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A question about optimization

Given a basic feasible solution to

maximize ¢’ x
subject to Ax < b

how many pivot steps does the
simplex method need to find an
optimal solution?

» n variables

» m constraints



A question about geometry

Given a basic feasible solution to Given a polyhedron, how many
o edges do we need to traverse to go
maximize ¢’ x from any vertex to any other?

subject to Ax < b

how many pivot steps does the
simplex method need to find an
optimal solution?

» n variables

» m constraints
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The Hirsch conjecture
If P C R" has m facets, is the diameter at most m — n?

True for
» polytopes in R3
» network flow polytopes
» fractional stable set polytopes
» polytopes with vertices in {0,1}"
» and many more

But false in general.
Klee-Walkup, 1967, counterexample for unbounded polyhedra.
Santos, 2012, counterexample for bounded polytopes.

New conjecture: is the diameter at most poly(m, n)?
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Best available diameter bounds

Barnette, Larman:
Diameter(P) < 2" 2m.

Kalai-Kleitman, Todd, Sukegawa:
Diameter(P) < (m — n)'°g2 O(n/logn),

Dyer-Frieze, Bonifas-Di Summa-Eisenbrand-Hahnle-Niemeier,
Dadush-Hahnle, Narayanan-Shah-Srivastava:
If Ais integral and every absolute square subdeterminant is at most A
then

Diameter(P) < O(n*A? log(A)).

Random polytopes are “well-conditioned on average”. Do they have
bounded diameter?
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probability distribution.

o>



Tantalizing evidence from the simplex method

Consider a fixed two-dimensional plane W C R". Let

P={xeR":(a,x) <1lVaec A}

where A C R", |A| = m is sampled iid from a rotationally invariant
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probability distribution.
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Tantalizing evidence from the simplex method

Consider a fixed two-dimensional plane W C R". Let

P={xeR":(a,x) <1lVaec A}

where A C R", |A| = m is sampled iid from a rotationally invariant
probability distribution.

A= Mo Ly

Borgwardt 1977,1 87,1999:
on expectation,[(.ﬁ@distinct
vertices are optimize e
objectives in W.

The simplex method needs

> 1 . .
O(n*m™T1) pivot steps in
expectation to move from any one
such vertex to any other.
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Tantalizing evidence from the simplex method

Consider a fixed two-dimensional plane W C R". Let

P:{XER":(3,X>§1V3€@

where A C R",|A| = m is sampled independently from Gaussian
distributions with covariance o1,y , and expectation having norm at
most 1.
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Tantalizing evidence from the simplex method

Consider a fixed two-dimensional plane W C R". Let
P={xeR":(a,x) <1Vae A}

where A C R",|A| = m is sampled independently from Gaussian
distributions with covariance o1,y , and expectation having norm at
most 1.

Spielman-Teng, Spielman-Deshpande, Vershynin, Dadush-Huiberts:
There are O(n?y/log m/c?) shadow vertices in expectation.

The simplex method needs O(n?y/log m/a?) pivot steps in expectation
to solve the LP.
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Our results

Let
P={xeR":(a,x) <1Vae A}

where A C S"~! follows a Poisson point process with E[|A[] = m > 2",
Then with probability 1 — O(1/m) we have

Q(nmﬁ) < Diameter(P) < O(n2mﬁ + nb4").
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The same holds for the shadow size on any fixed W.
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Our results / This talk

Let
P={xeR":(a,x) <1Vae A}

where A C S"~! follows a Poisson point process with E[|A[] = m > 2",

Then with probability 1 — O(1/m) we have

Q(nmﬁ) < Diameter(P) < O(n mT + n°4m.
Q((m/ log m)%l) < Diameter(P) < O(m - (log(m)3™)").

The same holds for the shadow size on any fixed W.
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Lower bound

A set B C S" 1 is called e-dense if for every x € S"! there exists b € B
with |[x — b|]| < e.

1
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—y Ais O((Iog(m)/m)fl)?d%nse with probability 1 — n="m=2.
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Lower bound

A set B C S" 1 is called e-dense if for every x € S"! there exists b € B
with |[x — b|]| < e.
Ais O((log(m)/m)71)-dense with probability 1 — n="m2.

€>0
—If A is e-dense then every edge of,P lies inside (1 —£2/2)71B" \ B".
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Lower bound

A set B C S" 1 is called e-dense if for every x € S"! there exists b € B
with |[x — b|]| < e.

Ais O((log(m)/m)71)-dense with probability 1 — n="m2.
If Ais e-dense then every edge of P lies inside (1 —£2/2)"1B" \ B".

If a line segment lies inside (1 — £2/2)"!B" \ B” and & < 1 then it has
length < 2¢
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Lower bound

A set B C S" 1 is called e-dense if for every x € S"! there exists b € B
with |[x — b|]| < e.

Ais O((log(m)/m)71)-dense with probability 1 — n="m2.
If Ais e-dense then every edge of P lies inside (1 —£2/2)"1B" \ B".

If a line segment lies inside (1 — £2/2)"!B" \ B” and & < 1 then it has
length < 2¢

If Ais e-dense then Diameter(P) > Q(1/¢).
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A weak upper bound /

If a,a" € S""" and z € R satisfy ||z|| < (1 —-¢?/2)7" and

(a,2),(a',z) > 1 then ||a — &|| < 2e.
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shadow path from wy to ws, and a € A satisfies (a,z) = 1 then
lwa — a|| < 3e.
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A weak upper bound

If a,a’ € S"! and z € R" satisfy || z|| < (1 —£2/2)7! and
(a,z),(a,z) > 1 then ||a— 2| < 2e.

If Ais e-dense, wy, wy € S"~1 satisfy ||wy — wa|| <&, z € P is on the
shadow path from w; to ws, and a € A satisfies (a,z) = 1 then
lwa — a|| < 3e.

Every vertex on that shadow path is induced by n constraints from the
set AN{x€S"1:||w, — x| <3¢}

With probability 1 —2n="m=2, Ais e = O((m/ Iog(m))ﬁ)—dense and
every spherical cap of radius 3¢ contains
max,esn—1 |JAN C(x,3e)| < O(log(m)3™) points.

By concatenating such paths; with probability 1 —2n~"m~2 every
shadow path has length at most (27/¢) - (log(m)3")".



Conclusion and future directions

With high probability we have

1

Q(nmﬁ) < Diameter(P) < O(n*mm1 + n°4™).

The diameter is close to the expected shadow size, and a shadow size is
close to its expectation.



Conclusion and future directions

With high probability we have

1

Q(nmﬁ) < Diameter(P) < O(n*mm1 + n°4™).

The diameter is close to the expected shadow size, and a shadow size is
close to its expectation.

Does this hold for other probability distributions as well?



