Optimal transport maps, majorization, and log-subharmonic measures

Yair Shenfeld

Brown University

Joint work with Guido De Philippis

Regularity of transport maps

Transport maps. A map $T : \mathbb{R}^n \to \mathbb{R}^n$ **transports** a source probability measure μ on \mathbb{R}^n to a target probability measure ν on \mathbb{R}^n if, for all continuous and bounded $\eta : \mathbb{R}^n \to \mathbb{R}$,

$$\int \eta(T(x)) \, \mathrm{d}\mu(x) = \int \eta(x) \, \mathrm{d}\nu(x).$$

Transport maps. A map $T : \mathbb{R}^n \to \mathbb{R}^n$ **transports** a source probability measure μ on \mathbb{R}^n to a target probability measure ν on \mathbb{R}^n if, for all continuous and bounded $\eta : \mathbb{R}^n \to \mathbb{R}$,

$$\int \eta(T(x)) \,\mathrm{d}\mu(x) = \int \eta(x) \,\mathrm{d}\nu(x).$$

Regularity. We are interested in controlling the eigenvalues of the derivative DT of T uniformly in $x \in \mathbb{R}^n$, e.g.,

$$|DT(x)|_{op}$$
, $Tr[DT(x)]$, $det[DT(x)]$.

Lipschitz Regularity and functional inequalities (Caffarelli)

$$\operatorname{Var}_{\mu}[\eta] \leq c_{\mu} \int |
abla \eta|^2 \,\mathrm{d} \mu \qquad orall \quad \eta: \mathbb{R}^n o \mathbb{R} ext{ test functions}.$$

$$\operatorname{Var}_{\mu}[\eta] \leq c_{\mu} \int |\nabla \eta|^2 \, \mathrm{d}\mu \qquad \forall \ \eta : \mathbb{R}^n \to \mathbb{R} \text{ test functions.}$$

Suppose there exists an $\ell\text{-Lipschitz}$ transport map ${\mathcal T}$ between μ and $\nu.$

$$\operatorname{Var}_{\mu}[\eta] \leq c_{\mu} \int |\nabla \eta|^2 \, \mathrm{d}\mu \qquad \forall \ \eta : \mathbb{R}^n \to \mathbb{R} \text{ test functions.}$$

Suppose there exists an ℓ -Lipschitz transport map T between μ and ν . Then ν satisfies a Poincaré inequality with constant $\ell^2 c_{\mu}$,

$$\operatorname{Var}_{\mu}[\eta] \leq c_{\mu} \int |\nabla \eta|^2 \, \mathrm{d}\mu \qquad \forall \ \eta : \mathbb{R}^n \to \mathbb{R} \text{ test functions.}$$

Suppose there exists an ℓ -Lipschitz transport map T between μ and ν . Then ν satisfies a Poincaré inequality with constant $\ell^2 c_{\mu}$,

$$\begin{split} \operatorname{Var}_{\nu}[\eta] &= \operatorname{Var}_{\mu}[\eta \circ T] \leq c_{\mu} \int |\nabla(\eta \circ T)|^{2} \,\mathrm{d}\mu \\ &\leq c_{\mu} \,\|\mathrm{D}\,T\|_{L^{\infty}}^{2} \int |(\nabla\eta) \circ T|^{2} \,\mathrm{d}\mu = c_{\mu} \,\|\mathrm{D}\,T\|_{L^{\infty}}^{2} \int |\nabla\eta|^{2} \,\mathrm{d}\nu \\ &\leq \ell^{2} c_{\mu} \int |\nabla\eta|^{2} \,\mathrm{d}\nu. \end{split}$$

Volume contraction

Definition. A transport map T between $d\mu = \mu dx$ and $d\nu = \nu dx$ is **volume-contracting** if

$$|\det \mathrm{D} T(x)| \leq 1 \qquad \forall x \in \mathbb{R}^n.$$

Definition. A transport map T between $d\mu = \mu dx$ and $d\nu = \nu dx$ is **volume-contracting** if

$$|\det \mathrm{D} T(x)| \leq 1 \qquad \forall x \in \mathbb{R}^n.$$

Note. Volume contraction is significantly weaker than Lipschitz regularity since only the product of the eigenvalues of DT is controlled rather than the individual eigenvalues.

Lemma. Suppose there exists a volume-contracting transport map T between $\mu := f\gamma$ and the standard Gaussian γ .

Lemma. Suppose there exists a volume-contracting transport map T between $\mu := f\gamma$ and the standard Gaussian γ . Then,

$$f(x) \le e^{rac{|x|^2}{2}}$$
 for all $x \in \mathbb{R}^n$.

Lemma. Suppose there exists a volume-contracting transport map T between $\mu := f\gamma$ and the standard Gaussian γ . Then,

$$f(x) \le e^{rac{|x|^2}{2}}$$
 for all $x \in \mathbb{R}^n$.

Proof. By the change of variables formula,

$$f(x)\gamma(x) = \gamma(T(x)) \underbrace{|\det DT(x)|}_{\leq 1} \leq \gamma(T(x)) \leq \frac{1}{(2\pi)^{\frac{n}{2}}}.$$

Volume contraction and majorization

Proposition (Melbourne-Roberto). Suppose there exists a volume-contracting transport map T between $d\mu = \mu dx$ and $d\nu = \nu dx$.

Proposition (Melbourne-Roberto). Suppose there exists a volume-contracting transport map T between $d\mu = \mu dx$ and $d\nu = \nu dx$. Then, ν majorizes μ ,

$$\int_{\mathbb{R}^n} \varphi(\mu(x)) \, \mathrm{d} x \leq \int_{\mathbb{R}^n} \varphi(\nu(x)) \, \mathrm{d} x \qquad \forall \text{ convex } \varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}.$$

Proof of volume contraction \Rightarrow majorization, $\int \varphi(\mu) \leq \int \varphi(\nu)$

Taylor expansion of φ , and the fact $\int \mu = \int \nu$, imply that it suffices to show for each $r \ge 0$,

$$\int_{\mathbb{R}^n} [\mu(x) - r]^+ \, \mathrm{d}x \le \int_{\mathbb{R}^n} [\nu(x) - r]^+ \, \mathrm{d}x.$$

Taylor expansion of φ , and the fact $\int \mu = \int \nu$, imply that it suffices to show for each $r \ge 0$,

$$\int_{\mathbb{R}^n} [\mu(x) - r]^+ \, \mathrm{d}x \le \int_{\mathbb{R}^n} [\nu(x) - r]^+ \, \mathrm{d}x.$$

Using $[sx - r]^+ \le s[x - r]^+$ for $s \in (0, 1)$ (since $x \mapsto [x - r]^+$ is convex vanishing at 0),

$$\int [\mu(x) - r]^{+} dx = \int [\nu(T(x))|\det DT(x)| - r]^{+} dx$$

$$\leq \int |\det DT(x)| [\nu(T(x)) - r]^{+} dx = \int [\nu(x) - r]^{+} dx.$$

Examples of majorization

Majorization: ν majroizes μ if

$$\int_{\mathbb{R}^n} \varphi(\mu(x)) \, \mathrm{d} x \leq \int_{\mathbb{R}^n} \varphi(\nu(x)) \, \mathrm{d} x \qquad \forall \text{ convex } \varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}.$$

Majorization: ν majroizes μ if

$$\int_{\mathbb{R}^n} \varphi(\mu(x)) \, \mathrm{d} x \leq \int_{\mathbb{R}^n} \varphi(\nu(x)) \, \mathrm{d} x \qquad \forall \text{ convex } \varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}.$$

Example. ν has higher entropy than μ since $\varphi(r) := r \log r$ is convex.

Majorization: ν majroizes μ if

$$\int_{\mathbb{R}^n} \varphi(\mu(x)) \, \mathrm{d} x \leq \int_{\mathbb{R}^n} \varphi(\nu(x)) \, \mathrm{d} x \qquad \forall \text{ convex } \varphi: \mathbb{R}_{\geq 0} \to \mathbb{R}.$$

Example. ν has higher entropy than μ since $\varphi(r) := r \log r$ is convex.

Example. ν has higher *q*-Rényi entropy than μ .

A classical particle has a definite position q and a definite momentum p.

A classical particle has a definite position q and a definite momentum p.

But the position and momentum of a quantum particle can only be specified up to the accuracy allowed by the uncertainty principle,

$$\Delta q \, \Delta p \geq \frac{\hbar}{2}.$$

A classical particle has a definite position q and a definite momentum p.

But the position and momentum of a quantum particle can only be specified up to the accuracy allowed by the uncertainty principle,

$$\Delta q \, \Delta p \geq \frac{\hbar}{2}.$$

Coherent states are states which are as classical as possible without violating the uncertainty principle.

A quantum particle with momentum p is modeled by a wave function $\psi(x) = e^{\frac{i}{\hbar} \langle x, p \rangle}$.

A quantum particle with momentum p is modeled by a wave function $\psi(x) = e^{\frac{i}{\hbar} \langle x, p \rangle}$.

The density of finding the particle at x, $|\psi(x)|^2$, has infinite integral since the position x cannot be determined per the uncertainty principle.

A quantum particle with momentum p is modeled by a wave function $\psi(x) = e^{\frac{i}{\hbar} \langle x, p \rangle}$.

The density of finding the particle at x, $|\psi(x)|^2$, has infinite integral since the position x cannot be determined per the uncertainty principle.

A Glauber state

$$\psi_{q,p}(x) := e^{\frac{i}{\hbar} \langle x, p \rangle} \left[(2\pi\hbar)^{-d} \exp\left(-\frac{|x-q|^2}{2\hbar}\right) \right]$$

increases the uncertainty around a position q with a Gaussian window of variance \hbar , which is the minimum allowed by the uncertainty principle.

Quantum states are described by wave functions ψ obeying the Schrödinger equation.

Quantum states are described by wave functions ψ obeying the Schrödinger equation. The **coherent state transform** maps the wave function (quantum picture) to states in phase space (classical picture),

$$\mathcal{L}\psi(q,p) := e^{rac{i}{2}\langle p,q
angle} \int_{\mathbb{R}^d} e^{i \langle y,p
angle} e^{-rac{|y-q|^2}{2}} \psi(y) \,\mathrm{d}y.$$
Quantum states are described by wave functions ψ obeying the Schrödinger equation. The **coherent state transform** maps the wave function (quantum picture) to states in phase space (classical picture),

$$\mathcal{L}\psi(q,p) := e^{rac{i}{2}\langle p,q
angle} \int_{\mathbb{R}^d} e^{i\langle y,p
angle} e^{-rac{|y-q|^2}{2}}\psi(y) \,\mathrm{d}y.$$

The modulus $(2\pi\hbar)^{-d} |\mathcal{L}\psi|^2$ is a probability measure (when $|\psi|_{L^2} = 1$) over the phase space.

Quantum states are described by wave functions ψ obeying the Schrödinger equation. The **coherent state transform** maps the wave function (quantum picture) to states in phase space (classical picture),

$$\mathcal{L}\psi(q,p) := e^{rac{i}{2}\langle p,q
angle} \int_{\mathbb{R}^d} e^{i\langle y,p
angle} e^{-rac{|y-q|^2}{2}}\psi(y) \,\mathrm{d}y.$$

The modulus $(2\pi\hbar)^{-d}|\mathcal{L}\psi|^2$ is a probability measure (when $|\psi|_{L^2} = 1$) over the phase space.

Similarly for **mixed states**, $\sum_{j=1}^{k} a_j \psi_j$ with $a_j \ge 0$, $\sum_{j=1}^{k} a_j = 1$, and $\{\psi_j\}_{j=1}^{k}$ orthonormal, $(2\pi\hbar)^{-d} \sum_{j=1}^{k} a_j |\mathcal{L}\psi_j|^2$ is the corresponding probability measure over phase space.

The (generalized) Wehrl conjecture(s)

Wehrl conjecture. For each mixed state,

$$\begin{split} \mathsf{Entropy}\left[|\mathcal{L}(\mathsf{mixed state})|^2\right] &\geq \mathsf{Entropy}\left[|\mathcal{L}(\mathsf{Glauber state})|^2\right] \\ &= \mathsf{Entropy}\left[\mathsf{Gaussian}\right]. \end{split}$$

Wehrl conjecture. For each mixed state,

$$\begin{split} \mathsf{Entropy}\left[|\mathcal{L}(\mathsf{mixed state})|^2\right] &\geq \mathsf{Entropy}\left[|\mathcal{L}(\mathsf{Glauber state})|^2\right] \\ &= \mathsf{Entropy}\left[\mathsf{Gaussian}\right]. \end{split}$$

Generelized Wehrl conjecture. Gaussian **majorizes** any mixed state.

Wehrl conjecture. For each mixed state,

$$\begin{split} \mathsf{Entropy}\left[|\mathcal{L}(\mathsf{mixed state})|^2\right] &\geq \mathsf{Entropy}\left[|\mathcal{L}(\mathsf{Glauber state})|^2\right] \\ &= \mathsf{Entropy}\left[\mathsf{Gaussian}\right]. \end{split}$$

Generelized Wehrl conjecture. Gaussian **majorizes** any mixed state.

Proofs. The Wehrl conjecture was first proven by Lieb, and since then the generalized Wehrl conjecture was proven also for other groups, but some conjectures remain open.

Recap

 \implies

Volume-contraction of ${\mathcal T}$ between μ and ν (i.e., $\|\det \mathrm{D}{\mathcal T}\|_{L^\infty} \leq 1)$

Volume-contraction of T between μ and ν (i.e., $\|\det DT\|_{L^{\infty}} \leq 1$) \implies

• Growth estimates (in particular with $\nu = \text{Gaussian}$).

Volume-contraction of T between μ and ν (i.e., $\|\det DT\|_{L^{\infty}} \leq 1$) \Longrightarrow

- Growth estimates (in particular with $\nu = Gaussian$).
- Majorization (i.e., $\int \varphi(\mu) \leq \int \varphi(\nu)$ for φ convex).

Volume-contraction of T between μ and ν (i.e., $\|\det DT\|_{L^{\infty}} \leq 1$) \Longrightarrow

- Growth estimates (in particular with $\nu = Gaussian$).
- Majorization (i.e., ∫ φ(μ) ≤ ∫ φ(ν) for φ convex).
 In particular a potential proof of Wehrl conjecture (when μ = mixed state and ν = Gaussian).

Volume-contraction of T between μ and ν (i.e., $\|\det DT\|_{L^{\infty}} \leq 1$) \Longrightarrow

- Growth estimates (in particular with $\nu = Gaussian$).
- Majorization (i.e., $\int \varphi(\mu) \leq \int \varphi(\nu)$ for φ convex).

In particular a potential proof of Wehrl conjecture (when $\mu = mixed$ state and $\nu = Gaussian$).

Thus, the **main question** is under what conditions on μ and ν do we have a volume-contracting map T between μ and ν ?

The Brenier map $T_{\rm ot}$ between μ and ν is the minimizer of

$$\inf_{T:(T)_{\sharp}\mu=\nu}\int_{\mathbb{R}^n}|x-T(x)|^2\,\mathrm{d}\mu(x).$$

The Brenier map T_{ot} between μ and ν is the minimizer of

$$\inf_{T:(T)\sharp\mu=\nu}\int_{\mathbb{R}^n}|x-T(x)|^2\,\mathrm{d}\mu(x).$$

Brenier's theorem. $T_{ot} = \nabla \Phi$ for $\Phi : \mathbb{R}^n \to \mathbb{R}$ convex.

The Brenier map $T_{\rm ot}$ between μ and ν is the minimizer of

$$\inf_{T:(T)\sharp\mu=\nu}\int_{\mathbb{R}^n}|x-T(x)|^2\,\mathrm{d}\mu(x).$$

Brenier's theorem. $T_{ot} = \nabla \Phi$ for $\Phi : \mathbb{R}^n \to \mathbb{R}$ convex.

Theorem [Caffarelli; Kolesnikov].

The Brenier map $T_{\rm ot}$ between μ and ν is the minimizer of

$$\inf_{T:(T)\sharp\mu=\nu}\int_{\mathbb{R}^n}|x-T(x)|^2\,\mathrm{d}\mu(x).$$

Brenier's theorem. $T_{ot} = \nabla \Phi$ for $\Phi : \mathbb{R}^n \to \mathbb{R}$ convex.

Theorem [Caffarelli; Kolesnikov]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$abla^2 V \preceq lpha_{\sf up} \operatorname{Id}_n \quad {\sf and} \quad
abla^2 W \succeq lpha_{\sf low} \operatorname{Id}_n.$$

The Brenier map T_{ot} between μ and ν is the minimizer of

$$\inf_{T:(T)\sharp\mu=\nu}\int_{\mathbb{R}^n}|x-T(x)|^2\,\mathrm{d}\mu(x).$$

Brenier's theorem. $T_{ot} = \nabla \Phi$ for $\Phi : \mathbb{R}^n \to \mathbb{R}$ convex.

Theorem [Caffarelli; Kolesnikov]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$\nabla^2 V \preceq \alpha_{\sf up} \operatorname{Id}_n \quad {\sf and} \quad \nabla^2 W \succeq \alpha_{\sf low} \operatorname{Id}_n.$$

Then, the optimal transport map $(\nabla \Phi)_{\sharp} \mu = \nu$ satisfies

$$\|\nabla^2 \Phi\|_{L^{\infty}} \leq \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$$

Theorem [Caffarelli; Kolesnikov]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$\nabla^2 V \preceq \alpha_{\sf up} \operatorname{Id}_n$$
 and $\nabla^2 W \succeq \alpha_{\sf low} \operatorname{Id}_n$.

Then the optimal transport map $(\nabla \Phi)_{\sharp} \mu = \nu$ satisfies

$$\|\nabla^2 \Phi\|_{L^{\infty}} \leq \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$$

Theorem [Caffarelli; Kolesnikov]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$abla^2 V \preceq lpha_{\sf up} \operatorname{Id}_n \quad {\sf and} \quad
abla^2 W \succeq lpha_{\sf low} \operatorname{Id}_n.$$

Then the optimal transport map $(\nabla \Phi)_{\sharp} \mu = \nu$ satisfies

$$\|\nabla^2 \Phi\|_{L^{\infty}} \leq \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$$

Theorem [De Philippis, S.].

Theorem [Caffarelli; Kolesnikov]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$\nabla^2 V \preceq \alpha_{\sf up} \operatorname{Id}_n$$
 and $\nabla^2 W \succeq \alpha_{\sf low} \operatorname{Id}_n$.

Then the optimal transport map $(\nabla \Phi)_{\sharp} \mu = \nu$ satisfies

$$\|\nabla^2 \Phi\|_{L^{\infty}} \le \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$$

Theorem [De Philippis, S.]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$\Delta V \leq lpha_{\sf up} n$$
 and $abla^2 W \succeq lpha_{\sf low} \operatorname{Id}_n$.

Theorem [Caffarelli; Kolesnikov]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$\nabla^2 V \preceq \alpha_{\sf up} \operatorname{Id}_n$$
 and $\nabla^2 W \succeq \alpha_{\sf low} \operatorname{Id}_n$.

Then the optimal transport map $(\nabla \Phi)_{\sharp} \mu = \nu$ satisfies

$$\|\nabla^2 \Phi\|_{L^{\infty}} \le \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$$

Theorem [De Philippis, S.]. Let $d\mu = e^{-V} dx$ and $d\nu = e^{-W} dx$ be probability measures on \mathbb{R}^n such that

$$\Delta V \leq lpha_{\sf up} n$$
 and $abla^2 W \succeq lpha_{\sf low} \operatorname{Id}_n$.

Then the optimal transport map $(\nabla \Phi)_{\sharp} \mu = \nu$ satisfies

$$\|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$$

Theorem [De Philippis, S.].

 $\Delta V \leq \alpha_{\mathsf{up}} n \quad \text{and} \quad \nabla^2 W \succeq \alpha_{\mathsf{low}} \operatorname{Id}_n \quad \Longrightarrow \quad \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$

Remarks

Theorem [De Philippis, S.].

$$\Delta V \leq \alpha_{\mathsf{up}} n \quad \text{and} \quad \nabla^2 W \succeq \alpha_{\mathsf{low}} \operatorname{Id}_n \implies \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}$$

Remark 1. Theorem is sharp: $\mu = \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$ and $\nu = \mathcal{N}(0, \mathrm{Id}_n)$ imply $\nabla \Phi(x) = \frac{x}{\sigma}$ so $\Delta \Phi(x) = \frac{n}{\sigma} = n \sqrt{\frac{\alpha_{up}}{\alpha_{low}}}$.

Remarks

Theorem [De Philippis, S.].

$$\Delta V \leq \alpha_{\mathsf{up}} n \quad \text{and} \quad \nabla^2 W \succeq \alpha_{\mathsf{low}} \operatorname{Id}_n \quad \Longrightarrow \quad \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}$$

Remark 1. Theorem is sharp: $\mu = \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$ and $\nu = \mathcal{N}(0, \mathrm{Id}_n)$ imply $\nabla \Phi(x) = \frac{x}{\sigma}$ so $\Delta \Phi(x) = \frac{n}{\sigma} = n \sqrt{\frac{\alpha_{up}}{\alpha_{low}}}$.

Remark 2. Theorem implies the Lipschitz bound $\|\nabla^2 \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{up}}{\alpha_{low}}}$ which is sharp in the limit $\epsilon \to 0$,

$$\mu = \mathcal{N}(0, \Sigma_{\epsilon}), \quad \mu = \mathcal{N}(0, \mathrm{Id}_n), \quad \Sigma_{\epsilon} = \mathrm{diag}\left(\frac{1}{n}, \frac{1}{\epsilon}, \dots, \frac{1}{\epsilon}\right).$$

Theorem [De Philippis, S.].

$$\Delta V \leq \alpha_{\mathsf{up}} n \quad \text{and} \quad \nabla^2 W \succeq \alpha_{\mathsf{low}} \operatorname{Id}_n \quad \Longrightarrow \quad \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}$$

Remark 1. Theorem is sharp: $\mu = \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$ and $\nu = \mathcal{N}(0, \mathrm{Id}_n)$ imply $\nabla \Phi(x) = \frac{x}{\sigma}$ so $\Delta \Phi(x) = \frac{n}{\sigma} = n \sqrt{\frac{\alpha_{up}}{\alpha_{low}}}$.

Remark 2. Theorem implies the Lipschitz bound $\|\nabla^2 \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{up}}{\alpha_{low}}}$ which is sharp in the limit $\epsilon \to 0$,

$$\mu = \mathcal{N}(0, \Sigma_{\epsilon}), \quad \mu = \mathcal{N}(0, \mathrm{Id}_n), \quad \Sigma_{\epsilon} = \mathrm{diag}\left(\frac{1}{n}, \frac{1}{\epsilon}, \dots, \frac{1}{\epsilon}\right).$$

Remark 3. By AM-GM inequality $\nabla \Phi$ is volume-contracting,

$$\|\det
abla^2 \Phi\|_{L^\infty} \leq \left(rac{lpha_{\mathsf{up}}}{lpha_{\mathsf{low}}}
ight)^{rac{n}{2}}.$$

$$\Delta V \leq lpha_{\mathsf{up}} n \quad \mathsf{and} \quad
abla^2 W \succeq lpha_{\mathsf{low}} \operatorname{Id}_n \implies \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{rac{lpha_{\mathsf{up}}}{lpha_{\mathsf{low}}}}$$

$$\Delta V \leq \alpha_{up} n \text{ and } \nabla^2 W \succeq \alpha_{low} \operatorname{Id}_n \implies \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{up}}{\alpha_{low}}}.$$

Let $\mu = f\nu$ with $\nu = \gamma = \mathcal{N}(0, \operatorname{Id}_n)$ and f log-subharmonic, i.e.,
 $\Delta \log f \geq 0.$

$$\Delta V \leq \alpha_{\mathsf{up}} n \quad \mathsf{and} \quad \nabla^2 W \succeq \alpha_{\mathsf{low}} \operatorname{Id}_n \implies \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}.$$

Let $\mu = f\nu$ with $\nu = \gamma = \mathcal{N}(0, \mathrm{Id}_n)$ and f log-subharmonic, i.e., $\Delta \log f \ge 0$. Then $\alpha_{\mathsf{low}} = \alpha_{\mathsf{up}} = 1$ so

 $\|\Delta \Phi\|_{L^{\infty}} \leq n$ and $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1.$

$$\Delta V \leq \alpha_{\mathsf{up}} n \quad \mathsf{and} \quad \nabla^2 W \succeq \alpha_{\mathsf{low}} \operatorname{Id}_n \quad \Longrightarrow \quad \|\Delta \Phi\|_{L^{\infty}} \leq n \sqrt{\frac{\alpha_{\mathsf{up}}}{\alpha_{\mathsf{low}}}}$$

Let $\mu = f\nu$ with $\nu = \gamma = \mathcal{N}(0, \mathrm{Id}_n)$ and f log-subharmonic, i.e., $\Delta \log f \ge 0$. Then $\alpha_{\mathsf{low}} = \alpha_{\mathsf{up}} = 1$ so

$$\|\Delta \Phi\|_{L^{\infty}} \leq n$$
 and $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1.$

Thus,

$$f(x) \le e^{rac{|x|^2}{2}}$$
 and γ majorizes $f\gamma$

•
$$f(z) = \exp\left(-\sum_{i< j=1}^{N} \log |z_i - z_j|\right)$$
 for $z \in \mathbb{C}$.

•
$$f(z) = \exp\left(-\sum_{i < j=1}^{N} \log |z_i - z_j|\right)$$
 for $z \in \mathbb{C}$.

In particular we get majorization for **two-dimensional Coulomb gases**.

•
$$f(z) = \exp\left(-\sum_{i < j=1}^{N} \log |z_i - z_j|\right)$$
 for $z \in \mathbb{C}$.

In particular we get majorization for **two-dimensional Coulomb gases**.

•
$$f(z) = |\tilde{f}(z)|$$
 where $\tilde{f} : \mathbb{C}^n \to \mathbb{C}^n$ is entire.

•
$$f(z) = \exp\left(-\sum_{i < j=1}^{N} \log |z_i - z_j|\right)$$
 for $z \in \mathbb{C}$.

In particular we get majorization for **two-dimensional Coulomb gases**.

•
$$f(z) = |\tilde{f}(z)|$$
 where $\tilde{f} : \mathbb{C}^n \to \mathbb{C}^n$ is entire.

This gives a new proof for the generalized Wehrl conjecture for Glauber states since for each wave function ψ ,

$$|\mathcal{L}\psi(q,p)|^2 = 2^{-\frac{d}{2}} |\tilde{f}(q+ip)|^2 e^{-\pi(|q|^2+|p|^2)}$$

where \tilde{f} is entire.
Trace bounds and stability in majorization

The fact that we can bound the trace $\|\Delta \Phi\|_{L^{\infty}} \leq n$, rather than the determinant $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1$, yields **stability** in majorization:

The fact that we can bound the trace $\|\Delta \Phi\|_{L^{\infty}} \leq n$, rather than the determinant $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1$, yields **stability** in majorization:

$$\int (\log \nu) \,\mathrm{d}\nu - \int (\log \mu) \,\mathrm{d}\mu \geq \frac{1}{2n^2} \int \|\nabla^2 \Phi - \mathrm{Id}_n\|_F^2 \,\mathrm{d}\mu.$$

The fact that we can bound the trace $\|\Delta \Phi\|_{L^{\infty}} \leq n$, rather than the determinant $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1$, yields **stability** in majorization:

$$\int (\log \nu) \,\mathrm{d}\nu - \int (\log \mu) \,\mathrm{d}\mu \geq \frac{1}{2n^2} \int \|\nabla^2 \Phi - \mathrm{Id}_n\|_F^2 \,\mathrm{d}\mu.$$

In particular this gives stability in the (original) Wehrl conjecture for Glauber states.

Trace bounds and monotonicity along Wasserstein geodesics

The fact that we can bound the trace $\|\Delta \Phi\|_{L^{\infty}} \leq n$, rather than the determinant $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1$, yields **monotonicity along Wasserstein geodesics**:

The fact that we can bound the trace $\|\Delta \Phi\|_{L^{\infty}} \leq n$, rather than the determinant $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1$, yields **monotonicity along Wasserstein geodesics**: Let (ρ_t) be a geodesic in Wasserstein space between μ and ν . The fact that we can bound the trace $\|\Delta \Phi\|_{L^{\infty}} \leq n$, rather than the determinant $\|\det \nabla^2 \Phi\|_{L^{\infty}} \leq 1$, yields **monotonicity along Wasserstein geodesics**: Let (ρ_t) be a geodesic in Wasserstein space between μ and ν . Then, for every convex $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}$,

 $[0,1] \ni t \mapsto \int_{\mathbb{R}^n} \varphi(\rho_t(x)) \, \mathrm{d}x$ is monotonically non-decreasing.

TL;DR: Same as Caffarelli and Kolesnikov.

TL;DR: Same as Caffarelli and Kolesnikov.

Idea: Differentiate twice the change of variables formula

$$e^{-V} = e^{-W(\nabla\Phi)} \det \nabla^2 \Phi,$$

TL;DR: Same as Caffarelli and Kolesnikov.

Idea: Differentiate twice the change of variables formula

$$e^{-V} = e^{-W(\nabla\Phi)} \det \nabla^2 \Phi,$$

and analyze optimality conditions at the point where $\Delta \Phi$ attains its maximum.

TL;DR: Same as Caffarelli and Kolesnikov.

Idea: Differentiate twice the change of variables formula

$$e^{-V} = e^{-W(\nabla\Phi)} \det \nabla^2 \Phi,$$

and analyze optimality conditions at the point where $\Delta \Phi$ attains its maximum.

Making this argument rigorous is quite technical and relies on Kolesnikov's L^p method as well as approximation arguments.

The (inverse) Kim-Milman map

Given $\mu = f\nu$ with $\nu = \gamma = \mathcal{N}(0, \mathrm{Id}_n)$ let

$$\partial_t S_t(x) = -\nabla \log P_t f(S_t(x)), \qquad S_0(x) = x,$$

where (P_t) is the heat semigroup.

Given $\mu = f\nu$ with $\nu = \gamma = \mathcal{N}(0, \mathrm{Id}_n)$ let

$$\partial_t S_t(x) = -\nabla \log P_t f(S_t(x)), \qquad S_0(x) = x,$$

where (P_t) is the heat semigroup. Then

$$(S_t)_{\sharp}\mu = (P_t f)\gamma.$$

Given $\mu = f\nu$ with $\nu = \gamma = \mathcal{N}(0, \mathrm{Id}_n)$ let

$$\partial_t S_t(x) = -\nabla \log P_t f(S_t(x)), \qquad S_0(x) = x,$$

where (P_t) is the heat semigroup. Then

$$(S_t)_{\sharp}\mu = (P_t f)\gamma.$$

The (inverse) Kim-Milman map is $T_{km} := S_{\infty}$ which transports μ to γ .

Lipschitz regularity for the Kim-Milman map

• The first Lipschitz regularity results for the Kim-Milman map were proven by Kim and E. Milman.

Lipschitz regularity for the Kim-Milman map

- The first Lipschitz regularity results for the Kim-Milman map were proven by Kim and E. Milman.
- Nowadays there are many more Lipschitz regularity results for the Kim-Milman map and its reverse than for the Brenier map.

- The first Lipschitz regularity results for the Kim-Milman map were proven by Kim and E. Milman.
- Nowadays there are many more Lipschitz regularity results for the Kim-Milman map and its reverse than for the Brenier map.
- In particular, Mikulincer-S. showed that for $\mathrm{d}\mu = e^{-V} \,\mathrm{d}x$ we have

$$\nabla^2 V \leq \alpha_{\mathsf{up}} \mathrm{Id}_n \quad \Longrightarrow \quad \|\mathrm{D} T_{\mathsf{km}}\|_{L^{\infty}} \leq \sqrt{\alpha_{\mathsf{up}}}.$$

Lower regularity for the (inverse) Kim-Milman map

Recall the Mikulincer-S. analogue of the Caffarelli-Kolesnikov result for the (inverse) Kim-Milman map:

$$\nabla^2 V \le \alpha_{\mathsf{up}} \mathrm{Id}_n \quad \Longrightarrow \quad \|\mathrm{D} T_{\mathsf{km}}\|_{L^{\infty}} \le \sqrt{\alpha_{\mathsf{up}}}.$$

Recall the Mikulincer-S. analogue of the Caffarelli-Kolesnikov result for the (inverse) Kim-Milman map:

$$\nabla^2 V \le \alpha_{\mathsf{up}} \mathrm{Id}_n \quad \Longrightarrow \quad \|\mathrm{D} T_{\mathsf{km}}\|_{L^{\infty}} \le \sqrt{\alpha_{\mathsf{up}}}.$$

Q. Can we get the analogue of the De Philippis, S, result

 $\Delta V \leq \alpha_{up} n \Longrightarrow \|\operatorname{Tr}[\operatorname{D} T_{km}]\|_{L^{\infty}} \leq n \sqrt{\alpha_{up}} \text{ and } \|\det \operatorname{D} T_{km}\|_{L^{\infty}} \leq \alpha_{up}^{\frac{1}{2}}?$

Lower regularity for the (inverse) Kim-Milman map

We cannot establish the trace bound but can "show" that

$$\Delta V \leq \alpha_{\mathsf{up}} n \implies \|\det \mathrm{D} T_{\mathsf{km}}\|_{L^{\infty}} \leq \alpha_{\mathsf{up}}^{\frac{n}{2}}.$$

We cannot establish the trace bound but can "show" that

$$\Delta V \leq \alpha_{\mathsf{up}} n \implies \|\det \mathrm{D} T_{\mathsf{km}}\|_{L^{\infty}} \leq \alpha_{\mathsf{up}}^{\frac{n}{2}}.$$

To quotation marks are because that establishing the existence of $T_{\rm km} = S_\infty$ under low regularity is not clear.

Spatially differentiate

$$\partial_t S_t(x) = -\nabla \log P_t f(S_t(x))$$

and take the determinant (plus Jacobi formula) to get

$$\partial_t \det \mathrm{D}S_t(x) = [-\Delta \log P_t f(S_t(x))] \det \mathrm{D}S_t(x).$$

Spatially differentiate

$$\partial_t S_t(x) = -\nabla \log P_t f(S_t(x))$$

and take the determinant (plus Jacobi formula) to get

$$\partial_t \det \mathrm{D}S_t(x) = [-\Delta \log P_t f(S_t(x))] \det \mathrm{D}S_t(x).$$

Show that $\Delta \log P_t f$ can be controlled under log-subharmonicity results on f.

Spatially differentiate

$$\partial_t S_t(x) = -\nabla \log P_t f(S_t(x))$$

and take the determinant (plus Jacobi formula) to get

$$\partial_t \det \mathrm{D}S_t(x) = [-\Delta \log P_t f(S_t(x))] \det \mathrm{D}S_t(x).$$

Show that $\Delta \log P_t f$ can be controlled under log-subharmonicity results on f.

Use Grönwall's inequality to bound det DS_t and take $t \to \infty$.

Thank You