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Mixed volume : Minkowski’s definition

Denote by Kn = {K µ Rn : K compact convex set}.
Let K , L œ Kn . Then Voln(⁄K + µL) is a polynomial in (⁄, µ) :

Voln(⁄K + µL) =
nÿ

k=0

A
n
k

B

vk⁄kµn≠k

where vk = Vn(K [k], L[n ≠ k]) = Vn(K , ..., K , L, ..., L) are called
mixed volumes.
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where va = Vn(K1[a1], . . . , Km[am]) are called mixed volumes.
I Vn : Kn

n æ [0, +Œ) is a multilinear, continuous functional.

Let T : Rn æ Rn be an a�ne transform. Then :

Vn(TK1, ..., TKn) = det(T )Vn(K1, ..., Kn)



Bezout inequality

Let f1, ..., fr : Rn æ R be polynomials. Denote by X1, ..., Xr the
associated algebraic varieties

.

(Xi := {x œ Rn : fi(x) = 0}).
The Bezout inequality states that :

deg(X1 fl ... fl Xr ) Æ
Ÿ

deg(Xi) [B]

Denote by P1, ..., Pr the Newton polytopes of f1, ..., fr
We can reformulate [B] within the language of mixed volumes :

V (P1, ..., Pr , �[n ≠ r ])V (�)r≠1 Æ
rŸ

i=1
V (Pi , �[n ≠ 1])

thanks to a theorem by Bernstein, Kushnirenko and Khovanskii.
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Bezout inequality (again)

Let f1, ..., fn : Rn æ R be polynomials.
Let X = X2 fl ... fl Xn of dimension 1, and Y = X1 ( codim.1) .
Then Bezout inequality :

deg(X fl Y ) Æ deg(X )deg(Y ) [B]
translates to

Vn(P1, ..., Pn)Vn(�) Æ Vn(P2, ..., Pn, �)Vn(P1, �[n ≠ 1]).

(which allows to recover previous inequality [B])



Relaxed Bezout inequality

I for the n-simplex � :

V (L1, ..., Ln)V (�) Æ V (L2, ..., Ln, �)V (L1, �[n ≠ 1]).

I Thanks to Diskant inequality, J. Xiao has shown (2019) :

V (L1, ..., Ln)V (K ) Æ nV (L2, ..., Ln, K )V (L1, K [n ≠ 1])

for any convex bodies L1, ..., Ln, and for any K .



Bezout constants

We define :

b2(K ) = max
L1,L2

V (L1, L2, K [n ≠ 2])V (K )
V (L1, K [n ≠ 1])V (L2, K [n ≠ 1]) Ø 1

And similarly

b(K ) = max
L1,...,Ln

V (L1, ..., Ln)V (K )
V (L2, ..., Ln, K )V (L1, K [n ≠ 1]) Ø 1

So that :
I b2(�) = b(�) = 1 ;
I ’K , 1 Æ b2(K ) Æ b(K ) ;
I by [Diskant, Xiao] : maxK b(K ) Æ n .
I ’K , b(TK ) = b(K ), for any (full-rank) a�ne T .



Who are the minimizers ?

Question [SZ ’15]

For which bodies do we have b2(K ) = 1?

Question [SSZ ’18]

For which bodies do we have b(K ) = 1 ?

SZ ’15 æ [Soprunov, Zvavitch] (2015)
SSZ ’18 æ [Saroglou, Soprunov, Zvavitch] (2018)



Who are the minimizers ?

Qstn [SZ ’15] For which K , do we have b2(K ) = 1?

I Theorem[ SSZ ’18] .If b2(P) = 1, then P = �.
(where P is an n-polytope )

I Prop[ SZ ’15] if b2(K ) = 1, then K ”= A + B (with A ”© B)
(K cannot be decomposable)

Qstn [SSZ ’18] For which K do we have b(K ) = 1 ?

I Theorem[ SSZ ’18] If b(K ) = 1, then K = �.

I this doesn’t close former question, since b2(K ) Æ b(K ).
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I Thm[ SSZ ’18] Let P œ Polyn.Then b2(P) = 1 ∆ P = �.
I Thm[’15, ’18] if b2(K ) = 1, then K cannot be weakly

decomposable ( æ K /œ Wn)

æ excludes bodies with (somewhere) smooth boundary.
≠æ recovers characterization among polytopes,
since Polyn fl Wn = Polyn \ {�}.

I ... some more restrictions, eg : at most finitely many facets.

Qstn [SSZ ’18] For which K do we have b(K ) = 1 ?

I Theorem[ SSZ ’18] If b(K ) = 1, then K = �.

æ proof uses Wul� shape bodies, a pointwise Aleksandrov
di�erentiation lemma, and builds on above restrictions.
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A new necessary condition

Let L œ Kn be a k-dimensional. Denote :

Iso(L) := 1
k

Volk≠1(ˆL)
Volk(L) =: 1

k
|ˆL|
|L|

Thm[S. 2022] If b2(K ) = 1, then :

For any facet F of K : Iso(F ) Æ Iso(K ).

æ recovers the “at most finitely many facets” restriction.
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F

Iso(TF )
Iso(TP) > 1 ?
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... any questions ?

Thank you for your attention !!
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Ambient Spaces...

Kn+1
:= { compact convex bodies in Rn+1}

with the topology induced by the Hausdor↵ distance.

Convsc(Rn
) := {u : Rn ! R [ {+1} : convex, l.s.c. and proper, lim|x |!1

u(x)
|x | = +1}

with the topology induced by epi -convergence:
uj !epi u if

• For every sequence (xj) that converges to x , u(x)  lim inf j!1 uj(xj).

• There exists a sequence (xj) converging to x such that u(x) = limj!1 uj(xj).

2 / 8
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...and their Valuations

Valuations on Kn+1
:

Functionals Y : Kn+1 ! R such that for every K , L 2 Kn+1,K [ L 2 Kn+1

Y (K [ L) + Y (K \ L) = Y (K ) + Y (L).

Valuations on Convsc(Rn
):

Functionals Z : Convsc(Rn
) ! R such that for every u, v 2 Convsc(Rn

),

u ^ v 2 Convsc(Rn
)

Z (u ^ v) + Z (u _ v) = Z (u) + Z (v).

[Ludwig, Alesker, Colesanti, Mussnig, Knoerr...]
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n-homogeneous valuations on Kn+1

Theorem[McMullen, 1980]

A functional Y : Kn+1 ! R is a continuous, translation invariant real valued valuation

which is n-homogeneous, if and only if there exists a continuous function ⌘ : Sn ! R
such that

Y (K ) =

Z

Sn
⌘(⌫)dSn(K , ⌫)

for every K 2 Kn+1
. The function ⌘ is uniquely determined up to adding the restriction

to Sn
of a linear function.

4 / 8



n-homogeneous valuations on Convsc(Rn)

Theorem[Colesanti, Ludwig and Mussnig, 2020]

A functional Z : Convsc(Rn
) ! R is a continuous and epi-translation invariant valuation

that is epi-homogeneous of degree n, if and only if there exists ⇣ 2 C0(Rn
) such that

Z (u) =

Z

dom(u)

⇣(ru(x))dx

for every u 2 Convsc(Rn
).

This result can be proved as a consequence

of McMullen’s Theorem [Knoerr and U., 2022+]
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Are there inequalities for these functionals?

First of all, one needs to work on the family

Conv0(Rn
) := {u 2 Convsc(Rn

) : @dom(u) = {u = 0}}.

• Brunn-Minkowski type inequalities: if and only if ⇣ is a real valued convex function.

Consequence of [Colesanti, Hug and Saorin-Gomez, 2014].

Already studied by [Klartag, 2005].

• Isoperimetric inequalities: if and only if
⇣(x)p
1+|x |2

is bounded away from 0 [Mussnig

and U., 2022+].

In both cases we lose the continuity for the corresponding valuations .

6 / 8



Are there inequalities for these functionals?

First of all, one needs to work on the family

Conv0(Rn
) := {u 2 Convsc(Rn

) : @dom(u) = {u = 0}}.

• Brunn-Minkowski type inequalities: if and only if ⇣ is a real valued convex function.

Consequence of [Colesanti, Hug and Saorin-Gomez, 2014].

Already studied by [Klartag, 2005].

• Isoperimetric inequalities: if and only if
⇣(x)p
1+|x |2

is bounded away from 0 [Mussnig

and U., 2022+].

In both cases we lose the continuity for the corresponding valuations .

6 / 8



Are there inequalities for these functionals?

First of all, one needs to work on the family

Conv0(Rn
) := {u 2 Convsc(Rn

) : @dom(u) = {u = 0}}.

• Brunn-Minkowski type inequalities: if and only if ⇣ is a real valued convex function.

Consequence of [Colesanti, Hug and Saorin-Gomez, 2014].

Already studied by [Klartag, 2005].

• Isoperimetric inequalities: if and only if
⇣(x)p
1+|x |2

is bounded away from 0 [Mussnig

and U., 2022+].

In both cases we lose the continuity for the corresponding valuations .

6 / 8



Are there inequalities for these functionals?

First of all, one needs to work on the family

Conv0(Rn
) := {u 2 Convsc(Rn

) : @dom(u) = {u = 0}}.

• Brunn-Minkowski type inequalities: if and only if ⇣ is a real valued convex function.

Consequence of [Colesanti, Hug and Saorin-Gomez, 2014].

Already studied by [Klartag, 2005].

• Isoperimetric inequalities: if and only if
⇣(x)p
1+|x |2

is bounded away from 0 [Mussnig

and U., 2022+].

In both cases we lose the continuity for the corresponding valuations .

6 / 8



The inequality

For u 2 Conv0(Rn
) we define

Vn,⇣(u) :=

Z

dom(u)

⇣(ru(x))dx , Vn+1(u) :=

Z

dom(u)

|u(x)|dx .

Theorem (Mussnig and U., 2022+)

If ⇣ 2 C (Rn
), ⇣(x) � c

p
1 + |x |2, c > 0, then

Vn,⇣(u)
1
n � C (n, ⇣)Vn+1(u)

1
n+1

for every u 2 Conv0(Rn
).

Hint of proof: Many changes of variables and Wul↵’s inequality .

7 / 8



THANKS FOR YOUR ATTENTION!
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Potential Theory with Multivariate Kernels

Damir Ferizović
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KU Leuven



History

In 1904, physicist and Nobel
Prize winner J. Thomson
worked on a model of the
atom – this led to the
question: which configuration
of electrons on a spherical
shell would minimize
electrostatic potential energy.
Known configurations for
N 2 {1, 2, 3, 4, 5, 6, 12}.

Coulomb Potential: Given a point set !N := {x1, . . . , xN} on the sphere,
minimize X

j 6=s

1
kxj � xsk

.



Riesz potential

Let K : ⌦⇥ ⌦ ! R [ {1} where ⌦ = T2, K (x , y) = f
�
kx � yk

�
and

f (r) = r�↵.

? Borodachov, Hardin and Sa�: ”Discrete Energy on Rectifiable Sets”
(2019).



Generalization

Let !N := {x1, . . . , xN} ⇢ (⌦, d), with ⌦ compact and infinite, and
K : ⌦⇥ ⌦ ! R [ {1}, investigate

EK [!N ] =
X

j 6=s
K (xj , xs).

Lemma. Let N > 1, then for arbitrary K
inf!N EK [!N ]

N(N � 1) % C 2 R [ {1}.

Proof. For fixed xj 2 !N+1

EK [!N+1] = EK [!N+1 \ {xj}] +
N+1X

s=1,s 6=j
K (xj , xs) + K (xs , xj),

and summing up over j
(N + 1)EK [!N+1] � (N + 1) inf

!N
EK [!N ] + 2EK [!N+1].



Example: Green kernel

Let (⌦, d) = (M, g) a closed Riemannian manifold, and G the normalized
Green function for the Laplace-Beltrami operator; set

K (x , y) = G(x , y).

Theorem. For M = SO(3), we have

�3⇡1/3N4/3  inf
!N⇢SO(3)

EG(!N) + O(N)  �4
✓

3
4

◆4/3
N4/3.

? Beltrán & DF: ”Approximation to uniform distribution in SO(3)”, Constr
Approx 52 (2020).



Uniform distribution

Theorem. For a compact Riemannian manifold (M, g) with dim(M) > 1,
let G be its normalized Green function, then

IG(�) = inf
µ2P(M)

IG(µ) = inf
µ2P(M)

ZZ

M
G(x , y)dµ(x)dµ(y),

where � is the uniform measure on M. Minimizing point sets !N for the
Green energy satisfy

!N
w⇤! �.

? Beltrán, Corral, Criado Del Rey: ”Discrete and continuous Green energy
on compact manifolds” Journal of Approximation Theory (2019).



Generalization II

A kernel K : ⌦2 ! R is called positive definite if for every finite signed
Borel measure µ 2 M(⌦)

IK (µ) =
ZZ

⌦
K (x , y)dµ(x , y) � 0.

It is called conditionally positive definite if

IK (µ) � 0

for all µ 2 M(⌦) with
µ(⌦) = 0.

(One assumes the integrals to make sense.) Sum, limit, and product of PD
kernels is again PD.



Convexity of IK

Lemma. (BHS p.135) Let K be symmetric, lower semi-continuous, and
conditionally positive definite. Given µ, ⌫ 2 P(⌦) with

IK (µ), IK (⌫) < 1,

then
2IK (µ, ⌫)  IK (µ) + IK (⌫);

where
IK (µ, ⌫) =

ZZ
K (x , y)dµ(x)d⌫(y).

Corollary.

IK
�
tµ+ (1 � t)⌫

�
 tIK (µ) + (1 � t)IK (⌫).

? Bilyk, Matzke, Vlasiuk: ”Positive definiteness and the Stolarsky
invariance principle.” arXiv (2021).



Multivariate kernels in Applications

Axilrod-Teller Potential. Let the angle between vectors x , y be denoted
by a(x , y)

K (x , y , z) = 1 + 3a(x , y)a(y , z)a(x , z)
d(x , y)3d(y , z)3d(x , z)3 .

? Axilrod, Teller: ”Interaction of the van der Waals Type Between Three
Atoms”, Journal of Chemical Physics. 11 (1943).

Menger Curvature. Let A(x , y , z) be the area of the triangle, spanned by
x , y , z .

c(x , y , z) = 4 A(x , y , z)
d(x , y)d(y , z)d(x , z) .

Stillinger-Weber Potential.

? Stillinger, Weber: ”Computer simulation of local order in condensed
phases of silicon”, Physical Review B. 31 (1985).



Investigated and used for

Kissing Numbers.

? Bachoc, Vallentin: ”New Upper Bounds for Kissing Numbers from
Semidefinite Programming”, Journal of the American Mathematical
Society 21 (3) (2008).

Energy Minimization.

? Cohn, Woo: ”Three-Point Bounds for Energy Minimization”, Journal of
the AMS (25) 4 (2012).

? Bilyk, DF, Glazyrin, Matzke, Park, Vlasiuk: ”Potential theory with
multivariate kernels”, Math Z (2022).



Generalization III

A real-valued, symmetric, and continuous kernel K will be called
(conditionally) 3-positive definite, if for any fixed z 2 ⌦, it holds for

Gz(x , y) := K (x , y , z).

Sum, limit, and product of PD kernels is again PD.

Corollary. H(x , y) =
R

K (x , y , z)dµ(z) is (conditionally) positive definite,
if K is.

Lemma. Let 2  m  n � 1, and suppose H : ⌦m ! R is continuous,
symmetric, and conditionally m-positive definite. Then

K (z1, ..., zn) :=
X

1j1<j2<···<jmn
H(zj1 , zj2 , ..., zjm)

is conditionally n-positive definite.



Some results

Lemma. Suppose K is symmetric, continuous, and (conditionally) PD,
then for µj 2 P(⌦)

IK (µ1, . . . , µn) 
1
n

nX

j=1
IK (µj).

Corollary. IK is convex.

Now let ⌦ = S2, and K be rotationally invariant, i.e. have the form

K (x1, . . . , xn) = F
⇣
(hxi , xji)n

i ,j=1
⌘
.



Some results II

Theorem. Suppose that K : (S2)n ! R is continuous, symmetric,
rotationally invariant, and conditionally n-positive definite on S2. Then �
is a minimizer of IK over P(S2).

We will write K (x , y , z) = F (u, v , t) where

u = hx , yi, v = hz , yi, t = hx , zi.

Corollary. Let f : [�1, 1] ! R be a real-analytic function with
nonnegative Maclaurin coe�cients and let F (u, v , t) = f (uvt). Then the
uniform surface measure � minimizes the energy IK over P(S2).
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Energy on the Sphere

Let Sd�1 be the unit sphere in Rd. Given a continuous (potential) function
F : [�1, 1] ! R, the (discrete) energy of a configuration (multiset)
!N = {z1, ..., zN} ⇢ Sd�1 is

EF(!N) =
1

N2

NX

i,j=1

F(hzi, zji),

and the (continuous) energy of a probability measure µ 2 P(Sd�1) is

IF(µ) =

Z

Sd�1

Z

Sd�1
F(hx, yi)dµ(x)dµ(y).

What is the mimimal energy (for fixed N for EF)?
Is the uniform measure � a minimizer of IF? Is the support of any
minimizer of a lower dimension? Discrete?
Are minimizers of EF uniformly distributed? Well-separated? Do they
concentrate and form “clumps"? What happens as N ! 1?
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Energy on the Sphere

Let Sd�1 be the unit sphere in Rd. Given a continuous (potential) function
F : [�1, 1] ! R, the (discrete) energy of a configuration (multiset)
!N = {z1, ..., zN} ⇢ Sd�1 is

EF(!N) =
1

N2

NX

i,j=1

F(hzi, zji),

and the (continuous) energy of a probability measure µ 2 P(Sd�1) is

IF(µ) =

Z

Sd�1

Z

Sd�1
F(hx, yi)dµ(x)dµ(y).

If µ!N = 1
N
PN

j=1 �zj , then

IF(µ!N ) =
1

N2

NX

i,j=1

F(hzi, zji) = EF(!N).

The weak⇤ density of the linear span of Dirac masses in P(Sd�1) gives

lim
N!1

min
!N⇢Sd�1

EF(!N) = inf
µ2P(Sd�1)

IF(µ).
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Riesz s-energies

For s 2 R, we define the Riesz kernel as

Rs(hx, yi) =

8
><

>:

1
kx�yks s > 0

� log(kx � yk) s = 0
�kx � yk�s s < 0

Coulomb (s = d � 2), Logarithmic (s = 0), Euclidean distance (s = �1).

Theorem (Björck, 1956)
The minimizers of IRs are

� (uniquely) if �2 < s < d
Any measure with center of mass at the origin if s = �2
Any measure of the form 1

2(�p + ��p) if s < �2.

Theorem (Classical; Götz, Hardin, Kuijlaars, Saff)
If s > �2, the minimizers of ERs are uniformly distributed on the sphere.
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p-Frame Energy

Stronger repulsion tends to lead to minimizers “spreading out" while weaker
repulsion leads to the support concentrating.

Theorem (Carillo, Figalli, Patacchini, 2017)

Suppose F(hx, yi) = G(kx � yk) and G0(t) ⇠ �t↵�1 as t ! 0 for some
↵ > 2. If µ is a minimizer of IF, then µ has discrete (finite) support.

For p 2 (0,1), we define the p-frame potential as

Fp(hx, yi) = |hx, yi|p.

Minimizing this energy for p = 2 results in tight frames/isotropic measures
and for p = 4 (in the complex setting) results in symmetric information
complete positive operator-valued measures (SIC-POVM’s).

Since |hx, yi|p = 1 � p
2kx � yk2 + O(kx � yk4), it falls into the limit case

↵ = 2. We might expect the types of minimizers to vary with p.
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p-Frame Energy

Theorem (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2021)
If p 2 2N, � is a minimizer of IFp . If p 62 2N and µ is a minimizer, then
(supp(µ))� = ;.

Conjecture (Bilyk, Glazyrin, Matzke, Park, Vlasiuk)
If p 62 2N, then the minimizers of the p-frame energy are discrete.

Theorem (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2022)

If C is a tight (2m + 1)-design on Sd�1 and p 2 (2m � 2, 2m), then
µ = 1

#C
P

x2C �x is a minimizer of IFp . Moreover, when this happens, all
minimizers of IFp are discrete.
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Tight Designs

A spherical k-design is a set of points {x1, ..., xN} ⇢ Sd�1 such that
Z

Sd�1
q(x)d�(x) =

1
N

NX

i=1

q(xi)

for all polynomials q on Rd of degree at most k. A spherical
(2m + 1)-design is tight if it is centrally symmetric and there are m + 2
inner products between its points.

d |C| p-range Configuration
d 2d (0, 2) cross polytope
2 2k (2k � 4, 2k � 2) 2k-gon
3 12 (2, 4) icosahedron
7 56 (2, 4) kissing configuration
8 240 (4, 6) E8 roots

23 552 (2, 4) equiangular lines
23 4600 (4, 6) kissing configuration
24 196560 (8, 10) Leech lattice
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Lp-mixed Volumes

Let C ⇢ Rd be a convex body,

�C(B) = |{x 2 @C : nx 2 B}|d�1

for all Borel B ✓ Sd�1, and hC be the support function of C

hC(y) = sup
x2C

hx, yi.

Given two convex bodies, C and D, and p � 1, we define the Lp-mixed
volume of the two to be

Vp(C,D) =
p
d
lim
"!0

|C +p "D|d � |C|d
"

=
1
d

Z

Sd�1
hD(x)phC(x)1�pd�C(x),

where C +p "D is the convex body with support function

hC+p"D(x) = p
p

hC(x)p + "hD(x)p.
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Mixed Volumes with Projection Bodies

The Lp-projection body of C, ⇧pC, is the origin-symmetric convex body
with support function

h⇧pC(x) =
⇣

cd,p

Z

Sd�1
|hx, yi|phC(x)1�pd�C(x)

⌘ 1
p
.

Defining �C,p such that d�C,p(x) = hC(x)1�pd�C(x), we see that

IFp(�C,p) =

ZZ

Sd�1⇥Sd�1
|hx, yi|pd�C,p(x)d�C,p(y)

=
1

cd,p

Z

Sd�1
h⇧pC(x)phC(x)1�pd�C(x) =

d
cd,p

Vp(C,⇧pC).

Thus, minimizing the p-frame energy (over admissible measures) is the
same as minimizing Vp(C,⇧pC) over all symmetric convex bodies C (scaled
to satisfy �C,p(Sd�1) = 1).

Proposition (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2022)

The quantity V1(C,⇧1C)
|@C|2d�1

is minimized if and only if C is a hypercube.
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Thank you!
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