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Mixed volume : Minkowski’s definition

Denote by Kn = {K ⊂ Rn : K compact convex set}.

Steiner polynomial
For any K ∈ Kn, there exists non-negative {vk ; 0 ≤ k ≤ n} such that : ∀ε > 0,
Voln(K + εBn

2 ) =
∑n

k=0

(n
k

)
vkε

k .
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Mixed volume : Minkowski’s definition

Voln(K + εT ) is also a polynomial in ε (even if T ∈ Kn is not a ball).
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Mixed volume : Minkowski’s definition

Denote by Kn = {K ⊂ Rn : K compact convex set}.

Let K , L ∈ Kn, let λ, µ ≥ 0. Then Voln(λK + µL) is a polynomial in (λ, µ) :

Voln(λK + µL) =
n∑

k=0

(
n
k

)
vkλ

kµn−k ,

where vk = Vn(K [k], L[n − k]) = Vn(K , ...,K , L, ..., L) are called mixed
volumes.
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Mixed volume : Minkowski’s definition

Let K , L ∈ Kn, λ, µ ≥ 0. . Then Voln(λK + µL) =
∑n

k=0

(n
k

)
vkλ

kµn−k

Let K1, ...,Km ∈ Kn. Let λ1, ..., λm ≥ 0. Then :

Voln(λ1K1 + · · ·+ λmKm) =
∑

a=(a1,...,am)
|a|=n

(
n
a

)
va λ1

a1 ...λm
am

where va = Vn(K1[a1], . . . ,Km[am]) are called mixed volumes.
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Mixed volume : one or two properties

Let K , L ∈ Kn,λ, µ ≥ 0 . Then Voln(λK + µL) =
∑n

k=0

(n
k

)
vkλ

kµn−k

Let K1, ...,Km ∈ Kn, Let λ1, ..., λm ≥ 0.. Then :

Voln(λ1K1 + · · ·+ λmKm) =
∑

a=(a1,...,am)
|a|=n

(
n
a

)
va λa

where va = Vn(K1[a1], . . . ,Km[am]) are called mixed volumes.
Vn : Kn

n → [0,+∞) is a multilinear, continuous functional.

Let T : Rn → Rn be an affine transform. Then :

Vn(TK1, ...,TKn) = |det(T )|Vn(K1, ...,Kn)
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Mixed volume : a few properties

Vn(Kσ(1), ...,Kσ(n)) = Vn(K1, ...,Kn) (for any σ).

Vn(λA + B,K2, ...,Kn) = λVn(A,K2, ...) + V (B,K2, ...) (multilinearity).

Vn(L1, ..., Lk ,Kk+1, ...,Kn) = 1
k!

∑
ε∈{0,1}k

(−1)k−|ε|Vn(Lε[k],Kk+1, ...),

where Lε = ε1L1 + ...+ εkLk (polarization identity).

V (K [n − 1], [0, u]) = 1
n Voln−1 (πu⊥(K)) where |u| = 1.

V (K1, ...,Kn−1, [0, u]) = 1
n Vn−1 (πu⊥(K1), πu⊥(K2), ...πu⊥(Kn−1)).

V (K [n − 1], [0, u], [0, v ]) = 1
n(n−1) Vol2([0, u] + [0, v ])Voln−2

(
π(u,v)⊥(K)

)
.
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Mixed volume : a few important properties

Non-negativity : V (K1, ...,Kn) ≥ 0 (for any K1, ...,Kn ∈ Kn).

Monotonicity : V (L,K2, ...,Kn) ≤ V (K ,K2, ..,Kn) whenever L ⊂ K .
Continuity : limk Vn(K1,k , ...,Kn,k ) = Vn(K1, ...,Kn)

(if for each j = 1, 2, ..., n, Kj,k → Kj as k →∞).

V (K [n − 1],Bn
2 ) = 1

n Voln−1 (S(K)) where S(K) is the surface of K .

V (K ,Bn
2 [n − 1]) = 1

n

∫
Sn−1 hK (u)du,

where du is the Lebesgue measure on the sphere,
and hK (u) = maxy∈K 〈y , u〉 is the support function of K .
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Mixed volume and surface area

Assume P is a polytope : P = ∩N
i=1H−(ui , hi ).

where H−(u, b) := {x ∈ Rn : 〈x , u〉 ≤ b}

Then for any convex body L :

V (L,P[n − 1]) = 1
n

N∑
i=1

hL(ui )Voln−1(Pui )

where Pu = F (P, u) = {y ∈ P : 〈y , u〉 = hP(u)}.
Denote SP =

∑N
i=1 Voln−1(Pui )δui , SP ∈M+(Sn−1), (where δu is the

Dirac measure at u)

SP is a discrete measure on the sphere.
The above formula rewrites:

V (L,P[n − 1]) = 1
n

∫
Sn−1

hL(u)dSP(u).
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Mixed volume and (mixed) surface areas

For any convex body K , there exists a (finite, non-negative) measure SK on
Sn−1, such that :

(for any L), V (L,K [n − 1]) = 1
n

∫
Sn−1

hL(u)dSK (u).

SK is called the surface area measure of K .

SK is a discrete measure with finite support, if and only if K is a polytope.

More generally, if K1, ...,Kn−1 are convex bodies, then there exists a measure σ
on Sn−1, such that :

(for any L), V (L,K1, ...,Kn−1) = 1
n

∫
Sn−1

hL(u)dσ(u).

The measure σ is called a mixed surface area measure, and is usually denoted :

σ = S(K1, ...,Kn−1, .)
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Newton polytope of a polynomial

Let Q(X ,Y ) =
∑

α
cαXα1 Y α2 ∈ R[X ,Y ]. Then the Newton polytope of Q is

P = Conv{(α1, α2) : cα 6= 0}.
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Newton polytope of a polynomial

More generally, if Q ∈ R[X1, ...,Xn], Q =
∑

α∈Nn cαXα,
then the Newton polytope of Q is P = Conv{α : cα 6= 0} ⊂ Rn

+.
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Bezout inequality

Let f1, ..., fr : Rn → R be polynomials. Denote by X1, ...,Xr the associated
algebraic varieties

.

(Xi := {x ∈ Rn : fi (x) = 0}).

The Bezout inequality states that :

deg(X1 ∩ ... ∩ Xr ) ≤
∏

deg(Xi ) [B]

Denote by P1, ...,Pr the Newton polytopes of f1, ..., fr

We can reformulate [B] within the language of mixed volumes :

V (P1, ...,Pr ,∆[n − r ])V (∆)r−1 ≤
r∏

i=1

V (Pi ,∆[n − 1])

thanks to a theorem by Bernstein, Kushnirenko and Khovanskii.
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Bezout inequality (again)

Let f1, ..., fn : Rn → R be polynomials.
Let X = X2 ∩ ... ∩ Xn of dimension 1, and Y = X1 ( codim.1) . Then Bezout
inequality :

deg(X ∩ Y ) ≤ deg(X)deg(Y ) [B]

translates to

Vn(P1, ...,Pn)Vn(∆) ≤ Vn(P2, ...,Pn,∆)Vn(P1,∆[n − 1]).

(recover previous inequality [B], by using [B] r − 1 times)
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A direct geometric proof of [B] inequality

Vn(L1, ..., Ln)Vn(∆) ≤ Vn(L2, ..., Ln,∆)Vn(L1,∆[n − 1]).

Since the inequality is invariant under replacing L1 with λL1 + x , we may
assume L1 ⊂ ∆, and r(∆, L1) = 1, which implies hL1 (uj ) = h∆(uj ) for all outer
normals uj , j ≤ n + 1, of ∆.

In this case :

V (L1,∆[n − 1]) = 1
n

n+1∑
j=1

hL1 (uj )Voln−1(K uj ) = Vn(∆)

therefore [B] follows from monotonicity of mixed volume.
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More general Bezout inequality

Let K , L ∈ Kn. The inradius of K relative to L is
r(K , L) := max{λ > 0 : x + λL ⊂ K , x ∈ Rn}.
A corollary of Diskant’s inequality :

r(K , L)−1 ≤ n V1(K , L)
Vol(K) = n V (K [n − 1], L)

Vol(K)

Using this, J. Xiao has shown (2019) :

V (L1, ..., Ln)V (K) ≤ nV (L2, ..., Ln,K)V (L1,K [n − 1])

for any convex bodies L1, ..., Ln, and for any K .

C = [0, 1]n shows that n is sharp.
(to see that b(C) = n, take Li = [0, ei ] and use projection formula).
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Proof of Xiao’s upper bound

Let K , L ∈ Kn. The inradius of K relative to L is
r(K , L) := max{λ > 0 : x + λL ⊂ K , x ∈ Rn}.
Replace L1 with L′ := r(K , L1)L1 + x ⊂ K (L′ maximally contained).
r(K , L1)V (L1, ..., Ln) = V (L′, L2, ..., Ln) ≤ V (K , L2, ..., Ln) (monotonicity)
therefore :

V (L1, ..., Ln) ≤ r(K , L1)−1 V (K , L2, ..., Ln)

≤ nV (K [n − 1], L1)
Vn(K) V (K , L2, ..., Ln).
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Bezout constants

We define :

b2(K) = max
L1,L2

V (L1, L2,K [n − 2])V (K)
V (L1,K [n − 1])V (L2,K [n − 1]) ≥ 1

And similarly

b(K) = max
L1,...,Ln

V (L1, ..., Ln)V (K)
V (L2, ..., Ln,K)V (L1,K [n − 1]) ≥ 1

So that :
b2(∆) = b(∆) = 1 (by BKK theorem, or directly with MV)
∀K , 1 ≤ b2(K) ≤ b(K) ;
by [Diskant, Xiao] : maxK b(K) ≤ n .
∀K , b(TK) = b(K), for any (full-rank) affine T .
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Who are the maximizers ?

We’ve just seen that for all K , b(K) ≤ n ,

with equality when K = C = [0, 1]n.

(open) Are there other convex bodies such that b(K) = n ?

Fact : b2(C) = n
n−1 . Hence b2(C) < 2 (for n ≥ 3).

Open question
does maxK b2(K) remain bounded when n→∞ ?

maxK b2(K) ≥ 2 can be seen with K = On (the l1-ball). Is there any better
lower bound on maxK b2(K) ?
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Who are the minimizers ?

Question [Soprunov-Zvavitch 2015]
For which K , do we have b2(K) = 1?

→ recall b2(K) = maxL1,L2
V (L1,L2,K [n−2])V (K)

V (L1,K [n−1])V (L2,K [n−1]) .

In words, b2(K) is the least constant C > 0 such that:

V (L1, L2,K [n − 2])V (K) ≤ C V (L1,K [n − 1])V (L2,K [n − 1])

holds for any L1, L2 ∈ Kn.
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Who are the minimizers ?

Question [SZ ’15]
For which K , do we have b2(K) = 1?

Question[Saroglou-Soprunov-Zvavitch 2018]
For which K do we have b(K) = 1 ?

Theorem[ SSZ ’18]
If b(K) = 1, then K = ∆.

N.B. : above Theorem doesn’t close the question from SZ’15, since
b2(K) ≤ b(K)....and since for some K ∈ Kn : b2(K) < b(K).
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A standard definition

Definition
K is called decomposable if ∃A,B ∈ Kn, A 6≡ K , such that K = A + B.
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Who are the minimizers ?

Question[SZ ’15]
For which K , do we have b2(K) = 1?

Proposition[ SZ ’15]
If b2(K) = 1, then K cannot be decomposable.

Sketch of proof.
Assume K = A + B, for some A, B.
Set C0 = V (A, A, K [n − 2]), C2 = V (B, B, K [n − 2]), C1 = V (A, B, K [n − 2]).

and therefore
C2

1 ≤ C0C2.

Alexandrov-Fenchel ⇒ C2
1 ≥ C0C2.

Equality implies A and B are homothetic.
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Characterization among all n-polytopes

Theorem[ SSZ ’18]
Let P be an n-polytope. If b2(P) = 1, then P = ∆.

Sketch of proof.
Assume P =

⋂N
i=1 H−(ui , hi ), i.e. (hi ) is the support vector of P.

Define Pi,t =
(⋂

j 6=i H−(uj , hj )
)
∩ H−(ui , hi + t), a perturbated version of P.

(tangential hyperplane to Pui moved by tui).

Compute V (L1,P[n − 1])V (L2,P[n − 1])− V (P)V (L1, L2,P[n − 2]) for
L1 = Pi,t , L2 = Pj,s , s = ±δ.
Find that σ1 = S(L1,P[n − 2], .) = λ1SP =: λ1σ0, where λ1 := V (L1,P[n−1])

V (P) .
By induction, using Alexandrov-Fenchel inequalities,
find that σk := S(L1[k],P[n − 1− k], .) = λk

1σ0.
In particular, σn−1 = SL1 is proportional to σ0 = SP , and thus L1 = Pi,t is
homothetic to P.
This cannot be the case for all facets Pui of P, unless P is a simplex.
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(tangential hyperplane to Pui moved by tui).

Compute V (L1,P[n − 1])V (L2,P[n − 1])− V (P)V (L1, L2,P[n − 2]) for
L1 = Pi,t , L2 = Pj,s , s = ±δ.

Find that σ1 = S(L1,P[n − 2], .) = λ1SP =: λ1σ0, where λ1 := V (L1,P[n−1])
V (P) .

By induction, using Alexandrov-Fenchel inequalities,
find that σk := S(L1[k],P[n − 1− k], .) = λk

1σ0.
In particular, σn−1 = SL1 is proportional to σ0 = SP , and thus L1 = Pi,t is
homothetic to P.
This cannot be the case for all facets Pui of P, unless P is a simplex.
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Characterization among all n-polytopes

Theorem[ SSZ ’18]
Let P be an n-polytope. If b2(P) = 1, then P = ∆.

Why can’t we do the same with convex bodies ?

Instead of a perturbated polytope Pi,t , one needs a perturbated body Kt .
→ can do so with Wulff-shape construction.
A key feature in the proof of above Theorem : P + Pi,t has same outer
normal vectors as P, if |t| is small.
in other words : SP+Pi,t << SP , for t small.
In general it is not true that SK+Kt << SK .
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A definition (by Saroglou, Soprunov and Zvavitch)

Definition
K is called decomposable if ∃A,B ∈ Kn, A 6≡ K , such that K = A + B.

Definition
K is called weakly decomposable if there exists L ∈ Kn, L 6≡ K , such that
SK+L << SK .

Examples :
if K = A + B is decomposable, then it is weakly decomposable.

(take L = A, then SK+L = S2A+B has same support as SK ).
if P is a polytope, and P 6= ∆, then P is weakly decomposable.
if ∂K is somewhere locally smooth, then K is weakly decomposable. (→
Wulff shape argument)

Open question : find a convex body K not weakly decomposable. (K 6= ∆).
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Definition
K is called weakly decomposable if there exists L ∈ Kn, L 6≡ K , such that
SK+L << SK .

Theorem [SSZ’18]
If b2(K) = 1, then K cannot be weakly decomposable.

recover the [b2(P) = 1⇒ P = ∆] theorem, since any P 6= ∆ is weakly
decomposable.
also recover the fact that decomposability is an excluding condition.
Proof requires the notion of Wulff-shape perturbation.

Open question : find a convex body K not weakly decomposable. (K 6= ∆).
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Some other known necessary conditions

Let K ∈ Kn, and u ∈ Sn−1. Recall that K u = {y ∈ K : 〈y , u〉 = hK (u)}.

Recall SK ∈M+(Sn−1) denotes the surface area measure of K .

Proposition [SZ’15], Prop 4.2 in [SSZ’18]
Assume there exists u ∈ supp(SK ), such that K u is 0-dimensional. Then
b2(K) > 1.

In other words : if b2(K) = 1, then K u is at least 1-dimensional, for all
u ∈ supp(SK ).

Theorem [SSZ’18]
Assume K is a convex body wih infinitely many facets. Then b2(K) > 1.
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A “dual” excluding condition

Let K ∈ Kn, and u ∈ Sn−1. Recall that K u = {y ∈ K : 〈y , u〉 = hK (u)}.
Denote Ω := supp(SK ) ⊂ Sn−1. Write Ω = ∪n−1

d=0Ωd , where
Ωd = {u ∈ Ω : K u is d-dimensional}.

Theorem [S. 2022+]
Assume SK (Ωn−2) > 0. Then b2(K) > 1.

Corollary

in R3, the simplex is the only minimizer of b2(K).

Proof (of corollary). Let K ∈ K3, write supp(SK ) =: Ω =: Ω0 ∪ Ω1 ∪ Ω2. If
Ω0 6= ∅, then b2(K) > 1, by [Prop. 4.2, SSZ’18]. Thus assume Ω = Ω1 ∪Ω2. If
SK (Ω1) > 0, then b2(K) > 1, by [Thm, S. ’22+]. Thus assume SK (Ω1) = 0.
This implies Ω1 = ∅ (by definition of the support). Hence we may assume
Ω = Ω2, i.e. that K is a polytope. Conclude using [b2(P) = 1⇒ P = ∆]
(Theorem in SSZ’18).
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Ω0 6= ∅, then b2(K) > 1, by [Prop. 4.2, SSZ’18]. Thus assume Ω = Ω1 ∪Ω2. If
SK (Ω1) > 0, then b2(K) > 1, by [Thm, S. ’22+]. Thus assume SK (Ω1) = 0.
This implies Ω1 = ∅ (by definition of the support). Hence we may assume
Ω = Ω2, i.e. that K is a polytope. Conclude using [b2(P) = 1⇒ P = ∆]
(Theorem in SSZ’18).
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A “dual” excluding condition

Let K ∈ Kn, and u ∈ Sn−1. Recall that K u = {y ∈ K : 〈y , u〉 = hK (u)}.
Denote Ω := supp(SK ) ⊂ Sn−1. Write Ω = ∪n−1

d=0Ωd , where
Ωd = {u ∈ Ω : K u is d-dimensional}.

Theorem [S. 2022+]
Assume SK (Ωn−2) > 0. Then b2(K) > 1.

Corollary

in R3, the simplex is the only minimizer of b2(K).

Note : this corollary was already known. It is proved in [SSZ’18].
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An isoperimetric condition

Let L ∈ Kn be a k-dimensional. Denote :

Iso(L) := 1
k

Volk−1(∂L)
Volk (L) =: 1

k
|∂L|
|L|

Theorem [S. 2022]
Assume b2(K) = 1. Then, for any facet F of K : Iso(F ) ≤ Iso(K).

(that is to say : for all F ∈ Fn−1(K) : |∂F |
|F | ≤

n−1
n
|∂K |
|K | .)

→ recovers the “at most finitely many facets” restriction.

Indeed, if K has infinitely many facets, then many satisfy Iso(F ) > Iso(K)...

By the isoperimetric inequality :

Iso(L) = 1
d
|∂L|
|L| = 1

d
|∂L|
|L|

d−1
d

1
|L|1/d ≥

1
d
|∂Bd

2 |
|Bd

2 |
d−1

d

1
|L|1/d = |B

d
2 |1/d

|L|1/d .

thus if (Fk ) is a sequence of facets with Voln−1(Fk )→ 0, then Iso(Fk )→ +∞.
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An isoperimetric condition

Let L ∈ Kn be a k-dimensional convex body. Denote :

Iso(L) := 1
k

Volk−1(∂L)
Volk (L) =: 1

k
|∂L|
|L|

Theorem [S. 2022+]
If b2(K) = 1, then, for any affine transform T :

For any facet F of K : Iso(TF ) ≤ Iso(TK).

(since b2(K) is affine invariant, while maxF
Iso(F )
Iso(K) , is not)

Example : the unit cube. It satisfies Iso(Cn) = 2, and so does any of its
facets. Thus the criteria only allows to conclude b2(Cn) > 1, after using
an affine transform T .

Question : let P 6= ∆. Does there necessarily exist T an affine transform, such
that maxF Iso(TF ) > Iso(TP) ?
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Thank you !!
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