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Regularity of transport maps

Transport maps. A map T : Rn → Rn transports a source

probability measure µ on Rn to a target probability measure ν on

Rn if, for all continuous and bounded η : Rn → R,∫
η(T (x))dµ(x) =

∫
η(x)dν(x).

Regularity. We are interested in controlling the eigenvalues of the

derivative DT of T uniformly in x ∈ Rn, e.g.,

|DT (x)|op, Tr[DT (x)], det[DT (x)].
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Lipschitz Regularity and functional inequalities (Caffarelli)

Suppose µ satisfies a Poincaré inequality with constant cµ,

Varµ[η] ≤ cµ

∫
|∇η|2 dµ ∀ η : Rn → R test functions.

Suppose there exists an ℓ-Lipschitz transport map T between µ

and ν. Then ν satisfies a Poincaré inequality with constant ℓ2cµ,

Varν [η] = Varµ[η ◦ T ] ≤ cµ

∫
|∇(η ◦ T )|2 dµ

≤ cµ ∥DT∥2L∞
∫

|(∇η) ◦ T |2 dµ = cµ ∥DT∥2L∞
∫

|∇η|2 dν

≤ ℓ2cµ

∫
|∇η|2 dν.
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Volume contraction

Definition. A transport map T between dµ = µdx and dν = ν dx

is volume-contracting if

| detDT (x)| ≤ 1 ∀ x ∈ Rn.

Note. Volume contraction is significantly weaker than Lipschitz

regularity since only the product of the eigenvalues of DT is

controlled rather than the individual eigenvalues.
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Volume contraction and growth estimates

Lemma. Suppose there exists a volume-contracting transport map

T between µ := f γ and the standard Gaussian γ. Then,

f (x) ≤ e
|x|2
2 for all x ∈ Rn.

Proof. By the change of variables formula,

f (x)γ(x) = γ(T (x)) | detDT (x)|︸ ︷︷ ︸
≤1

≤ γ(T (x)) ≤ 1

(2π)
n
2
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Volume contraction and majorization

Proposition (Melbourne-Roberto). Suppose there exists a

volume-contracting transport map T between dµ = µ dx and

dν = ν dx . Then, ν majorizes µ,∫
Rn

φ(µ(x))dx ≤
∫
Rn

φ(ν(x))dx ∀ convex φ : R≥0 → R.
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Proof of volume contraction ⇒ majorization,
∫
φ(µ) ≤

∫
φ(ν)

Taylor expansion of φ, and the fact
∫
µ =

∫
ν, imply that it

suffices to show for each r ≥ 0,∫
Rn

[µ(x)− r ]+ dx ≤
∫
Rn

[ν(x)− r ]+ dx .

Using [sx − r ]+ ≤ s[x − r ]+ for s ∈ (0, 1) (since x 7→ [x − r ]+ is

convex vanishing at 0),∫
[µ(x)− r ]+ dx =

∫
[ν(T (x))| detDT (x)| − r ]+ dx

≤
∫

| detDT (x)|[ν(T (x))− r ]+ dx =

∫
[ν(x)− r ]+ dx .
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Examples of majorization

Majorization: ν majroizes µ if∫
Rn

φ(µ(x))dx ≤
∫
Rn

φ(ν(x))dx ∀ convex φ : R≥0 → R.

Example. ν has higher entropy than µ since φ(r) := r log r is

convex.

Example. ν has higher q-Rényi entropy than µ.
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Coherent states

A classical particle has a definite position q and a definite

momentum p.

But the position and momentum of a quantum particle can only be

specified up to the accuracy allowed by the uncertainty principle,

∆q∆p ≥ ℏ
2
.

Coherent states are states which are as classical as possible

without violating the uncertainty principle.
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Glauber states

A quantum particle with momentum p is modeled by a wave

function ψ(x) = e
i
ℏ ⟨x ,p⟩.

The density of finding the particle at x , |ψ(x)|2, has infinite
integral since the position x cannot be determined per the

uncertainty principle.

A Glauber state

ψq,p(x) := e
i
ℏ ⟨x ,p⟩

[
(2πℏ)−d exp

(
−|x − q|2

2ℏ

)]
increases the uncertainty around a position q with a Gaussian

window of variance ℏ, which is the minimum allowed by the

uncertainty principle.
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The coherent state transform

Quantum states are described by wave functions ψ obeying the

Schrödinger equation. The coherent state transform maps the

wave function (quantum picture) to states in phase space (classical

picture),

Lψ(q, p) := e
i
2
⟨p,q⟩

∫
Rd

e i⟨y ,p⟩e−
|y−q|2

2 ψ(y) dy .

The modulus (2πℏ)−d |Lψ|2 is a probability measure (when

|ψ|L2 = 1) over the phase space.

Similarly for mixed states,
∑k

j=1 ajψj with aj ≥ 0,
∑k

j=1 aj = 1,

and {ψj}kj=1 orthonormal, (2πℏ)−d
∑k

j=1 aj |Lψj |2 is the

corresponding probability measure over phase space.
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The (generalized) Wehrl conjecture(s)

Wehrl conjecture. For each mixed state,

Entropy
[
|L(mixed state)|2

]
≥ Entropy

[
|L(Glauber state)|2

]
= Entropy [Gaussian] .

Generelized Wehrl conjecture. Gaussian majorizes any mixed

state.

Proofs. The Wehrl conjecture was first proven by Lieb, and since

then the generalized Wehrl conjecture was proven also for other

groups, but some conjectures remain open.
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Recap

Volume-contraction of T between µ and ν (i.e., ∥ detDT∥L∞ ≤ 1)

=⇒

• Growth estimates (in particular with ν = Gaussian).

• Majorization (i.e.,
∫
φ(µ) ≤

∫
φ(ν) for φ convex).

In particular a potential proof of Wehrl conjecture (when

µ = mixed state and ν = Gaussian).

Thus, the main question is under what conditions on µ and ν do

we have a volume-contracting map T between µ and ν?
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Lipschitz regularity for the Brenier map under log-

convexity/concavity

The Brenier map Tot between µ and ν is the minimizer of

inf
T :(T )♯µ=ν

∫
Rn

|x − T (x)|2 dµ(x).

Brenier’s theorem. Tot = ∇Φ for Φ : Rn → R convex.

Theorem [Caffarelli; Kolesnikov]. Let dµ = e−V dx and

dν = e−W dx be probability measures on Rn such that

∇2V ⪯ αup Idn and ∇2W ⪰ αlow Idn.

Then, the optimal transport map (∇Φ)♯µ = ν satisfies

∥∇2Φ∥L∞ ≤
√
αup

αlow
.
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Remarks

Theorem [De Philippis, S.].

∆V ≤ αupn and ∇2W ⪰ αlow Idn =⇒ ∥∆Φ∥L∞ ≤ n

√
αup

αlow
.

Remark 1. Theorem is sharp: µ = N (0, σ2Idn) and

ν = N (0, Idn) imply ∇Φ(x) = x
σ so ∆Φ(x) = n

σ = n
√

αup

αlow
.

Remark 2. Theorem implies the Lipschitz bound

∥∇2Φ∥L∞ ≤ n
√

αup

αlow
which is sharp in the limit ϵ→ 0,

µ = N (0,Σϵ), µ = N (0, Idn), Σϵ = diag

(
1

n
,
1

ϵ
, . . . ,

1

ϵ

)
.

Remark 3. By AM-GM inequality ∇Φ is volume-contracting,

∥ det∇2Φ∥L∞ ≤
(
αup

αlow

) n
2

.
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Log-subharmonic measures

Recall

∆V ≤ αupn and ∇2W ⪰ αlow Idn =⇒ ∥∆Φ∥L∞ ≤ n

√
αup

αlow
.

Let µ = f ν with ν = γ = N (0, Idn) and f log-subharmonic, i.e.,

∆ log f ≥ 0.Then αlow = αup = 1 so

∥∆Φ∥L∞ ≤ n and ∥ det∇2Φ∥L∞ ≤ 1.

Thus,

f (x) ≤ e
|x|2
2 and γ majorizes f γ.
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Examples of log-subharmonic measures

• f (z) = exp
(
−
∑N

i<j=1 log |zi − zj |
)
for z ∈ C.

In particular we get majorization for two-dimensional

Coulomb gases.

• f (z) = |f̃ (z)| where f̃ : Cn → Cn is entire.

This gives a new proof for the generalized Wehrl conjecture

for Glauber states since for each wave function ψ,

|Lψ(q, p)|2 = 2−
d
2 |f̃ (q + ip)|2e−π(|q|2+|p|2)

where f̃ is entire.
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Trace bounds and stability in majorization

The fact that we can bound the trace ∥∆Φ∥L∞ ≤ n, rather than

the determinant ∥ det∇2Φ∥L∞ ≤ 1, yields stability in majorization:∫
(log ν)dν −

∫
(logµ)dµ ≥ 1

2n2

∫
∥∇2Φ− Idn∥2F dµ.

In particular this gives stability in the (original) Wehrl conjecture

for Glauber states.
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Trace bounds and monotonicity along Wasserstein geodesics

The fact that we can bound the trace ∥∆Φ∥L∞ ≤ n, rather than

the determinant ∥ det∇2Φ∥L∞ ≤ 1, yields monotonicity along

Wasserstein geodesics: Let (ρt) be a geodesic in Wasserstein

space between µ and ν. Then, for every convex φ : R≥0 → R,

[0, 1] ∋ t 7→
∫
Rn

φ(ρt(x))dx is monotonically non-decreasing.
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Proof of ∆V ≤ αupn and ∇2W ⪰ αlow Idn =⇒ ∥∆Φ∥L∞ ≤

n

√
αup

αlow

TL;DR: Same as Caffarelli and Kolesnikov.

Idea: Differentiate twice the change of variables formula

e−V = e−W (∇Φ) det∇2Φ,

and analyze optimality conditions at the point where ∆Φ attains

its maximum.

Making this argument rigorous is quite technical and relies on

Kolesnikov’s Lp method as well as approximation arguments.
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The (inverse) Kim-Milman map

Given µ = f ν with ν = γ = N (0, Idn) let

∂tSt(x) = −∇ logPt f (St(x)), S0(x) = x ,

where (Pt) is the heat semigroup. Then

(St)♯µ = (Pt f )γ.

The (inverse) Kim-Milman map is Tkm := S∞ which transports

µ to γ.
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Lipschitz regularity for the Kim-Milman map

• The first Lipschitz regularity results for the Kim-Milman map

were proven by Kim and E. Milman.

• Nowadays there are many more Lipschitz regularity results for

the Kim-Milman map and its reverse than for the Brenier

map.

• In particular, Mikulincer-S. showed that for dµ = e−V dx we

have

∇2V ≤ αupIdn =⇒ ∥DTkm∥L∞ ≤ √
αup.
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Lower regularity for the (inverse) Kim-Milman map

Recall the Mikulincer-S. analogue of the Caffarelli-Kolesnikov result

for the (inverse) Kim-Milman map:

∇2V ≤ αupIdn =⇒ ∥DTkm∥L∞ ≤ √
αup.

Q. Can we get the analogue of the De Philippis, S, result

∆V ≤ αupn =⇒ ∥Tr[DTkm]∥L∞ ≤ n
√
αup and ∥ detDTkm∥L∞ ≤ α

n
2
up?
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Lower regularity for the (inverse) Kim-Milman map

We cannot establish the trace bound but can “show” that

∆V ≤ αupn =⇒ ∥ detDTkm∥L∞ ≤ α
n
2
up.

To quotation marks are because that establishing the existence of

Tkm = S∞ under low regularity is not clear.
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“Proof”

The argument follows the proof of the Mikulincer-S result in the

log-convex case.

Spatially differentiate

∂tSt(x) = −∇ logPt f (St(x))

and take the determinant (plus Jacobi formula) to get

∂t detDSt(x) = [−∆ logPt f (St(x))] detDSt(x).

Show that ∆ logPt f can be controlled under log-subharmonicity

results on f .

Use Grönwall’s inequality to bound detDSt and take t → ∞.
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Thank You


