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A question about optimization

Given a basic feasible solution to

maximize c
T
x

subject to Ax  b

how many pivot steps does the

simplex method need to find an

optimal solution?

I n variables

I m constraints

Given a polyhedron, how many

edges do we need to traverse to go

from any vertex to any other?
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The Hirsch conjecture

If P ⇢ Rn
has m facets, is the diameter at most m � n?

True for

I polytopes in R3

I network flow polytopes

I fractional stable set polytopes

I polytopes with vertices in {0, 1}n

I and many more

But false in general.

Klee-Walkup, 1967, counterexample for unbounded polyhedra.

Santos, 2012, counterexample for bounded polytopes.

New conjecture: is the diameter at most poly(m, n)?
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Best available diameter bounds

Barnette, Larman:

Diameter(P)  2
n�2

m.

Kalai-Kleitman, Todd, Sukegawa:

Diameter(P)  (m � n)
log2 O(n/ log n).

Dyer-Frieze, Bonifas-Di Summa-Eisenbrand-Hähnle-Niemeier,

Dadush-Hähnle, Narayanan-Shah-Srivastava:

If A is integral and every absolute square subdeterminant is at most �

then

Diameter(P)  O(n
3
�

2
log(�)).

Random polytopes are “well-conditioned on average”. Do they have

bounded diameter?
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Tantalizing evidence from the simplex method
Consider a fixed two-dimensional plane W ⇢ Rn

. Let

P = {x 2 Rn
: ha, xi  1 8a 2 A}

where A ⇢ Rn, |A| = m is sampled iid from a rotationally invariant

probability distribution.

Borgwardt 1977,1982,1987,1999:

on expectation, O(n
2
m

1
n�1 ) distinct

vertices are optimized by the

objectives in W .

The simplex method needs

O(n
2
m

1
n�1 ) pivot steps in

expectation to move from any one

such vertex to any other.
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Tantalizing evidence from the simplex method

Consider a fixed two-dimensional plane W ⇢ Rn
. Let

P = {x 2 Rn
: ha, xi  1 8a 2 A}

where A ⇢ Rn, |A| = m is sampled independently from Gaussian

distributions with covariance �2
In⇥n and expectation having norm at

most 1.

Spielman-Teng, Spielman-Deshpande, Vershynin, Dadush-Huiberts:

There are O(n
2
p
logm/�2

) shadow vertices in expectation.

The simplex method needs O(n
2
p
logm/�2

) pivot steps in expectation

to solve the LP.
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Our results

Let

P = {x 2 Rn
: ha, xi  1 8a 2 A}

where A ⇢ Sn�1
follows a Poisson point process with E[|A|] = m > 2

⌦(n)
.

Then with probability 1� O(1/m) we have

⌦(nm
1

n�1 )  Diameter(P)  O(n
2
m

1
n�1 + n

6
4
n
).

The same holds for the shadow size on any fixed W .
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Our results / This talk

Let

P = {x 2 Rn
: ha, xi  1 8a 2 A}

where A ⇢ Sn�1
follows a Poisson point process with E[|A|] = m > 2

⌦(n)
.

Then with probability 1� O(1/m) we have
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n
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Lower bound

A set B ⇢ Sn�1
is called "-dense if for every x 2 Sn�1

there exists b 2 B

with kx � bk  ".

A is O((log(m)/m)
1

n�1 )-dense with probability 1� n
�n

m
�2

.

If A is "-dense then every edge of P lies inside (1� "2/2)�1Bn \ Bn
.

If a line segment lies inside (1� "2/2)�1Bn \ Bn
and "  1 then it has

length  2"

If A is "-dense then Diameter(P) � ⌦(1/").

E >0
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A weak upper bound
If a, a0 2 Sn�1

and z 2 Rn
satisfy kzk  (1� "2/2)�1

and

ha, zi, ha0, zi � 1 then ka� a
0k  2".

If A is "-dense, w1,w2 2 Sn�1
satisfy kw1 � w2k  ", z 2 P is on the

shadow path from w1 to w2, and a 2 A satisfies ha, zi = 1 then

kw2 � ak  3".

Every vertex on that shadow path is induced by n constraints from the

set A \ {x 2 Sn�1
: kw2 � xk  3"}.

With probability 1� 2n
�n

m
�2

, A is " = O((m/ log(m))
1

n�1 )-dense and

every spherical cap of radius 3" contains

maxx2Sn�1 |A \ C (x , 3")|  O(log(m)3
n
) points.

By concatenating such paths; with probability 1� 2n
�n

m
�2

every

shadow path has length at most (2⇡/") · (log(m)3
n
)
n
.
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Conclusion and future directions

With high probability we have

⌦(nm
1

n�1 )  Diameter(P)  O(n
2
m

1
n�1 + n

6
4
n
).

The diameter is close to the expected shadow size, and a shadow size is

close to its expectation.

Does this hold for other probability distributions as well?
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