Asymptotic bounds for the combinatorial diameter of random polytopes

Sophie Huiberts (CWI)

joint work with Gilles Bonnet, Daniel Dadush, Uri Grupel, Galyna Livshyts

TU Berlin, September 14th 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

A question about optimization

Given a basic feasible solution to

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$

how many pivot steps does the simplex method need to find an optimal solution?

n variables

A question about geometry

Given a basic feasible solution to

maximize $c^{\mathsf{T}}x$ subject to $Ax \leq b$

how many pivot steps does the simplex method need to find an optimal solution?

n variables

m constraints

Given a polyhedron, how many edges do we need to traverse to go from any vertex to any other?

If $P \subset \mathbb{R}^n$ has *m* facets, is the diameter at most m - n?

If $P \subset \mathbb{R}^n$ has *m* facets, is the diameter at most m - n?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

True for

- ▶ polytopes in \mathbb{R}^3
- network flow polytopes
- fractional stable set polytopes
- ▶ polytopes with vertices in $\{0,1\}^n$
- and many more

If $P \subset \mathbb{R}^n$ has *m* facets, is the diameter at most m - n?

True for

- ▶ polytopes in \mathbb{R}^3
- network flow polytopes
- fractional stable set polytopes
- ▶ polytopes with vertices in {0,1}ⁿ
- and many more

But false in general.

Klee-Walkup, 1967, counterexample for unbounded polyhedra. Santos, 2012, counterexample for bounded polytopes.

《曰》 《聞》 《臣》 《臣》 三臣 …

If $P \subset \mathbb{R}^n$ has *m* facets, is the diameter at most m - n?

True for

- ▶ polytopes in \mathbb{R}^3
- network flow polytopes
- fractional stable set polytopes
- ▶ polytopes with vertices in {0,1}ⁿ
- and many more

But false in general.

Klee-Walkup, 1967, counterexample for unbounded polyhedra. Santos, 2012, counterexample for bounded polytopes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

New conjecture: is the diameter at most poly(m, n)?

Best available diameter bounds

Barnette, Larman:

$$Diameter(P) \leq 2^{n-2}m$$
.

Kalai-Kleitman, Todd, Sukegawa:

$$Diameter(P) \leq (m - n)^{\log_2 O(n/\log n)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Best available diameter bounds

Barnette, Larman:

 $Diameter(P) \leq 2^{n-2}m.$

Kalai-Kleitman, Todd, Sukegawa:

$$\mathsf{Diameter}(\mathsf{P}) \leq (m-n)^{\log_2 O(n/\log n)}.$$

Dyer-Frieze, Bonifas-Di Summa-Eisenbrand-Hähnle-Niemeier, Dadush-Hähnle, Narayanan-Shah-Srivastava:

If A is integral and every absolute square subdeterminant is at most Δ then

 $\mathsf{Diameter}(\mathsf{P}) \leq O(n^3 \Delta^2 \log(\Delta)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Best available diameter bounds

Barnette, Larman:

Diameter(P) $\leq 2^{n-2}m$.

Kalai-Kleitman, Todd, Sukegawa:

$$\mathsf{Diameter}(\mathsf{P}) \leq (m-n)^{\log_2 O(n/\log n)}.$$

Dyer-Frieze, Bonifas-Di Summa-Eisenbrand-Hähnle-Niemeier, Dadush-Hähnle, Narayanan-Shah-Srivastava:

If A is integral and every absolute square subdeterminant is at most Δ then

$$\mathsf{Diameter}(\mathsf{P}) \leq O(n^3 \Delta^2 \log(\Delta)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Random polytopes are "well-conditioned on average". Do they have bounded diameter?

Consider a fixed two-dimensional plane $W \subset \mathbb{R}^n$. Let

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \; \forall a \in A\}$$

<ロト <四ト <注入 <注下 <注下 <

where $A \subset \mathbb{R}^n$, |A| = m is sampled iid from a rotationally invariant probability distribution.

Consider a fixed two-dimensional plane $W \subset \mathbb{R}^n$. Let

$$P = \{ x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \; \forall a \in A \}$$

where $A \subset \mathbb{R}^n$, |A| = m is sampled iid from a rotationally invariant probability distribution.

Borgwardt 1977,1982,1987,1999: on expectation, $O(n^2 m^{\frac{1}{n-1}})$ distinct vertices are optimized by the objectives in W.

<ロ> (四)、(四)、(日)、(日)、

Consider a fixed two-dimensional plane $W \subset \mathbb{R}^n$. Let

$$P = \{ x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \; \forall a \in A \}$$

where $A \subset \mathbb{R}^n$, |A| = m is sampled iid from a rotationally invariant probability distribution.

 $A \approx N(0, 1)$

Borgwardt 1977,1982,1987,1999: on expectation, $O(n^2 m^{\frac{1}{n-1}})$ distinct vertices are optimized by the objectives in W.

The simplex method needs $O(n^2m^{\frac{1}{n-1}})$ pivot steps in expectation to move from any one such vertex to any other.

Consider a fixed two-dimensional plane $W \subset \mathbb{R}^n$. Let

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \ \forall a \in A\}$$

(日) (個) (돈) (돈) (돈)

where $A \subset \mathbb{R}^n$, |A| = m is sampled independently from Gaussian distributions with covariance $\sigma^2 I_{n \times n}$ and expectation having norm at most 1.

Consider a fixed two-dimensional plane $W \subset \mathbb{R}^n$. Let

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \; \forall a \in A\}$$

where $A \subset \mathbb{R}^n$, |A| = m is sampled independently from Gaussian distributions with covariance $\sigma^2 I_{n \times n}$ and expectation having norm at most 1.

Spielman-Teng, Spielman-Deshpande, Vershynin, Dadush-Huiberts: There are $O(n^2 \sqrt{\log m} / \sigma^2)$ shadow vertices in expectation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Consider a fixed two-dimensional plane $W \subset \mathbb{R}^n$. Let

 $P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \; \forall a \in A\}$

where $A \subset \mathbb{R}^n$, |A| = m is sampled independently from Gaussian distributions with covariance $\sigma^2 I_{n \times n}$ and expectation having norm at most 1.

Spielman-Teng, Spielman-Deshpande, Vershynin, Dadush-Huiberts: There are $O(n^2 \sqrt{\log m}/\sigma^2)$ shadow vertices in expectation. The simplex method needs $O(n^2 \sqrt{\log m}/\sigma^2)$ pivot steps in expectation to solve the LP.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Our results

Let

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \, \forall a \in A\}$$

where $A \subset \mathbb{S}^{n-1}$ follows a Poisson point process with $\mathbb{E}[|A|] = m > 2^{\Omega(n)}$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Our results

Let

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \; \forall a \in A\}$$

where $A \subset \mathbb{S}^{n-1}$ follows a Poisson point process with $\mathbb{E}[|A|] = m > 2^{\Omega(n)}$.

Then with probability 1 - O(1/m) we have

$$\Omega(nm^{\frac{1}{n-1}}) \leq \underbrace{\mathsf{Diameter}}_{(\mathsf{P})} \leq O(n^2m^{\frac{1}{n-1}} + n^64^n).$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The same holds for the shadow size on any fixed W.

Our results / This talk

Let

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \; \forall a \in A\}$$

where $A \subset \mathbb{S}^{n-1}$ follows a Poisson point process with $\mathbb{E}[|A|] = m > 2^{\Omega(n)}$.

Then with probability 1 - O(1/m) we have

$$\begin{split} \Omega(nm^{\frac{1}{n-1}}) &\leq \mathsf{Diameter}(\mathsf{P}) \leq O(n^2m^{\frac{1}{n-1}} + n^64^n).\\ \Omega((m/\log m)^{\frac{1}{n-1}}) &\leq \mathsf{Diameter}(\mathsf{P}) \leq O(m^{\frac{1}{n-1}} \cdot (\log(m)3^n)^n). \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The same holds for the shadow size on any fixed W.

2>0

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if for every $x \in \mathbb{S}^{n-1}$ there exists $\underline{b} \in B$ with $||x - b|| \le \varepsilon$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if for every $x \in \mathbb{S}^{n-1}$ there exists $b \in B$ with $||x - b|| \le \varepsilon$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if for every $x \in \mathbb{S}^{n-1}$ there exists $b \in B$ with $||x - b|| \le \varepsilon$.

A is $O((\log(m)/m)^{\frac{1}{n-1}})$ -dense with probability $1 - n^{-n}m^{-2}$.

270 \longrightarrow If A is ε -dense then every edge of P lies inside $(1 - \varepsilon^2/2)^{-1} \mathbb{B}^n \setminus \mathbb{B}^n$. B" C P C 1-5% B" P= {x en ((a, x) = 1 back} A C Smi Pick XEP with lixed ?! Pick a EA such that 11 a - 2 11 5 E. $\frac{1}{\|\mathbf{x}\|} \geq \langle a, \mathbf{x}_{\|\mathbf{x}\|} \rangle = 1 - \|a - \frac{\mathbf{x}}{\|\mathbf{x}\|}\|_{2}^{2} \geq 1 - \frac{\varepsilon^{2}}{2}$

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if for every $x \in \mathbb{S}^{n-1}$ there exists $b \in B$ with $||x - b|| \le \varepsilon$.

A is $O((\log(m)/m)^{\frac{1}{n-1}})$ -dense with probability $1 - n^{-n}m^{-2}$.

If A is ε -dense then every edge of P lies inside $(1 - \varepsilon^2/2)^{-1} \mathbb{B}^n \setminus \mathbb{B}^n$.

If a line segment lies inside $(1 - \varepsilon^2/2)^{-1} \mathbb{B}^n \setminus \mathbb{B}^n$ and $\varepsilon \leq 1$ then it has length $\leq 2\varepsilon$ $(-t_{\ell})' I_{\ell}^n$ $(-t_{\ell})' I_{\ell}^n$ $(-t_{\ell}$

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if for every $x \in \mathbb{S}^{n-1}$ there exists $b \in B$ with $||x - b|| \le \varepsilon$.

A is $O((\log(m)/m)^{\frac{1}{n-1}})$ -dense with probability $1 - n^{-n}m^{-2}$.

If A is ε -dense then every edge of P lies inside $(1 - \varepsilon^2/2)^{-1} \mathbb{B}^n \setminus \mathbb{B}^n$.

If a line segment lies inside $(1 - \varepsilon^2/2)^{-1} \mathbb{B}^n \setminus \mathbb{B}^n$ and $\varepsilon \leq 1$ then it has length $\leq 2\varepsilon$

If A is ε -dense then Diameter(P) $\ge \Omega(1/\varepsilon)$. $V_{i_1, \dots, i_k}, V_{i_k} \in P$ the vertices of a path with $||V_i - V_k|| \ge 1$. $| \leq ||V_i - V_k|| \le \sum_{i=0}^{k+1} ||V_i - V_{i+i}|| \le |k - 2\xi| \rightarrow |k| \ge \frac{1}{2\xi}$.

If $\underline{a}, \underline{a}' \in \mathbb{S}^{n-1}$ and $\underline{z} \in \mathbb{R}^n$ satisfy $\|z\| \leq (1 - \varepsilon^2/2)^{-1}$ and $\langle \overline{a}, \overline{z} \rangle, \langle \overline{a}', \overline{z} \rangle \geq 1$ then $\|a - \overline{a}'\| \leq 2\varepsilon$.

$$\frac{1-s^{2}}{1+s^{2}} \leq \frac{1}{1+s^{2}} \leq (3, 2)_{1+s^{2}} \\ = 1-1|\alpha-\frac{3}{1+s^{2}}|\frac{1}{2}|_{1-s^{2}} \\ = 1-1|\alpha-\frac{3}{1+s^{2}}|\frac{1}{2}|\frac{1}{2}|_{1-s^{2}} \\ = 1-1|\alpha-\frac{3}{1+s^{2}}|\frac{1}{2}|\frac{1}$$

V

If
$$a, a' \in \mathbb{S}^{n-1}$$
 and $z \in \mathbb{R}^n$ satisfy $||z|| \le (1 - \varepsilon^2/2)^{-1}$ and $\langle a, z \rangle, \langle a', z \rangle \ge 1$ then $||a - a'|| \le 2\varepsilon$.

If A is ε -dense, $w_1, w_2 \in \mathbb{S}^{n-1}$ satisfy $||w_1 - w_2|| \le \varepsilon$, $z \in P$ is on the shadow path from w_1 to w_2 , and $a \in A$ satisfies $\langle a, z \rangle = 1$ then $||w_2 - a|| \le 3\varepsilon$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

If
$$a, a' \in \mathbb{S}^{n-1}$$
 and $z \in \mathbb{R}^n$ satisfy $||z|| \le (1 - \varepsilon^2/2)^{-1}$ and $\langle a, z \rangle, \langle a', z \rangle \ge 1$ then $||a - a'|| \le 2\varepsilon$.

If A is ε -dense, $w_1, w_2 \in \mathbb{S}^{n-1}$ satisfy $||w_1 - w_2|| \le \varepsilon$, $z \in P$ is on the shadow path from w_1 to w_2 , and $a \in A$ satisfies $\langle a, z \rangle = 1$ then $||w_2 - a|| \le 3\varepsilon$.

Every vertex on that shadow path is induced by *n* constraints from the set $A \cap \{x \in \mathbb{S}^{n-1} : ||w_2 - x|| \le 3\varepsilon\}$.

《曰》 《聞》 《臣》 《臣》 三臣 …

If
$$a, a' \in \mathbb{S}^{n-1}$$
 and $z \in \mathbb{R}^n$ satisfy $||z|| \le (1 - \varepsilon^2/2)^{-1}$ and $\langle a, z \rangle, \langle a', z \rangle \ge 1$ then $||a - a'|| \le 2\varepsilon$.

If A is ε -dense, $w_1, w_2 \in \mathbb{S}^{n-1}$ satisfy $||w_1 - w_2|| \le \varepsilon$, $z \in P$ is on the shadow path from w_1 to w_2 , and $a \in A$ satisfies $\langle a, z \rangle = 1$ then $||w_2 - a|| \le 3\varepsilon$.

Every vertex on that shadow path is induced by *n* constraints from the set $A \cap \{x \in \mathbb{S}^{n-1} : ||w_2 - x|| \le 3\varepsilon\}$.

With probability $1 - 2n^{-n}m^{-2}$, A is $\varepsilon = O((m/\log(m))^{\frac{1}{n-1}})$ -dense and every spherical cap of radius 3ε contains $\max_{x \in \mathbb{S}^{n-1}} |A \cap C(x, 3\varepsilon)| \le O(\log(m)3^n)$ points.

<ロト <回ト < 注ト < 注ト = 注

If
$$a, a' \in \mathbb{S}^{n-1}$$
 and $z \in \mathbb{R}^n$ satisfy $||z|| \le (1 - \varepsilon^2/2)^{-1}$ and $\langle a, z \rangle, \langle a', z \rangle \ge 1$ then $||a - a'|| \le 2\varepsilon$.

If A is ε -dense, $w_1, w_2 \in \mathbb{S}^{n-1}$ satisfy $||w_1 - w_2|| \le \varepsilon$, $z \in P$ is on the shadow path from w_1 to w_2 , and $a \in A$ satisfies $\langle a, z \rangle = 1$ then $||w_2 - a|| \le 3\varepsilon$.

Every vertex on that shadow path is induced by *n* constraints from the set $A \cap \{x \in \mathbb{S}^{n-1} : ||w_2 - x|| \le 3\varepsilon\}$.

With probability $1 - 2n^{-n}m^{-2}$, A is $\varepsilon = O((m/\log(m))^{\frac{1}{n-1}})$ -dense and every spherical cap of radius 3ε contains $\max_{x \in \mathbb{S}^{n-1}} |A \cap C(x, 3\varepsilon)| \le O(\log(m)3^n)$ points.

By concatenating such paths; with probability $1 - 2n^{-n}m^{-2}$ every shadow path has length at most $(2\pi/\varepsilon) \cdot (\log(m)3^n)^n$.

Conclusion and future directions

With high probability we have

$$\Omega(nm^{\frac{1}{n-1}}) \leq \mathsf{Diameter}(\mathsf{P}) \leq O(n^2m^{\frac{1}{n-1}} + n^64^n).$$

The diameter is close to the expected shadow size, and a shadow size is close to its expectation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion and future directions

With high probability we have

$$\Omega(nm^{\frac{1}{n-1}}) \leq \mathsf{Diameter}(\mathsf{P}) \leq O(n^2m^{\frac{1}{n-1}} + n^64^n).$$

The diameter is close to the expected shadow size, and a shadow size is close to its expectation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Does this hold for other probability distributions as well?