonicity

Cs%b:(t) = —/szFt(x)qs dx — (1 _ps)/...

@ New tools: (i) Brascamp—-Lieb inequality generalizing Poincaré ineq
and (ii) Cremér-Rao ineq: for a log-concave F s.t. [ Fdx =1,

/¢2Fdx— /(;SFdX _/_( lgF)//|¢/|2FdX,
and Var(F) > I(F) Li.e.

/x2 Fx — (/dex)2 > (/(—Iog F)" Fdx) ",
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Proof of the monotonicity

Cs%b:(t) = —/Rx%(x)qs dx — (1 _,,s)/...

@ New tools: (i) Brascamp—-Lieb inequality generalizing Poincaré ineq
and (ii) Cremér-Rao ineq: for a log-concave F s.t. [ Fdx =1,

/¢2Fdx— /(;SFdX _/_( lgF)//|¢/|2FdX,
and Var(F) > I(F) Li.e.

/x2 Fx — (/dex)2 > (/(—Iog F)" Fdx) ",

e Apply P-BL with F = F/* and ¢(x) = x. Notice F/* = F/*(—) so
[xFFdx =0~

1
2 s S
/x Fidx < /7( o tqs)” F dx.
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Proof of the monotonicity

2 Qs 1 qs . 1 Lxz L
X Ft dXS WFt dX, Ft(X) :Z RePs ft(Z)ps dz
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Proof of the monotonicity

1 1
2 s s R
/X th dXS/(_log FQs)// th dx, Ft(X) = Zt/Reps ft( ) s dz

From the def of F*(x) : fR ers “fi(z )Ps dz)%,
(—log F*)"(x) = ZS (/z Gy.t(z)dz — (/z Gx,t(z)dz)2>,
)
1 1y 1
Gt(2) = —3 ——ers fi(z)

[ erfi(y)es dy
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Proof of the monotonicity

1 1
2 s s R
/X th dXS/(_log FQs)// th dx, Ft(X) = Zt/Reps ft( ) s dz

From the def of F*(x) : fR ers “fi(z )Ps dz)%,
(—log F*)"(x) = ZS </z Gy.t(z)dz — (/z Gx,t(z)dz)2>,
)
1 1y 1
nyt(z) = S ers” fy(z)es

J e fly)e dy
Apply Cremér—Rao,

s s 1 -
(—log F#*)"(x) = — = Var(Gye) = —2 / = (~log £)"(2) Ge(2)dz) !
Ps ps Ps
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Proof of the monotonicity

1 1
2 s s R
/X th dXS/(_log FQs)// th dx, Ft(X) = Zt/Reps ft( ) s dz

From the def of F*(x) : fR ers “fi(z )Ps dz)%,
(—log F*)"(x) = ZS </z Gy.t(z)dz — (/z Gx,t(z)dz)2>,
)
1 1y 1
nyt(z) = S ers” fy(z)es

J e fly)e dy
Apply Cremér—Rao,

s s 1 -
(—log F#*)"(x) = — = Var(Gye) = —2 / = (~log £)"(2) Ge(2)dz) !
Ps ps Ps

~ /x2 Fifdx < —= (/(— log )" (2) Gx,¢(2)dz) F{*dx
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Proof of the monotonicity

~ /x2 Fledx < —% (/(— log )" (2) Gx,+(2)dz) F* dx

= ? (/(Iog ﬂ)”(z)episxzﬂ(z)?ls dz) Fe(x)%~* dx.
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Proof of the monotonicity

~ /x2 Fldx < —% (/(— log )" (2) Gx,+(2)dz) F* dx
= ? (/(Iog ﬂ)”(z)episxzﬂ(z)?ls dz) Fe(x)%~* dx.
Overall,
C 15(15) = —/ X2 Fe(x)% dx
Sdt S - R t
—(1-p,) / ( / er "% f,(2)7 (log £:)(z)" dz) Fe(x)9~" dx

2(—%—1+ps)/(--~)dx:0.

s
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Stability of the functional BS

Theorem 5 (Barthe-Boroczky—Fradelizi)

There exists g = €o(n) > 0 s.t. if ¢g is even convex and satisfies

v(v) 1
v(e %) S1-¢

for some ¢ € (0,¢¢) then
. 1 5 L
inf |_|X| _¢O(BX)+,u|dX < C(n)er29n .
B Jix<R(e) 2

Here R(c) < g-(log %)% and satisfies lim._,o R(g) = +oo.

Barthe-Boroczky—Fradelizi conjectured that the power of the deficit
can be replaced by some absolute constant independent of n. They
considered more general functional ineq.

129 129n2
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Stability of the functional BS: Wealth of monotonicity

We confirm their conj for uniformly log-concave functs: for A\, A° > 0,
FOA) i={o: A< V3%, \° < V2p*).

E.g. Eldan—Mikulincer: dimension free stability for Shannon—-Stam.
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Stability of the functional BS: Wealth of monotonicity

We confirm their conj for uniformly log-concave functs: for A\, A° > 0,

FOA) i={o: A< V3%, \° < V2p*).

E.g. Eldan—Mikulincer: dimension free stability for Shannon—-Stam.
Theorem 6 (N—Tsuji)

There exists g = £o(n, AX\°) s.t.: If ¢o € F(\, A°) is even and satisfies

V(v)
v(e~%)

for some ¢ € (0, ), then

<e ~1+¢

inf/ }1|x|2 — ¢o(Bx) + p| dx < C(n, )\)\0)5%
B Jix|<R(e) 2

where R(e) = %(Iog %)% and so lim._,o R(g) = +o0.
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Stability of the functional BS: Main ingredient

Theorem 7 (Cordero-Erausquin)

Let V € C?(R") N LY(R") be nonnegative, [ e~V dx =1 and strictly
log-concave. Then for any locally Lipschitz g € L?(hdx),

/|g|2evdx—(/ gefvdx)2
R? R"

< /(Vg,vz\/—lvg> e—de—c(h)/Rn |g(x)—<uo,VV(x)>|2e—vdx

where

v cA(V)
ug := e "dy, c(h) = )
/Rn vely) v, c(h) supy Amax(V2V(x)) + cA(V)
c is a numerical constant, A\(V') denotes its Poincaré constant, and
Amax(A) denotes the maximum eigenvalue of a symmetric matrix A.

.
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o Barthe-Wolff's inverse Brascamp—Lieb inequality (General):

. f]Rn X QX Hnll f;(L,X)C' dX i
* inf = - = inf A ey ,
( ) f;:arbitrary i:l (f]R"i f dX,')C’ A>0 (7A1 ’YAm)

if the data (c, L, Q) is non-degenerate in BW sense.
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o Barthe-Wolff's inverse Brascamp—Lieb inequality (General):

. f]Rn X QX Hnll f;(L,X)C' dX i
* inf = - = inf A ey ,
( ) f;:arbitrary i:l (f]R"i f dX,')C’ A>0 (7A1 fYAm)

if the data (c, L, Q) is non-degenerate in BW sense.
@ Need to understand the degenerate case in view of the link to convex
geometry but (x) often fails in the such case.
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o Barthe-Wolff's inverse Brascamp—Lieb inequality (General):

. fRn X QX Hnll f;(L,X)C' dX i
* inf = . = inf A e, ,
( f;:arbitrary i:l (f]R"i f dX,')C’ A>0 (7A1 fYAm)

if the data (c, L, Q) is non-degenerate in BW sense.

@ Need to understand the degenerate case in view of the link to convex
geometry but (x) often fails in the such case.

@ Reasonable to expect

Jpn €TV fi(Lix) dx
inf = inf A ey YA
inf 172 o ) nf ACas - v4n)

even when the the data (c,L, Q) is degenerate.
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o Barthe-Wolff's inverse Brascamp—Lieb inequality (General):

. fRn X QX Hnll f;(L,X)C' dX i
* inf = . = inf A e, ,
( f;:arbitrary i:l (f]R"i f dX,')C’ A>0 (7A1 fYAm)

if the data (c, L, Q) is non-degenerate in BW sense.

@ Need to understand the degenerate case in view of the link to convex
geometry but (x) often fails in the such case.

@ Reasonable to expect

Jpn €TV fi(Lix) dx
inf = inf A ey YA
inf 172 o ) nf ACas - v4n)

even when the the data (c, L, Q) is degenerate. In the above, we
confirmed this in a very specific data coming from hypercontractivity.
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o Barthe-Wolff's inverse Brascamp—Lieb inequality (General):

. fRn X QX Hnll f;(L,X)C' dX i
* inf = . = inf A e, ,
( f;:arbitrary i:l (f]R"i f dX,')C’ A>0 (7/\1 fYAm)

if the data (c, L, Q) is non-degenerate in BW sense.

@ Need to understand the degenerate case in view of the link to convex
geometry but (x) often fails in the such case.

@ Reasonable to expect

Jpn €TV fi(Lix) dx
inf = inf A ey YA
inf 172 o ) nf ACas - v4n)

even when the the data (c, L, Q) is degenerate. In the above, we
confirmed this in a very specific data coming from hypercontractivity.

o (Importance) If one could prove this, one would also solve
Kolesnikov—Werner's conjecture about Blaschke—Santalé inequality for
multiple convex bodies.
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Kolesnikov—Werner's conjecture

Simplest non-trivial case: If f1, f>, f3: even and satisfy

3
1
[[660) <exp (=5 D xix)), xx,xs € R,
. 3—1 <=
i=1 1<i<j<3

then

3
H/ f i < (/ e 3 gx)® = (2m) .
i=1 " R"
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Kolesnikov—Werner's conjecture

Simplest non-trivial case: If f1, f>, f3: even and satisfy

3
1
[[660) <exp (=5 D xix)), xx,xs € R,
. 3—1 <=
i=1 1<i<j<3

then ;
H/ fi dx; < (/ e b dx)3 = (2%)%.
i=1 " R"

This would follow from the conjectural inv BL with a data

. o 011
Li s A2 =Xiy & = T 5> = ! !
(x1, %2, x3) = Xi, ¢ 1— e2s < 27(3 = 1)(1 — e=2) 1 (1) 0

and then take s — 0.
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Thank you for your attention.
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