Multi-Bubble Isoperimetric Problems - Old and New

Emanuel Milman

Technion - Israel Institute of Technology and Oden Institute at UT Austin

Workshop on "Convexity and High-dimensional probability" Georgia Tech
May 2022
joint work (in progress) with Joe Neeman (UT Austin)

The Classical Isoperimetric Inequality

"Among all sets in Euclidean space \mathbb{R}^{n} having a given volume, Euclidean balls minimize surface area."

$$
V(\Omega)=V(\text { Ball }) \Rightarrow A(\Omega) \geq A(\text { Ball }) .
$$

$\Omega \in \mathcal{B}\left(\mathbb{R}^{n}\right), V=$ Leb $^{n}, A=$ Surface Area.
What is Surface Area? Various (non-equivalent) definitions:

- If $\partial \Omega$ smooth,
- Hausdorff measure
- Minkowski exterior boundary measure:
- De Giorgi Perimeter $P(\Omega$

Stronger than rest, I.s.c., invariant under null-set modifications.

The Classical Isoperimetric Inequality

"Among all sets in Euclidean space \mathbb{R}^{n} having a given volume, Euclidean balls minimize surface area."

$$
V(\Omega)=V(\text { Ball }) \Rightarrow A(\Omega) \geq A(\text { Ball }) .
$$

$\Omega \in \mathcal{B}\left(\mathbb{R}^{n}\right), V=$ Leb $^{n}, A=$ Surface Area.
What is Surface Area? Various (non-equivalent) definitions:

- If $\partial \Omega$ smooth, $\int_{\partial \Omega} d V^{2} l_{\partial \Omega}$.
- Hausdorff measure $\mathcal{H}^{n-1}(\partial \Omega)$.
- Minkowski exterior boundary measure:

$$
V^{+}(\Omega)=\liminf _{\epsilon \rightarrow 0^{+}} \frac{V\left(\Omega_{\epsilon} \backslash \Omega\right)}{\epsilon}, \Omega_{\epsilon}:=\left\{y \in \mathbb{R}^{n} ; d(y, \Omega)<\epsilon\right\} .
$$

- De Giorgi Perimeter $P(\Omega)=\mathcal{H}^{n-1}\left(\partial^{*} \Omega\right)=\left\|1_{\Omega}\right\|_{B V}=\left\|\nabla 1_{\Omega}\right\|_{T V}=$ $\sup \left\{\int_{\Omega} \nabla \cdot X ; X \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; T \mathbb{R}^{n}\right),|X| \leq 1\right\}$.
Stronger than rest, l.s.c., invariant under null-set modifications.

Isoperimetric Inequalities in Metric-Measure setting

Classical isoperimetric inequality is on $\mathbb{R}^{n}=\left(\mathbb{R}^{n},|\cdot|\right.$, Leb $\left.^{n}\right)$. Study in weighted-manifold setting $\left(M^{n}, g, \mu=\Psi(x) d \operatorname{Vol}_{g}\right), \psi>0$.
Weighted Volume and Area:

- $V(\Omega)=\mu(\Omega)=\int_{\Omega} \Psi(x) d \operatorname{Vol}_{g}$.
- $A(\Omega)=P_{\psi}(\Omega)=\int_{\partial * \Omega} \Psi(x) d \mathcal{H}^{n-1}(x)$.

Denote $\mu^{k}=\psi \mathcal{H}^{k}$, i.e. $\mu^{n-1}=\Psi \mathcal{H} h^{n-1}, \mu^{n-2}=\Psi \mathcal{H}{ }^{n-2}, \ldots$
Examples:
(1) $\mathbb{S}^{n}=\left(\mathbb{S}^{n}, g_{\text {can }}, \lambda_{\mathbb{S}^{n}}=\frac{\text { Vols } n}{\text { Vol }\left(\mathbb{S}^{n}\right)}\right)$ - P. Lévy, Schmidt 20-30's: geodesic
balls are isoperimetric minimizers.Sudakov-Tsirelson, Borell '75:
half-spaces are isoperimetric minimizers.
Relation (Maxwell, Poincaré, Borel)

Isoperimetric Inequalities in Metric-Measure setting

Classical isoperimetric inequality is on $\mathbb{R}^{n}=\left(\mathbb{R}^{n},|\cdot|\right.$, Leb $\left.^{n}\right)$.
Study in weighted-manifold setting $\left(M^{n}, g, \mu=\Psi(x) d \operatorname{Vol}_{g}\right), \psi>0$.
Weighted Volume and Area:

- $\boldsymbol{V}(\Omega)=\mu(\Omega)=\int_{\Omega} \Psi(x) d \operatorname{Vol}_{g}$.
- $A(\Omega)=P_{\Psi}(\Omega)=\int_{\partial^{*} \Omega} \Psi(x) d \mathcal{H}^{n-1}(x)$.

Denote $\mu^{k}=\Psi \mathcal{H} \mathcal{H}^{k}$, i.e. $\mu^{n-1}=\Psi \mathcal{H} \mathcal{C}^{n-1}, \mu^{n-2}=\Psi \mathcal{H} \mathcal{H}^{n-2}, \ldots$
Examples:
(1) $\mathbb{S}^{n}=\left(\mathbb{S}^{n}, g_{\text {can }}, \lambda_{\mathbb{S}^{n}}=\frac{\mathrm{Vol}_{5} n}{\mathrm{Vol}^{\left(\mathbb{S}^{n} n\right.}}\right)$ - P. Lévy, Schmidt 20-30's: geodesic balls are isoperimetric minimizers.
(2) $\mathbb{G}^{n}=\left(\mathbb{R}^{n},|\cdot|, \gamma^{n}=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{|x|^{2}}{2}} d x\right)$ - Sudakov-Tsirelson, Borell '75: half-spaces are isoperimetric minimizers.

Relation (Maxwell, Poincaré, Borel): $\left(\pi_{\mathbb{R}^{n}}\right)_{*}\left(\lambda_{\sqrt{N S^{N}}}\right) \rightarrow_{N \rightarrow \infty} \gamma^{n}$.

Isoperimetric Inequalities for Clusters

Cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ is a partition $M=\Omega_{1} \cup \ldots \cup \Omega_{q}$ (up to null-sets) Given $V(\Omega)=\left(V\left(\Omega_{1}\right) \ldots V\left(\Omega_{q}\right)\right)$ minimize $A(\Omega)=\frac{1}{2} \sum_{i=1}^{q} A\left(\Omega_{i}\right)=\sum_{i<j} A_{i j}$.
Previous examples: $q=2\left(\Omega_{1}=U, \Omega_{2}=M \backslash U\right)$, "Single Bubble".
Would like to study $q \geq 3$, "Multi Bubble" case.
Case $q=3$ is called "Double Bubble" $\left(\Omega_{1}, \Omega_{2}, M \backslash\left(\Omega_{1} \cup \Omega_{2}\right)\right)$.

standard double bubble dim sphere)

Isoperimetric Inequalities for Clusters

Cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ is a partition $M=\Omega_{1} \cup \ldots \cup \Omega_{q}$ (up to null-sets) Given $V(\Omega)=\left(V\left(\Omega_{1}\right) \ldots V\left(\Omega_{q}\right)\right)$ minimize $A(\Omega)=\frac{1}{2} \sum_{i=1}^{q} A\left(\Omega_{i}\right)=\sum_{i<j} A_{i j}$.
Previous examples: $q=2\left(\Omega_{1}=U, \Omega_{2}=M \backslash U\right)$, "Single Bubble".
Would like to study $q \geq 3$, "Multi Bubble" case.
Case $q=3$ is called "Double Bubble" $\left(\Omega_{1}, \Omega_{2}, M \backslash\left(\Omega_{1} \cup \Omega_{2}\right)\right)$.
(0) \mathbb{R}^{n} - Theorem: for all $V(\Omega)=\left(v_{1}, v_{2}, \infty\right)$, standard double bubble (3 spherical caps meeting at 120° along ($n-2$)-dim sphere) minimizes total surface area:

Isoperimetric Inequalities for Clusters

Cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ is a partition $M=\Omega_{1} \cup \ldots \cup \Omega_{q}$ (up to null-sets) Given $V(\Omega)=\left(V\left(\Omega_{1}\right) \ldots V\left(\Omega_{q}\right)\right)$ minimize $A(\Omega)=\frac{1}{2} \sum_{i=1}^{q} A\left(\Omega_{i}\right)=\sum_{i<j} A_{i j}$.
Previous examples: $q=2\left(\Omega_{1}=U, \Omega_{2}=M \backslash U\right)$, "Single Bubble".
Would like to study $q \geq 3$, "Multi Bubble" case.
Case $q=3$ is called "Double Bubble" $\left(\Omega_{1}, \Omega_{2}, M \backslash\left(\Omega_{1} \cup \Omega_{2}\right)\right)$.
(0) \mathbb{R}^{n} - Theorem: for all $V(\Omega)=\left(v_{1}, v_{2}, \infty\right)$, standard double bubble (3 spherical caps meeting at 120° along ($n-2$)-dim sphere) minimizes total surface area:
\mathbb{R}^{2} - F. Morgan's "SMALL" undergraduate group (Foisy-Alfaro-Brock-HodgesZimba) '93.
\mathbb{R}^{3} - Hass-Hutchings-Schlafly '95 $v_{1}=v_{2}$, Hutchings-Morgan-Ritoré-Ros '00.
\mathbb{R}^{4} - SMALL (Reichardt-Heilmann-LaiSpielman) '03.
\mathbb{R}^{n} - Reichardt '07.

Isoperimetric Double-Bubble Conjectures

$q=3$ regions in dimension $n \geq 2$:
(1) \mathbb{S}^{n} - Double-Bubble Conjecture: for all $V(\Omega)=\left(v_{1}, v_{2}, v_{3}\right)$, standard double bubble (3 spherical caps in \mathbb{S}^{n} meeting at 120° along ($n-2$)-dim sphere) minimizes total surface area.
\mathbb{S}^{2} - Proved by Masters '96.
\mathbb{S}^{3} - Cotton-Freeman '02, Corneli-Hoffman-HLLMS '07, partial.
\mathbb{S}^{n} - Corneli-Corwin-Hoffman-HSADLVX '08, if $\left|v_{i}-\frac{1}{3}\right| \leq 0.04$.- Double-Bubble Conjecture: for all

Interaction between \mathbb{G} and

Isoperimetric Double-Bubble Conjectures

$q=3$ regions in dimension $n \geq 2$:
(1) \mathbb{S}^{n} - Double-Bubble Conjecture: for all $V(\Omega)=\left(v_{1}, v_{2}, v_{3}\right)$, standard double bubble (3 spherical caps in \mathbb{S}^{n} meeting at 120° along ($n-2$)-dim sphere) minimizes total surface area.
\mathbb{S}^{2} - Proved by Masters ' 96.
\mathbb{S}^{3} - Cotton-Freeman '02, Corneli-Hoffman-HLLMS '07, partial.
\mathbb{S}^{n} - Corneli-Corwin-Hoffman-HSADLVX '08, if $\left|v_{i}-\frac{1}{3}\right| \leq 0.04$.
(2) \mathbb{G}^{n} - Double-Bubble Conjecture: for all $V(\Omega)=\left(v_{1}, v_{2}, v_{3}\right)$, standard "tripod" / "Y" (3 half-hyperplanes meeting at 120° along ($n-2$)-dim plane) minimizes total (Gaussian) surface area.
\mathbb{G}^{n} - Corneli-Corwin-Hoffman-HSADLVX '08, if $\left|v_{i}-\frac{1}{3}\right| \leq 0.04$. Interaction between \mathbb{G} and \mathbb{S} :
$\mathbb{G}^{2} \Rightarrow \mathbb{S}^{N} \forall N \gg 1 \Rightarrow \mathbb{S}^{n} \forall n \geq 2 \Rightarrow \mathbb{G}^{n} \forall n \geq 2$ by projection.

Y cone

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
There's no reasonable conjecture when $q \gg n$:

Image from Cox, Garner, et al.

Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all the minimizer is a standard q

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble:

Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ spherical-bubble
(stereographic projection of standard
Multi-Bubble Conjecture on \mathbb{G}^{n} : If
the minimizer is a standard simplicial cluster $=$ Voronoi cells of q

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble:

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble:
Take Voronoi cells of q equidistant points on $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^{n}.

Montesinos Amilibia '01 - standard bubbles exist and are uniquely determined (up to isometries) for all prescribed volumes, for all $q-1 \leq n+1$.

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble: Take Voronoi cells of q equidistant points on $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^{n}.
Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ spherical-bubble (stereographic projection of standard $q-1$ bubble in \mathbb{R}^{n} to $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$).

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
Multi-Bubble Conjecture on \mathbb{G}^{n} : If $q \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in \mathbb{R}^{n} (appropriately translated).

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble: Take Voronoi cells of q equidistant points on $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^{n}.

Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ spherical-bubble (stereographic projection of standard $q-1$ bubble in \mathbb{R}^{n} to $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$).

Multi-Bubble Conjecture on \mathbb{G}^{n} : If $q \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in \mathbb{R}^{n} (appropriately translated).

Isoperimetric Multi-Bubble Conjectures

Higher-order cluster $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$.
Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble: Take Voronoi cells of q equidistant points on $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^{n}.

Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ spherical-bubble (stereographic projection of standard $q-1$ bubble in \mathbb{R}^{n} to $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$).

Multi-Bubble Conjecture on \mathbb{G}^{n} : If $q \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in \mathbb{R}^{n} (appropriately translated).
$q=2$ corresponds to the classical isoperimetric inqs.
$q=3$ is the double-bubble theorem $\left(\mathbb{R}^{n}\right) /$ conjecture $\left(\mathbb{S}^{n} / \mathbb{G}^{n}, n \geq 3\right)$.
$q=4$ and $n=2$ in \mathbb{R}^{n} (planar triple-bubble) proved by Wichiramala '04.
Not aware of any other results when $q \geq 4$ prior to 2018.

Isoperimetric Multi-Bubble Results - Old

Multi-Bubble Conjecture on \mathbb{G}^{n} : If $q \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in \mathbb{R}^{n}).

Gaussian Double/Multi-Bubble Thm (M.-Neeman '18)
For all $n \geq 2$ and $2 \leq q \leq n+1$, the Multi-Bubble Conjecture on \mathbb{G}^{n} is
true: "a standard simplicial q-cluster is a Gaussian minimizer".
Gaussian Double/Multi-Bubble (M.-Neeman '18)
For all $n \geq 2$ and $2 \leq q \leq n+1$, simplicial q-clusters are the unique
minimizers of Gaussian perimeter, up to null-sets.
In single-bubble setting ($q=2$), uniqueness due to Ehrhard '86 and Carlen-Kerce '00.

Isoperimetric Multi-Bubble Results - Old

Multi-Bubble Conjecture on \mathbb{G}^{n} : If $q \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in \mathbb{R}^{n}).

Gaussian Double/Multi-Bubble Thm (M.-Neeman '18)

For all $n \geq 2$ and $2 \leq q \leq n+1$, the Multi-Bubble Conjecture on \mathbb{G}^{n} is true: "a standard simplicial q-cluster is a Gaussian minimizer".

Gaussian Double/Multi-Bubble Uniqueness (M.-Neeman '18)
For all $n \geq 2$ and
simplicial q-clusters are the
minimizers of Gaussian perimeter, up to null-sets.
In single-bubble setting $(q=2)$, uniqueness due to Ehrhard '86 and Carlen-Kerce '00.

Isoperimetric Multi-Bubble Results - Old

Multi-Bubble Conjecture on \mathbb{G}^{n} : If $q \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in \mathbb{R}^{n}).

Gaussian Double/Multi-Bubble Thm (M.-Neeman '18)

For all $n \geq 2$ and $2 \leq q \leq n+1$, the Multi-Bubble Conjecture on \mathbb{G}^{n} is true: "a standard simplicial q-cluster is a Gaussian minimizer".

Gaussian Double/Multi-Bubble Uniqueness (M.-Neeman '18)

For all $n \geq 2$ and $2 \leq q \leq n+1$, simplicial q-clusters are the unique minimizers of Gaussian perimeter, up to null-sets.

In single-bubble setting ($q=2$), uniqueness due to Ehrhard ' 86 and Carlen-Kerce '00.

Isoperimetric Multi-Bubble Results - New

Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble.
Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ bubble.
\star Equal volume case?

Multi-Bubble Uniqueness on
(M.-Neeman '22)

Unioueness (un to null-sets) on n for
 Uniqueness (up to null-sets) on \mathbb{R}^{n} for

Q: Why is
case harder than And
case even more so?
A1:
by projection;
by scale-invariance and
shrinking to a point, but uniqueness is lost in both cases.

Isoperimetric Multi-Bubble Results - New

Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble.
Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ bubble.

1-2-3-4-5-Bubble Thm on \mathbb{R}^{n} (M.-Neeman '22)

For all $n \geq 2$ and $2 \leq q \leq \min (6, n+1)$, the Multi-Bubble Conjecture on $\mathbb{R}^{n} / \mathbb{S}^{n}$ is true: "A standard $q-1$ bubble is an isoperimetric minimizer". In other words, Double-Bubble ($n \geq 2$), Triple-Bubble ($n \geq 3$), Quadruple-Bubble ($n \geq 4$), Quintuple-Bubble ($n \geq 5$).

[^0]
Isoperimetric Multi-Bubble Results - New

Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble.
Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ bubble.

1-2-3-4-5-Bubble Thm on \mathbb{R}^{n} (M.-Neeman '22)

For all $n \geq 2$ and $2 \leq q \leq \min (6, n+1)$, the Multi-Bubble Conjecture on $\mathbb{R}^{n} / \mathbb{S}^{n}$ is true: "A standard $q-1$ bubble is an isoperimetric minimizer". In other words, Double-Bubble ($n \geq 2$), Triple-Bubble ($n \geq 3$), Quadruple-Bubble ($n \geq 4$), Quintuple-Bubble ($n \geq 5$).

Multi-Bubble Uniqueness on $\mathbb{R}^{n} / \mathbb{S}^{n}$ (M.-Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^{n} for $2 \leq q \leq \min (6, n+1)$.
Uniqueness (up to null-sets) on \mathbb{R}^{n} for $2 \leq q \leq \min (5, n+1)$.

Isoperimetric Multi-Bubble Results - New

Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble.
Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ bubble.

1-2-3-4-5-Bubble Thm on \mathbb{R}^{n} (M.-Neeman '22)

For all $n \geq 2$ and $2 \leq q \leq \min (6, n+1)$, the Multi-Bubble Conjecture on $\mathbb{R}^{n} / \mathbb{S}^{n}$ is true: "A standard $q-1$ bubble is an isoperimetric minimizer". In other words, Double-Bubble ($n \geq 2$), Triple-Bubble ($n \geq 3$), Quadruple-Bubble ($n \geq 4$), Quintuple-Bubble ($n \geq 5$).

Multi-Bubble Uniqueness on $\mathbb{R}^{n} / \mathbb{S}^{n}$ (M.-Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^{n} for $2 \leq q \leq \min (6, n+1)$.
Uniqueness (up to null-sets) on \mathbb{R}^{n} for $2 \leq q \leq \min (5, n+1)$.
Q: Why is \mathbb{S}^{n} case harder than \mathbb{G}^{n} ? And \mathbb{R}^{n} case even more so? A1: $\mathbb{S}^{N} \Rightarrow \mathbb{G}^{n}$ by projection; $\mathbb{S}^{n} \Rightarrow \mathbb{R}^{n}$ by scale-invariance and shrinking to a point, but uniqueness is lost in both cases.

Isoperimetric Multi-Bubble Results - New

Multi-Bubble Conjecture on \mathbb{R}^{n} (J. Sullivan '95): If $q-1 \leq n+1$, for all $V(\Omega)=\left(v_{1}, \ldots, v_{q-1}, \infty\right)$, the minimizer is a standard $q-1$ bubble.
Multi-Bubble Conjecture on \mathbb{S}^{n} : If $q-1 \leq n+1$, for all
$V(\Omega)=\left(v_{1}, \ldots, v_{q}\right)$, the minimizer is a standard $q-1$ bubble.

1-2-3-4-5-Bubble Thm on \mathbb{R}^{n} (M.-Neeman '22)

For all $n \geq 2$ and $2 \leq q \leq \min (6, n+1)$, the Multi-Bubble Conjecture on $\mathbb{R}^{n} / \mathbb{S}^{n}$ is true: "A standard $q-1$ bubble is an isoperimetric minimizer". In other words, Double-Bubble ($n \geq 2$), Triple-Bubble ($n \geq 3$), Quadruple-Bubble ($n \geq 4$), Quintuple-Bubble ($n \geq 5$).

Multi-Bubble Uniqueness on $\mathbb{R}^{n} / \mathbb{S}^{n}$ (M.-Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^{n} for $2 \leq q \leq \min (6, n+1)$.
Uniqueness (up to null-sets) on \mathbb{R}^{n} for $2 \leq q \leq \min (5, n+1)$.
Q: Why is \mathbb{S}^{n} case harder than \mathbb{G}^{n} ? And \mathbb{R}^{n} case even more so? A1: $\mathbb{S}^{N} \Rightarrow \mathbb{G}^{n}$ by projection; $\mathbb{S}^{n} \Rightarrow \mathbb{R}^{n}$ by scale-invariance and shrinking to a point, but uniqueness is lost in both cases.
A2: TBD; Moral: we were lucky to have started with \mathbb{G}^{n}...

Tools in Isoperimetric Problems

Single Bubble ($q=2$):
(0) \mathbb{R}^{n} - symmetrization, Brunn-Minkowski, L^{2}, heat-flow, PDE, Localization, Optimal-Transport, Combinatorial, GMT.
(1) \mathbb{S}^{n} - symmetrization, GMT, Localization.
(2) \mathbb{G}^{n} - Projection of \mathbb{S}^{N}, symmetrization (Ehrhard), Brunn-Minkowski (Borell), Localization, heat-flow, GMT.

Double-Bubble

- Geometric Measure Theory (De Giorgi, Federer, Almgren, existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings)
- Connected component analysis (Hutchings) Ruling out cases (Hutchings-Morgan-Ritoré-Ros)

Tools in Isoperimetric Problems

Double-Bubble ($q=3$):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings)

Ruling out cases (Hutchings-Morgan-Ritoré-Fios)

Extension to \mathbb{S}^{n} by Cotton-Freeman '02:
If all Ω_{i} are connected then Ω is standard double-bubble.

- Meta-Calibrations / Unification (Lawlor) - alternative proof on

We proceed rather differently in our work.

Tools in Isoperimetric Problems

Double-Bubble ($q=3$):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings)

Ruling out cases (Hutchings-Morgan-Ritoré-Ros)

Extension to \mathbb{S}^{n} by Cotton-Freeman '02:
If all Ω_{i} are connected then Ω is standard couble-bubble.

- Meta-Calibrations / Unification (Lawlor) - alternative proof on

We proceed rather differently in our work.

Tools in Isoperimetric Problems

Double-Bubble ($q=3$):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings-Morgan-Ritoré-Ros):

axis of symmetry

Extension to \mathbb{S}^{n} by Cotton-Freeman '02:
If all Ω_{i} are connected then Ω is standard double-bubble.

- Meta-Calibrations / Unification (Lawlor) - alternative proof on

Tools in Isoperimetric Problems

Double-Bubble ($q=3$):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings-Morgan-Ritoré-Ros):

Extension to \mathbb{S}^{n} by Cotton-Freeman '02:
If all Ω_{i} are connected then Ω is standard double-bubble.

- Meta-Calibrations / Unification (Lawlor) - alternative proof on \mathbb{R}^{n}.

We proceed rather differently in our work.

Proof: Step 0 - Symmetry

Lemmas:
1 Simple symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}: \forall 2 \leq q \leq n+1$, exists minimizing q-cluster symmetric w.r.t. reflection about hyperplane H^{n-1}.

1b Full symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$ (White, Hutchings ' 97): $\forall 2 \leq q \leq n$, every minimizing q-cluster is symmetric w.r.t. $M^{q-2}(M \in\{\mathbb{R}, \mathbb{S}\})$, i.e. invariant under all isometries which preserve every $x \in M^{q-2}$.

2 Product structure on \mathbb{G}^{n} (M.-Neeman '18): $\forall 2 \leq q \leq n$, every stable (in particular, minimizing) q-cluster is a product $\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.

Remarks:

- We don't need 1b in our approach.
- 1 b and 2 reduce the problem to dimension $q-1$; 1 does not reduce dimension.
- No expected symmetry / product structure in maximal case $\left(q=n+2\right.$ in $\mathbb{R}^{n} / \mathbb{S}^{n}, q=n+1$ in $\left.\mathbb{G}^{n}\right) \leadsto$
Need separate argument for \mathbb{G}^{n}, out-of-reach on $\mathbb{R}^{n} / \mathbb{S}^{n}$.

Step 0: Simple symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$

1 Simple symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}: \forall 2 \leq q \leq n+1$, exists minimizing q-cluster symmetric w.r.t. reflection about hyperplane H^{n-1}.

Proof on \mathbb{S}^{n} :

- Borsuk-Ulam Thm:

For any continuous $f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$ (or $\mathbb{R}^{m}, m \leq n$), $\exists \theta \in \mathbb{S}^{n} f(\theta)=f(-\theta)$.

- Cor ("Ham-Sandwich"): $\exists H^{n-1}=\theta^{\perp}$ bisecting q-cells if $q \leq n+1$ (just use $\left.f(\theta)=\left(2 V\left(\Omega_{i} \cap \theta_{+}^{\perp}\right)\right)_{i=1, \ldots, q_{-1}} \in \mathbb{R}^{q-1}\right)$.
- If Ω minimizer, $\Omega_{ \pm}:=\Omega \cap H_{+}^{n-1}$, reflect $\Omega_{ \pm}$about $H^{n-1}-$ both have
same volumes and total perimeter as Ω, otherwise one of Ω
would reduce it.
- Remark $\partial_{\text {reg }} \Omega$ must meet bisecting H^{n-1} perpendicularly, otherwise
could reduce perimeter of $\Omega_{ \pm}^{\text {sym }}$ by smoothing the angle out.

Step 0: Simple symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$

1 Simple symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}: \forall 2 \leq q \leq n+1$, exists minimizing q-cluster symmetric w.r.t. reflection about hyperplane H^{n-1}.

Proof on \mathbb{S}^{n} :

- Borsuk-Ulam Thm:

For any continuous $f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$ (or $\mathbb{R}^{m}, m \leq n$), $\exists \theta \in \mathbb{S}^{n} f(\theta)=f(-\theta)$.

- Cor ("Ham-Sandwich"): $\exists H^{n-1}=\theta^{\perp}$ bisecting q-cells if $q \leq n+1$ (just use $\left.f(\theta)=\left(2 V\left(\Omega_{i} \cap \theta_{+}^{\perp}\right)\right)_{i=1, \ldots, q_{-1}} \in \mathbb{R}^{q-1}\right)$.
- If Ω minimizer, $\Omega_{ \pm}:=\Omega \cap H_{ \pm}^{n-1}$, reflect $\Omega_{ \pm}$about H^{n-1} - both have same volumes and total perimeter as Ω, otherwise one of $\Omega_{ \pm}^{\text {sym }}$ would reduce it.
> perpendicularly, otherwise could reduce perimeter of $\Omega^{5 y}$ by smoothing the angle out.

Step 0: Simple symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$

1 Simple symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}: \forall 2 \leq q \leq n+1$, exists minimizing q-cluster symmetric w.r.t. reflection about hyperplane H^{n-1}.

Proof on \mathbb{S}^{n} :

- Borsuk-Ulam Thm:

For any continuous $f: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$ (or $\mathbb{R}^{m}, m \leq n$), $\exists \theta \in \mathbb{S}^{n} f(\theta)=f(-\theta)$.

- Cor ("Ham-Sandwich"): $\exists H^{n-1}=\theta^{\perp}$ bisecting q-cells if $q \leq n+1$ (just use $\left.f(\theta)=\left(2 V\left(\Omega_{i} \cap \theta_{+}^{\perp}\right)\right)_{i=1, \ldots, q-1} \in \mathbb{R}^{q-1}\right)$.
- If Ω minimizer, $\Omega_{ \pm}:=\Omega \cap H_{ \pm}^{n-1}$, reflect $\Omega_{ \pm}$about H^{n-1} - both have same volumes and total perimeter as Ω, otherwise one of $\Omega_{ \pm}^{\text {sym }}$ would reduce it.
- Remark $\partial_{\text {reg }} \Omega$ must meet bisecting H^{n-1} perpendicularly, otherwise could reduce perimeter of $\Omega_{ \pm}^{\text {sym }}$ by smoothing the angle out.

Step 0 (Not needed!): Full Symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$

1b Full symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$ (White, Hutchings ' 97): $\forall 2 \leq q \leq n$, every minimizing q-cluster is symmetric w.r.t. $M^{q-2}(M \in\{\mathbb{R}, \mathbb{S}\})$, i.e. invariant under all isometries which preserve every $x \in M^{q-2}$.

We don't need this! We'll prove existence of such minimizer:
bisecting
bisecting
continue for $n+2-q$ steps.
Obtain minimizing cluster perpendicular hyperplanes
symmetric w.r.t. reflection in mutually ("unconditional").
bisects
is rotation-invariant on F^{\perp}, i.e. symmetric w.r.t. F
symmetric w.r.t. F. Use

Step 0 (Not needed!): Full Symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$

1b Full symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$ (White, Hutchings '97): $\forall 2 \leq q \leq n$, every minimizing q-cluster is symmetric w.r.t. $M^{q-2}(M \in\{\mathbb{R}, \mathbb{S}\})$, i.e. invariant under all isometries which preserve every $x \in M^{q-2}$.

We don't need this! We'll prove existence of such minimizer:
$\exists \theta_{1}^{\perp}$ bisecting $\Omega \quad ;$ symmetrize and continue on $\mathbb{S}^{n} \cap \theta_{1}^{\perp} \rightarrow \mathbb{R}^{q-1}$.
$\exists \theta_{2}^{\perp}$ bisecting $\Omega^{\text {sym, }}$; symmetrize and continue on $\mathbb{S}^{n} \cap \theta_{1}^{\perp} \cap \theta_{2}^{\perp} \rightarrow \mathbb{R}^{q-1}$.
continue for $n+2-q$ steps.
Obtain minimizing cluster $\Omega^{\text {sym }}$ symmetric w.r.t. reflection in mutually perpendicular hyperplanes $\theta_{1}^{\perp}, \ldots, \theta_{n+2-q}^{\perp}$ ("unconditional").

Step 0 (Not needed!): Full Symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$

1b Full symmetry on $\mathbb{R}^{n} / \mathbb{S}^{n}$ (White, Hutchings '97): $\forall 2 \leq q \leq n$, every minimizing q-cluster is symmetric w.r.t. $M^{q-2}(M \in\{\mathbb{R}, \mathbb{S}\})$, i.e. invariant under all isometries which preserve every $x \in M^{q-2}$.

We don't need this! We'll prove existence of such minimizer:
$\exists \theta_{1}^{\perp}$ bisecting $\Omega \quad ;$ symmetrize and continue on $\mathbb{S}^{n} \cap \theta_{1}^{\perp} \rightarrow \mathbb{R}^{q-1}$.
$\exists \theta_{2}^{\perp}$ bisecting $\Omega^{\text {sym, } 1}$; symmetrize and continue on $\mathbb{S}^{n} \cap \theta_{1}^{\perp} \cap \theta_{2}^{\perp} \rightarrow \mathbb{R}^{q-1}$.
continue for $n+2-q$ steps.
Obtain minimizing cluster $\Omega^{\text {sym }}$ symmetric w.r.t. reflection in mutually perpendicular hyperplanes $\theta_{1}^{\perp}, \ldots, \theta_{n+2-q}^{\perp}$ ("unconditional").
$\forall \theta \in \operatorname{span}\left(\theta_{1}, \ldots, \theta_{n+2-q}\right)=F^{\perp}, \theta^{\perp}$ bisects $\Omega^{\text {sym }} \Rightarrow \partial_{\mathrm{reg}} \Omega^{\mathrm{sym}} \perp \theta^{\perp}$.
$\partial_{\text {reg }} \Omega^{\text {sym }}$ is rotation-invariant on F^{\perp}, i.e. symmetric w.r.t. F.
$\Rightarrow \Omega^{\text {sym }}$ symmetric w.r.t. F. Use $M^{q-2}=F \cap M^{n}$

Starting Point - Geometric Measure Theory

On smooth ($M^{n}, g, \mu^{n}=e^{-W} d v o l$), finite volume, GMT guarantees:

- Minimizing $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ exists (Almgren: also on \mathbb{R}^{n}); cells are open, $\partial^{*} \Omega_{i}=\partial \Omega_{i}$. Denote interfaces: $\Sigma_{i j}:=\partial^{*} \Omega_{i} \cap \partial^{*} \Omega_{j}$.
- Almgren 70's: $\Sigma_{i j}$ are C^{∞} embedded mnflds w/ good properties. Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers
- Since the first-variation of (weighted) area is (weighted) mean-curvature, then $H_{\Sigma_{i j}, \mu}=\lambda_{i}-\lambda_{j}$ is constant (CMC) on

Starting Point - Geometric Measure Theory

On smooth ($M^{n}, g, \mu^{n}=e^{-W} d v o l$), finite volume, GMT guarantees:

- Minimizing $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ exists (Almgren: also on \mathbb{R}^{n}); cells are open, $\partial^{*} \Omega_{i}=\partial \Omega_{i}$. Denote interfaces: $\Sigma_{i j}:=\partial^{*} \Omega_{i} \cap \partial^{*} \Omega_{j}$.
- Almgren 70's: $\Sigma_{i j}$ are C^{∞} embedded mnflds w/ good properties. Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_{c}^{\infty}\left(M^{n} ; T M^{n}\right)$, $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeomorphism, $\Omega_{t}=F_{t}(\Omega)$. $V=V\left(\Omega_{t}\right), A=A\left(\Omega_{t}\right), \delta_{X}^{k} V=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} V\left(\Omega_{t}\right), \delta_{X}^{k} A=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} A\left(\Omega_{t}\right)$.

- Since
 (globally) minimizes area under volume constraint, there

are
"stationary

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then $H_{\Sigma_{i j}, \mu}=\lambda_{i}-\lambda_{j}$ is constant (CMC) on

Starting Point - Geometric Measure Theory

On smooth ($M^{n}, g, \mu^{n}=e^{-W} d v o l$), finite volume, GMT guarantees:

- Minimizing $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ exists (Almgren: also on \mathbb{R}^{n}); cells are open, $\partial^{*} \Omega_{i}=\partial \Omega_{i}$. Denote interfaces: $\Sigma_{i j}:=\partial^{*} \Omega_{i} \cap \partial^{*} \Omega_{j}$.
- Almgren 70's: $\Sigma_{i j}$ are C^{∞} embedded mnflds w/ good properties. Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_{c}^{\infty}\left(M^{n} ; T M^{n}\right)$, $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeomorphism, $\Omega_{t}=F_{t}(\Omega)$. $V=V\left(\Omega_{t}\right), A=A\left(\Omega_{t}\right), \delta_{X}^{k} V=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} V\left(\Omega_{t}\right), \delta_{X}^{k} A=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} A\left(\Omega_{t}\right)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers $\lambda \in E^{(q-1)}=\left\{v \in \mathbb{R}^{q} ; \sum_{i=1}^{q} v_{i}=0\right\}$, s.t.:
Ω is "stationary" (critical point)

$$
\delta_{X}^{1} A-\left\langle\lambda, \delta_{X}^{1} V\right\rangle=0
$$

Ω is "stable" (local minimizer) $\delta_{X}^{1} V=0 \Rightarrow \delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle \geq 0$.

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then $H_{\Sigma_{i j}}$
is constant (CMC) on

Starting Point - Geometric Measure Theory

On smooth ($M^{n}, g, \mu^{n}=e^{-W} d v o l$), finite volume, GMT guarantees:

- Minimizing $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ exists (Almgren: also on \mathbb{R}^{n}); cells are open, $\overline{\partial *} \Omega_{i}=\partial \Omega_{i}$. Denote interfaces: $\Sigma_{i j}:=\partial^{*} \Omega_{i} \cap \partial^{*} \Omega_{j}$.
- Almgren 70's: $\Sigma_{i j}$ are C^{∞} embedded mnflds w/ good properties. Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_{c}^{\infty}\left(M^{n} ; T M^{n}\right), \frac{d}{d t} F_{t}=X \circ F_{t}$ diffeomorphism, $\Omega_{t}=F_{t}(\Omega)$. $V=V\left(\Omega_{t}\right), A=A\left(\Omega_{t}\right), \delta_{X}^{k} V=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} V\left(\Omega_{t}\right), \delta_{X}^{k} A=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} A\left(\Omega_{t}\right)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers $\lambda \in E^{(q-1)}=\left\{v \in \mathbb{R}^{q} ; \sum_{i=1}^{q} v_{i}=0\right\}$, s.t.:
Ω is "stationary" (critical point) $\quad \delta_{X}^{1} A-\left\langle\lambda, \delta_{X}^{1} V\right\rangle=0$.
Ω is "stable" (local minimizer) $\delta_{X}^{1} V=0 \Rightarrow \delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle \geq 0$.
- Since the first-variation of (weighted) area is (weighted) mean-curvature, then $H_{\Sigma_{i j}, \mu}=\lambda_{i}-\lambda_{j}$ is constant (CMC) on $\Sigma_{i j}$.

Starting Point - Geometric Measure Theory

On smooth ($M^{n}, g, \mu^{n}=e^{-W} d v o l$), finite volume, GMT guarantees:

- Minimizing $\Omega=\left(\Omega_{1}, \ldots, \Omega_{q}\right)$ exists (Almgren: also on \mathbb{R}^{n}); cells are open, $\overline{\partial *} \Omega_{i}=\partial \Omega_{i}$. Denote interfaces: $\Sigma_{i j}:=\partial^{*} \Omega_{i} \cap \partial^{*} \Omega_{j}$.
- Almgren 70's: $\Sigma_{i j}$ are C^{∞} embedded mnflds w/ good properties. Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_{c}^{\infty}\left(M^{n} ; T M^{n}\right)$, $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeomorphism, $\Omega_{t}=F_{t}(\Omega)$. $V=V\left(\Omega_{t}\right), A=A\left(\Omega_{t}\right), \delta_{X}^{k} V=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} V\left(\Omega_{t}\right), \delta_{X}^{k} A=\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0} A\left(\Omega_{t}\right)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers $\lambda \in E^{(q-1)}=\left\{v \in \mathbb{R}^{q} ; \sum_{i=1}^{q} v_{i}=0\right\}$, s.t.:
Ω is "stationary" (critical point) $\quad \delta_{X}^{1} A-\left\langle\lambda, \delta_{X}^{1} V\right\rangle=0$.
Ω is "stable" (local minimizer) $\delta_{X}^{1} V=0 \Rightarrow \delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle \geq 0$.
- Since the first-variation of (weighted) area is (weighted) mean-curvature, then $H_{\Sigma_{i j}, \mu}=\lambda_{i}-\lambda_{j}$ is constant (CMC) on $\Sigma_{i j}$.
- $\Sigma^{1}:=\bigcup_{i<j} \Sigma_{i j}$ has no boundary in weak sense $\left(\int_{\Sigma^{1}} d \omega^{n-2}=0\right)$. So if $\Sigma_{i j}, \Sigma_{j k}, \Sigma_{k i}$ meet in threes, it must be in 120° angles.

Step 0: Product structure on \mathbb{G}^{n}

2 Product structure on \mathbb{G}^{n} (M.-Neeman '18): $\forall 2 \leq q \leq n$, every stable (in particular, minimizing) q-cluster is a product $\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.

Proof: Gaussian conjectured minimizers are generated by Translation group; its generators are $T_{\theta} \equiv \theta$ constant vector-fields.

Define:

- $\mathbb{R}^{n} \ni \theta \mapsto M \theta:=\delta_{T_{\theta}}^{1} V=\left(\int_{\partial^{*} \Omega_{i}}\left\langle\theta, \mathfrak{n}_{i}\right\rangle d \gamma^{n-1}\right)_{i=1, \ldots, q} \in E^{(q-1)}$.
- $\mathcal{N}:=\operatorname{span}\left(\left.\mathfrak{n}\right|_{\Sigma^{1}}\right)$; easy to show $\Omega=\tilde{\Omega} \times \mathcal{N}^{\perp}, \tilde{\Omega} \subset \mathcal{N}$.

Claim: $\mathcal{N}^{\perp}=\operatorname{ker} M$; would yield $\operatorname{dim} \mathcal{N}^{\perp}=\operatorname{dim} \operatorname{ker} M \geq n+1-q \leadsto \square$.
Proof:
is trivial; $\supseteq: ~ l e t$
By stability:

Step 0: Product structure on \mathbb{G}^{n}

2 Product structure on \mathbb{G}^{n} (M.-Neeman '18): $\forall 2 \leq q \leq n$, every stable (in particular, minimizing) q-cluster is a product $\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.

Proof: Gaussian conjectured minimizers are generated by Translation group; its generators are $T_{\theta} \equiv \theta$ constant vector-fields.

Define:

- $\mathbb{R}^{n} \ni \theta \mapsto M \theta:=\delta_{T_{\theta}}^{1} V=\left(\int_{\partial^{*} \Omega_{i}}\left\langle\theta, \mathfrak{n}_{i}\right\rangle d \gamma^{n-1}\right)_{i=1, \ldots, q} \in E^{(q-1)}$.
- $\mathcal{N}:=\operatorname{span}\left(\left.\mathfrak{n}\right|_{\Sigma^{1}}\right)$; easy to show $\Omega=\tilde{\Omega} \times \mathcal{N}^{\perp}, \tilde{\Omega} \subset \mathcal{N}$.

Claim: $\mathcal{N}^{\perp}=\operatorname{ker} M$; would yield $\operatorname{dim} \mathcal{N}^{\perp}=\operatorname{dim} \operatorname{ker} M \geq n+1-q \leadsto \square$.
Proof: \subseteq is trivial; \supseteq : let $\theta \in \operatorname{ker} M$, i.e. $\delta_{T_{\theta}}^{1} V=0$. By stability:

$$
0 \leq Q\left(T_{\theta}\right)=\text { calculation }=-\int_{\Sigma^{1}}\langle\theta, \mathfrak{n}\rangle^{2} d \gamma^{n-1} \leq 0 \Rightarrow \theta \perp \mathcal{N} \quad \square
$$

Very lucky that $Q\left(T_{\theta}\right) \leq 0$! That's the difference with $\mathbb{R}^{n} / \mathbb{S}^{n}$, where conjectured minimizers are generated by Möbius group; $Q\left(W_{\theta}\right) \not \& ? 0$.

Proof: Step 1 - Minimizer has Trivial Curvature

On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical $\left\|_{0}=\right\|-\frac{H}{n-1} I d=0$. For $q<n+2$: use reflection symmetry of Ω about H Cannot handle maximal case $q=n+2$, because Q (Möbius) $\$ 0$?

Our tool is Stability:

This is harder on $\mathbb{S}^{n} / \mathbb{R}^{n}$ since $H_{i j}=\lambda_{i}-\lambda_{j}$ is unknown, and we need to combine several fields \& discover integration by parts formulas.

Step 1 is the critical step - before which we were completely stuck. Let's provide details about what goes into the proof.

Proof: Step 1 - Minimizer has Trivial Curvature

On $\mathbb{G}^{n}: q \leq n+1 \Rightarrow$ minimizer is flat $I I=0$.
For $q<n+1$: use product structure $\Omega=\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.
Maximal case $q=n+1$: separate argument, Q (Translations) ≤ 0.
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1$
For $q<n+2$: use re
Cannot handle max
Our tool is Stability:
This is harder on $\mathbb{S}^{n} / \mathbb{R}^{n}$ since $H_{i j}=\lambda_{i}-\lambda_{j}$ is unknown, and we need to combine several fields \& discover integration by parts formulas.

Step 1 is the critical step - before which we were completely stuck. Let's provide details about what goes into the proof.

Proof: Step 1 - Minimizer has Trivial Curvature

On $\mathbb{G}^{n}: q \leq n+1 \Rightarrow$ minimizer is flat $I I=0$.
For $q<n+1$: use product structure $\Omega=\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.
Maximal case $q=n+1$: separate argument, Q (Translations) ≤ 0.
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical $\left.\left\|_{0}=\right\|-\frac{H}{n-1} \right\rvert\, d=0$.
For $q<n+2$: use reflection symmetry of Ω about H^{n-1}.
Cannot handle maximal case $q=n+2$, because Q (Möbius) $\nless 0$?
Our tool is Stability:
This is harder on since is unknown, and we need to combine several fields \& discover integration by narts formulas.

Step 1 is the critical step - before which we were completely stuck. Let's provide details about what goes into the proof.

Proof: Step 1 - Minimizer has Trivial Curvature

On $\mathbb{G}^{n}: q \leq n+1 \Rightarrow$ minimizer is flat $I I=0$.
For $q<n+1$: use product structure $\Omega=\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.
Maximal case $q=n+1$: separate argument, Q (Translations) ≤ 0.
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical $\left.\left\|_{0}=\right\|-\frac{H}{n-1} \right\rvert\, d=0$.
For $q<n+2$: use reflection symmetry of Ω about H^{n-1}.
Cannot handle maximal case $q=n+2$, because Q (Möbius) $\nless 0$?
Our tool is Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$.
This is harder on since
is unknown, and we need to
combine several fields \& discover integration by narts formulas.

Step 1 is the critical step - before which we were completely stuck.
Let's provide details about what goes into the proof.

Proof: Step 1 - Minimizer has Trivial Curvature

On $\mathbb{G}^{n}: q \leq n+1 \Rightarrow$ minimizer is flat $I I=0$.
For $q<n+1$: use product structure $\Omega=\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.
Maximal case $q=n+1$: separate argument, Q (Translations) ≤ 0.
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical $\left.\left\|_{0}=\right\|-\frac{H}{n-1} \right\rvert\, d=0$.
For $q<n+2$: use reflection symmetry of Ω about H^{n-1}.
Cannot handle maximal case $q=n+2$, because Q (Möbius) $\nless 0$?
Our tool is Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$.
This is harder on $\mathbb{S}^{n} / \mathbb{R}^{n}$ since $H_{i j}=\lambda_{i}-\lambda_{j}$ is unknown, and we need to combine several fields \& discover integration by parts formulas.

Step 1 is the critical step - before which we were completely stuck. Let's provide details about what goes into the proof.

Proof: Step 1 - Minimizer has Trivial Curvature

On $\mathbb{G}^{n}: q \leq n+1 \Rightarrow$ minimizer is flat $I I=0$.
For $q<n+1$: use product structure $\Omega=\tilde{\Omega} \times \mathbb{R}^{n+1-q}$.
Maximal case $q=n+1$: separate argument, Q (Translations) ≤ 0.
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical $\left.\left\|_{0}=\right\|-\frac{H}{n-1} \right\rvert\, d=0$.
For $q<n+2$: use reflection symmetry of Ω about H^{n-1}.
Cannot handle maximal case $q=n+2$, because Q (Möbius) $\nless 0$?
Our tool is Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$.
This is harder on $\mathbb{S}^{n} / \mathbb{R}^{n}$ since $H_{i j}=\lambda_{i}-\lambda_{j}$ is unknown, and we need to combine several fields \& discover integration by parts formulas.

Step 1 is the critical step - before which we were completely stuck. Let's provide details about what goes into the proof.

Higher codimension regularity

Regularity of higher codimension boundary (Morgan '94 $n=2$; Taylor '76 $n=2$, 3; White '86, Colombo-Edelen-Spolaor '17 $n \geq 4$)
Let Ω be a minimizing q-cluster. Recall the cones $Y \subset \mathbb{R}^{2}, T \subset \mathbb{R}^{3}$.

1. $\Sigma:=\cup_{i} \partial \Omega_{i}$ is the disjoint union of $\Sigma^{1}:=\cup_{i<j} \Sigma_{i j}, \Sigma^{2}, \Sigma^{3}, \Sigma^{4}$, where:
2. $\forall p \in \Sigma^{2}$ (triple pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $Y \times \mathbb{R}^{n-2}$.
3. $\forall p \in \Sigma^{3}$ (quad pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $T \times \mathbb{R}^{n-3}$.
4. Σ^{4} (singular) is closed, $\mathcal{H}^{n-3}\left(\Sigma^{4}\right)=0$ (loc. finite \mathcal{H}^{n-4}-measure).

Hence
Denote $\partial \Sigma$
incomplete.

By stationarity,
Kinderlehrer-Nirenberg-Spruck '78:
Optimal regularity in 3. is open;
meet at 120° angles.
in 2 regularity ungrades to

> Local Integrability of Curvature (M.-Neeman '18)
For any compact
disjoint from

Higher codimension regularity

Regularity of higher codimension boundary (Morgan '94 $n=2$; Taylor '76 $n=2$, 3; White '86, Colombo-Edelen-Spolaor '17 $n \geq 4$)
Let Ω be a minimizing q-cluster. Recall the cones $\mathrm{Y} \subset \mathbb{R}^{2}, \mathrm{~T} \subset \mathbb{R}^{3}$.

1. $\Sigma:=\cup_{i} \partial \Omega_{i}$ is the disjoint union of $\Sigma^{1}:=\cup_{i<j} \Sigma_{i j}, \Sigma^{2}, \Sigma^{3}, \Sigma^{4}$, where:
2. $\forall p \in \Sigma^{2}$ (triple pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $Y \times \mathbb{R}^{n-2}$.
3. $\forall p \in \Sigma^{3}$ (quad pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $T \times \mathbb{R}^{n-3}$.
4. Σ^{4} (singular) is closed, $\mathcal{H}^{n-3}\left(\Sigma^{4}\right)=0$ (loc. finite \mathcal{H}^{n-4}-measure).

Hence $\Sigma^{2}=\cup_{i<j k k} \Sigma_{i j k}$. Denote $\partial \Sigma_{i j}:=\cup_{k \neq i, j} \Sigma_{i j k} ;\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$ incomplete. By stationarity, $\forall p \in \Sigma_{i j k}, \Sigma_{i j}, \Sigma_{j k}, \Sigma_{k i}$ meet at 120° angles.
Kinderlehrer-Nirenberg-Spruck '78: in 2. regularity upgrades to
Optimal regularity in 3 . is open; $C^{1, \alpha}$ suspected to be optimal.
Local Integrability of Curvature (M. Neeman '18)
For any compact
disjoint from
Idea: using Schauder estimates

Higher codimension regularity

Regularity of higher codimension boundary (Morgan '94 $n=2$; Taylor '76 $n=2$, 3; White '86, Colombo-Edelen-Spolaor '17 $n \geq 4$)
Let Ω be a minimizing q-cluster. Recall the cones $\mathrm{Y} \subset \mathbb{R}^{2}, \mathrm{~T} \subset \mathbb{R}^{3}$.

1. $\Sigma:=\cup_{i} \partial \Omega_{i}$ is the disjoint union of $\Sigma^{1}:=\cup_{i<j} \Sigma_{i j}, \Sigma^{2}, \Sigma^{3}, \Sigma^{4}$, where:
2. $\forall p \in \Sigma^{2}$ (triple pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $Y \times \mathbb{R}^{n-2}$.
3. $\forall p \in \Sigma^{3}$ (quad pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $T \times \mathbb{R}^{n-3}$.
4. Σ^{4} (singular) is closed, $\mathcal{H}^{n-3}\left(\Sigma^{4}\right)=0$ (loc. finite \mathcal{H}^{n-4}-measure).

Hence $\Sigma^{2}=\cup_{i<j<k} \Sigma_{i j k}$. Denote $\partial \Sigma_{i j}:=\cup_{k \neq i, j} \Sigma_{i j k} ;\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$ incomplete. By stationarity, $\forall p \in \Sigma_{i j k}, \Sigma_{i j}, \Sigma_{j k}, \Sigma_{k i}$ meet at 120° angles.
Kinderlehrer-Nirenberg-Spruck '78: in 2. regularity upgrades to C^{∞}. Optimal regularity in 3 . is open; $C^{1, \alpha}$ suspected to be optimal.
Local Integrability of Curvature (M.-Neeman '18)
For any compact
disjoint from

Higher codimension regularity

Regularity of higher codimension boundary (Morgan '94 $n=2$; Taylor '76 $n=2,3$; White '86, Colombo-Edelen-Spolaor '17 $n \geq 4$)
Let Ω be a minimizing q-cluster. Recall the cones $\mathrm{Y} \subset \mathbb{R}^{2}, \mathrm{~T} \subset \mathbb{R}^{3}$.

1. $\Sigma:=\cup_{i} \partial \Omega_{i}$ is the disjoint union of $\Sigma^{1}:=\cup_{i<j} \Sigma_{i j}, \Sigma^{2}, \Sigma^{3}, \Sigma^{4}$, where:
2. $\forall p \in \Sigma^{2}$ (triple pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $Y \times \mathbb{R}^{n-2}$.
3. $\forall p \in \Sigma^{3}$ (quad pts), Σ is locally $C^{1, \alpha}$-diffeomorphic to $T \times \mathbb{R}^{n-3}$.
4. Σ^{4} (singular) is closed, $\mathcal{H}^{n-3}\left(\Sigma^{4}\right)=0$ (loc. finite \mathcal{H}^{n-4}-measure).

Hence $\Sigma^{2}=\cup_{i<j<k} \Sigma_{i j k}$. Denote $\partial \Sigma_{i j}:=\cup_{k \neq i, j} \Sigma_{i j k} ;\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$ incomplete. By stationarity, $\forall p \in \Sigma_{i j}, \Sigma_{i j}, \Sigma_{j k}, \Sigma_{k i}$ meet at 120° angles.
Kinderlehrer-Nirenberg-Spruck '78: in 2. regularity upgrades to C^{∞}. Optimal regularity in 3 . is open; $C^{1, \alpha}$ suspected to be optimal.

Local Integrability of Curvature (M.-Neeman '18)
For any compact K disjoint from $\Sigma^{4}, \| I^{i j} \in L^{2}\left(\Sigma_{i j} \cap K\right), L^{1}\left(\partial \Sigma_{i j} \cap K\right)$.
Idea: using Schauder estimates, $\left\|I^{i j}(p)\right\| \leq C_{K} / d\left(p, \Sigma^{3}\right)^{1-\alpha}$.

Approximating scalar-fields - why and how?

Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$ (the "index-form").
where $f_{i j}=X^{n_{i j}}:=\left\langle X, n_{i j}\right\rangle$ on $\sum_{i j}$. We'll call $f=\left(f_{i j}\right)$ a "scalar-field".
Under favorable conditions:
integration on

Can justify if $\operatorname{supp}(X)$ disjoint from Σ^{4}; need integrability of II.
Stability for "nhysical" scalar-fields,
Working with scalar-fields is super convenient. Given smooth $\mathrm{w} / f_{i j}+f_{i k}+f_{k j}=0$ on $\sum_{i j k}$ (Kirchhoff), can we find smooth $X \mathbf{w} / X^{n_{i j}}=f_{i j}$?

Even for single-bubble, NO! Simons cone
So let's approximate:

- Can cut away 5^{4} - effect on 2 nd variations arbitrarily small.

Approximating scalar-fields - why and how?

Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$ (the "index-form").

$$
\delta_{X}^{1} V\left(\Omega_{i}\right)=\int_{\partial^{*} \Omega_{i}} X^{\mathbf{n}_{i j}} d \mu^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}} f_{i j} d \mu^{n-1}=: \delta_{f}^{1} V\left(\Omega_{i}\right),
$$

where $f_{i j}=X^{\mathbf{n}_{i j}}:=\left\langle X, n_{i j}\right\rangle$ on $\sum_{i j}$. We'll call $f=\left(f_{i j}\right)$ a "scalar-field".
Under favorable conditions:
integration on

Can justify if $\operatorname{supp}(X)$ disjoint from Σ^{4}; need integrability of II.
Stability for "physical" scalar-fields,
Working with scalar-fields is super convenient. Given smooth $\mathrm{w} / f_{i j}+f_{i k}+f_{k j}=0$ on $\sum_{i j k}$ (Kirchhoff), can we find smooth $X \mathrm{w} /$

Even for single-bubble, NO! Simons cone
So let's approximate:

- Can cut away Σ^{4} - effect on 2 nd variations arbitrarily small.

Approximating scalar-fields - why and how?

Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$ (the "index-form").

$$
\delta_{X}^{1} V\left(\Omega_{i}\right)=\int_{\partial^{*} \Omega_{i}} X^{\mathbf{n}_{i j}} d \mu^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}} f_{i j} d \mu^{n-1}=: \delta_{f}^{1} V\left(\Omega_{i}\right),
$$

where $f_{i j}=X^{n_{i j}}:=\left\langle X, n_{i j}\right\rangle$ on $\Sigma_{i j}$. We'll call $f=\left(f_{i j}\right)$ a "scalar-field".
Under favorable conditions: $Q(X)=Q_{0}(f)$, integration on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\sum_{i<j}\left(\int_{\Sigma_{i j}} F\left(f, \nabla_{\Sigma} f,\| \| \|^{2}\right) d \mu^{n-1}+\int_{\partial \Sigma_{i j}} G(f, \|) d \mu^{n-2}\right) .
$$

Can justify if $\operatorname{supp}(X)$ disjoint from Σ^{4}; need integrability of II.
Stability for "physical" scalar-fields,
Working with scalar-fields is super convenient. Given smooth
$\mathrm{w} / f_{i j}+f_{j k}+f_{k j}=0$ on $\sum_{i j k}$ (Kirchhoff), can we find smooth $X \mathrm{w} /$
Even for single-bubble, NO! Simons cone
So let's approximate:

- Can cut away Σ^{4} - effect on 2 nd variations arbitrarily small.

Approximating scalar-fields - why and how?

Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$ (the "index-form").

$$
\delta_{X}^{1} V\left(\Omega_{i}\right)=\int_{\partial^{*} \Omega_{i}} X^{\mathfrak{n}_{i j}} d \mu^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}} f_{i j} d \mu^{n-1}=: \delta_{f}^{1} V\left(\Omega_{i}\right),
$$

where $f_{i j}=X^{n_{i j}}:=\left\langle X, n_{i j}\right\rangle$ on $\Sigma_{i j}$. We'll call $f=\left(f_{i j}\right)$ a "scalar-field".
Under favorable conditions: $Q(X)=Q_{0}(f)$, integration on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\sum_{i<j}\left(\int_{\Sigma_{i j}} F\left(f, \nabla_{\Sigma} f,\| \| \|^{2}\right) d \mu^{n-1}+\int_{\partial \Sigma_{i j}} G(f, \|) d \mu^{n-2}\right) .
$$

Can justify if $\operatorname{supp}(X)$ disjoint from Σ^{4}; need integrability of II. Stability for "physical" scalar-fields, $f_{i j}=X^{n_{i j}}: \delta_{f}^{1} V=0 \Rightarrow Q_{0}(f) \geq 0$.
Working with scalar-fields is super convenient. Given smooth
$\mathrm{w} / f_{i j}+f_{j k}+f_{k j}=0$ on $\Sigma_{i j k}$ (Kirchhoff), can we find smooth $X \mathrm{w} /$
Fven for single-bubble, NO! Simons cone
So let's approximate

- Can cut away Σ^{4} - effect on 2 nd variations arbitrarily small.

Approximating scalar-fields - why and how?

Stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X):=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle$ (the "index-form").

$$
\delta_{X}^{1} V\left(\Omega_{i}\right)=\int_{\partial^{*} \Omega_{i}} X^{\mathbf{n}_{i j}} d \mu^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}} f_{i j} d \mu^{n-1}=: \delta_{f}^{1} V\left(\Omega_{i}\right),
$$

where $f_{i j}=X^{\mathbf{n}_{i j}}:=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\Sigma_{i j}$. We'll call $f=\left(f_{i j}\right)$ a "scalar-field". Under favorable conditions: $Q(X)=Q_{0}(f)$, integration on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\sum_{i<j}\left(\int_{\Sigma_{i j}} F\left(f, \nabla_{\Sigma} f,\|I\|^{2}\right) d \mu^{n-1}+\int_{\partial \Sigma_{i j}} G(f, \|) d \mu^{n-2}\right) .
$$

Can justify if $\operatorname{supp}(X)$ disjoint from Σ^{4}; need integrability of II. Stability for "physical" scalar-fields, $f_{i j}=X^{n_{i j}}: \delta_{f}^{1} V=0 \Rightarrow Q_{0}(f) \geq 0$.
Working with scalar-fields is super convenient. Given smooth $f=\left(f_{i j}\right)$ $\mathrm{w} / f_{i j}+f_{j k}+f_{k i}=0$ on $\Sigma_{i j k}$ (Kirchhoff), can we find smooth $X \mathrm{w} / X^{\mathbf{n}_{i j}}=f_{i j}$?
Even for single-bubble, NO! Simons cone
So let's approximate:

- Can cut away $\Sigma^{4}-$ effect on 2 nd variations arbitrarily small.

Approximating scalar-fields - why and how?

Stability for "physical" scalar-fields, $f_{i j}=X^{n_{i j}}: \delta_{f}^{1} V=0 \Rightarrow Q_{0}(f) \geq 0$.
Working with scalar-fields is super convenient. Given smooth $f=\left(f_{i j}\right)$ $\mathrm{w} / f_{i j}+f_{j k}+f_{k i}=0$ on $\sum_{i j k}$ (Kirchhoff), can we find smooth $X \mathbf{w} / X^{\mathbf{n}_{i j}}=f_{i j}$?

Even for single-bubble, NO! Simons cone
So let's approximate:

- Can cut away 5^{4} - effect on 2 nd variations arbitrarily small.
- Can't cut Σ^{3} (will be felt by $\delta_{X}^{2} A$)! Problem, since: (i) $n_{i j}$ is C (ii) curvature could be blowing-up near Σ^{3}

We'll assume
(satisfy Kirchoff),
Since
reduces to approximating

Approximating scalar-fields - why and how?

Stability for "physical" scalar-fields, $f_{i j}=X^{n_{i j}}: \delta_{f}^{1} V=0 \Rightarrow Q_{0}(f) \geq 0$.
Working with scalar-fields is super convenient. Given smooth $f=\left(f_{i j}\right)$ $\mathrm{w} / f_{i j}+f_{j k}+f_{k i}=0$ on $\Sigma_{i j k}$ (Kirchhoff), can we find smooth $X \mathbf{w} / X^{\mathbf{n}_{i j}}=f_{i j}$? Even for single-bubble, NO! Simons cone $\left\{x \in \mathbb{R}^{8}: \sum_{i=1}^{4} x_{i}^{2}=\sum_{i=5}^{8} x_{i}^{2}\right\}$.
So let's approximate:

- Can cut away Σ^{4} - effect on 2 nd variations arbitrarily small.
- Can't cut Σ^{3} (will be felt by $\delta_{\dot{\prime}}^{2}$ A)! Problem, since: (i) $n_{i j}$ is C^{0} (ii) curvature could be blowing-up near Σ

Approximating scalar-fields - why and how?

Stability for "physical" scalar-fields, $f_{i j}=X^{n_{i j}}: \delta_{f}^{1} V=0 \Rightarrow Q_{0}(f) \geq 0$.
Working with scalar-fields is super convenient. Given smooth $f=\left(f_{i j}\right)$ $\mathrm{w} / f_{i j}+f_{j k}+f_{k i}=0$ on $\Sigma_{i j k}$ (Kirchhoff), can we find smooth $X \mathbf{w} / X^{\mathbf{n}_{i j}}=f_{i j}$?

Even for single-bubble, NO! Simons cone $\left\{x \in \mathbb{R}^{8}: \sum_{i=1}^{4} x_{i}^{2}=\sum_{i=5}^{8} x_{i}^{2}\right\}$.
So let's approximate: $\delta_{X}^{1} V=\delta_{f}^{1} V$ and $Q(X) \simeq Q_{0}(f)$.

- Can cut away Σ^{4} - effect on 2 nd variations arbitrarily small.
- Can't cut Σ^{3} (will be felt by $\delta_{X}^{2} A$)! Problem, since: (i) $\mathfrak{n}_{i j}$ is $C^{0, \alpha}$ on Σ^{3}; (ii) curvature could be blowing-up near Σ^{3}.
We'll assume
(satisfy Kirchoff)
Since
reduces to approximating
By using partition of unity, we do it on

Approximating scalar-fields - why and how?

Stability for "physical" scalar-fields, $f_{i j}=X^{n_{i j}}: \delta_{f}^{1} V=0 \Rightarrow Q_{0}(f) \geq 0$.
Working with scalar-fields is super convenient. Given smooth $f=\left(f_{i j}\right)$ $\mathrm{w} / f_{i j}+f_{j k}+f_{k i}=0$ on $\Sigma_{i j k}$ (Kirchhoff), can we find smooth $X \mathrm{w} / X^{\mathbf{n}_{i j}}=f_{i j}$?
Even for single-bubble, NO! Simons cone $\left\{x \in \mathbb{R}^{8}: \sum_{i=1}^{4} x_{i}^{2}=\sum_{i=5}^{8} x_{i}^{2}\right\}$.
So let's approximate: $\delta_{X}^{1} V=\delta_{f}^{1} V$ and $Q(X) \simeq Q_{0}(f)$.

- Can cut away Σ^{4} - effect on 2 nd variations arbitrarily small.
- Can't cut Σ^{3} (will be felt by $\delta_{X}^{2} A$)! Problem, since: (i) $\mathfrak{n}_{i j}$ is $C^{0, \alpha}$ on Σ^{3}; (ii) curvature could be blowing-up near Σ^{3}.
We'll assume $f_{i j}=\Psi_{i}\left|\Sigma_{\Sigma_{j}}-\psi_{j}\right| \Sigma_{i j}$ (satisfy Kirchoff), $\Psi_{i}: \partial^{*} \Omega_{i} \rightarrow \mathbb{R}$. Since $f_{i j}=\sum_{k}\left(\delta_{i}^{k}-\delta_{j}^{k}\right) \Psi_{k}$, reduces to approximating $\delta_{i}^{k}-\delta_{j}^{k}$ by $X^{n_{i j}}$. By using partition of unity, we do it on $\Sigma^{2} \simeq \mathrm{Y}$ and $\Sigma^{3} \simeq \mathrm{~T}$.

Formula for Index-Form

Under very favorable conditions, stability yields $\delta_{f}^{1} V=0 \Rightarrow 0 \leq Q_{0}(f)$. Idea 1.0: find f with $\delta_{f}^{1} V=0$ and $Q_{0}(f) \leq 0$. Read off information on II.

$L_{J a c}$ is the Jacobi operator:

Here $\operatorname{Ric}_{q, \mu}(n, n)=0$ on $\mathbb{R}^{n},=n-1$ on \mathbb{S}^{n} and $=1$ on \mathbb{G}^{n}.
$\Delta_{\Sigma, \mu}$ - (weighted) surface Laplacian. n$\partial i j$ outer normal to $\partial \Sigma_{i j}$ in $T \Sigma_{i j}$
Problem: II a-priori unknown, no control over boundary's sign.
Idea 2.0: use stability for family of scalar-fields $f_{i j}^{a}=\left(a_{i}-a_{j}\right) \psi, a \in \mathbb{R}^{q}$
so that $\delta_{f a}^{1} V=0$ and $\mathbb{E}_{a} Q_{0}\left(f^{a}\right) \leq 0, a \sim \mathbb{S}^{q-1}$. Read off information on

Formula for Index-Form

Under very favorable conditions, stability yields $\delta_{f}^{1} V=0 \Rightarrow 0 \leq Q_{0}(f)$. Idea 1.0: find f with $\delta_{f}^{1} V=0$ and $Q_{0}(f) \leq 0$. Read off information on II.

$$
Q_{0}(f)=\sum_{i<j}\left(-\int_{\Sigma_{i j}} f L_{J a c} f d \mu^{n-1}+\int_{\partial \Sigma_{i j}} f\left(\nabla_{\mathfrak{n}_{\partial i j}} f-\frac{\left\|_{\partial \partial}^{i k}+\right\|_{\partial \partial}^{j k} f}{\sqrt{3}}\right) d \mu^{n-2}\right) .
$$

L_{Jac} is the Jacobi operator:

$$
-\delta_{f \mathfrak{n}}^{1} H_{\Sigma, \mu}=L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\| \| \|^{2}\right) f
$$

Here $\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})=0$ on \mathbb{R}^{n}, $=n-1$ on \mathbb{S}^{n} and $=1$ on \mathbb{G}^{n}.
$\Delta_{\Sigma, \mu}$ - (weighted) surface Laplacian. $\mathfrak{n}_{\partial i j}$ outer normal to $\partial \Sigma_{i j}$ in $T \Sigma_{i j}$.
Problem: II a-priori unknown, no control over boundary's sign. Idea 2.0: use stability for family of scalar-fields so that $\delta_{f a}^{1} V=0$ and

Formula for Index-Form

Under very favorable conditions, stability yields $\delta_{f}^{1} V=0 \Rightarrow 0 \leq Q_{0}(f)$. Idea 1.0: find f with $\delta_{f}^{1} V=0$ and $Q_{0}(f) \leq 0$. Read off information on II.

$$
Q_{0}(f)=\sum_{i<j}\left(-\int_{\Sigma_{i j}} f L_{J a c} f d \mu^{n-1}+\int_{\partial \Sigma_{i j}} f\left(\nabla_{\mathfrak{n}_{\partial i j}} f-\frac{\left\|_{\partial \partial}^{i k}+\right\|_{\partial \partial}^{j k} f}{\sqrt{3}}\right) d \mu^{n-2}\right) .
$$

$L_{J a c}$ is the Jacobi operator:

$$
-\delta_{f \mathfrak{n}}^{1} H_{\Sigma, \mu}=L_{\mathrm{Jac}} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\| \| \|^{2}\right) f .
$$

Here $\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})=0$ on \mathbb{R}^{n}, $=n-1$ on \mathbb{S}^{n} and $=1$ on \mathbb{G}^{n}.
$\Delta_{\Sigma, \mu}$ - (weighted) surface Laplacian. $\mathfrak{n}_{\partial i j}$ outer normal to $\partial \Sigma_{i j}$ in $T \Sigma_{i j}$.
Problem: II a-priori unknown, no control over boundary's sign.
Idea 2.0: use stability for family of scalar-fields
so that $\delta_{f a}^{1} V=0$ and
Read off information on

Formula for Index-Form

Under very favorable conditions, stability yields $\delta_{f}^{1} V=0 \Rightarrow 0 \leq Q_{0}(f)$. Idea 1.0: find f with $\delta_{f}^{1} V=0$ and $Q_{0}(f) \leq 0$. Read off information on II.

$$
Q_{0}(f)=\sum_{i<j}\left(-\int_{\Sigma_{i j}} f L_{J a c} f d \mu^{n-1}+\int_{\partial \Sigma_{i j}} f\left(\nabla_{\mathfrak{n}_{\partial i j}} f-\frac{\left\|_{\partial \partial}^{i k}+\right\|_{\partial \partial}^{j k} f}{\sqrt{3}}\right) d \mu^{n-2}\right) .
$$

$L_{J a c}$ is the Jacobi operator:

$$
-\delta_{f \mathfrak{n}}^{1} H_{\Sigma, \mu}=L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\| \| \|^{2}\right) f
$$

Here $\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})=0$ on \mathbb{R}^{n}, $=n-1$ on \mathbb{S}^{n} and $=1$ on \mathbb{G}^{n}.
$\Delta_{\Sigma, \mu}$ - (weighted) surface Laplacian. $\mathfrak{n}_{\partial i j}$ outer normal to $\partial \Sigma_{i j}$ in $T \Sigma_{i j}$.
Problem: II a-priori unknown, no control over boundary's sign.
Idea 2.0: use stability for family of scalar-fields $f_{i j}^{a}=\left(a_{i}-a_{j}\right) \psi, a \in \mathbb{R}^{q}$, so that $\delta_{f a}^{1} V=0$ and $\mathbb{E}_{a} Q_{0}\left(f^{a}\right) \leq 0, a \sim \mathbb{S}^{q-1}$. Read off information on II.

$$
Q_{0}^{\mathrm{tr}}(\Psi)=\frac{1}{2} \operatorname{tr}\left(a \mapsto Q_{0}\left(\left(a_{i}-a_{j}\right) \Psi\right)\right)=-\sum_{i<j} \int_{\Sigma_{i j}} \Psi L_{\mathrm{Jac}} \psi d \mu^{n-1}
$$

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \Psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{J a c} \Psi, \Psi\right\rangle \leq 0$.

> On \mathbb{G}^{n} when q odd $\psi\left(x_{n}\right) \Rightarrow \|=0$

> On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry.
> We are given a hint: want to have $Q_{0}^{\mathrm{tr}}(\Psi)=0$ on standard bubbles.
> Trivial way to get $Q(X)=0$ or $L_{J a c} X^{11 /}=0$: use vector-field generating -parameter family of isometries ("Killing field"), e.g. rotation-field:

Define quasi-center vector-field $c_{i j}=n_{i j}-\kappa_{i j} p$ on $\Sigma_{i j}$,
Fact 1: if $\Sigma_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere, $c_{i j}$ is constant.
Fact 2: $\mathrm{cij}^{\mathrm{l}}$ locally constant iff $\|_{0}=0\left(\nabla \mathrm{oic}=\|_{0} 0^{\dagger}\right)$,

On a standard bubble with N^{\perp}-symmetry, $c_{i j} \in N^{\perp}$ is constant on Σ

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{J a c} \psi, \psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow \|=0$.

On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{1}-symmetry.
 We are given a hint: want to have $Q_{0}^{\text {tr }}(\Psi)=0$ on standard bubbles.
 Trivial way to get $Q(X)=0$ or $L_{\text {acc }} X^{n_{T}}=0$: use vector-field generating -parameter family of isometries ("Killing field"), e.g. rotation-field:

Define quasi-center vector-field $c_{i j}=n_{i j}-\kappa_{i j} p$ on $\Sigma_{i j}$,
Fact 1 : if $\Sigma_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere, $c_{i j}$ is constant.
Fact 2: cifocally constant iff $110=0\left(\mathrm{Vac}=\mathrm{II}_{0} 0^{*}\right)$,

On a standard bubble with N^{\perp}-symmetry, $c_{i j} \in N^{\perp}$ is constant on $\Sigma_{i j}$

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{J a c} \psi, \psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow I I=0$.
On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry. We are given a hint: want to have $Q_{0}^{\mathrm{t}}(\Psi)=0$ on standard bubbles.

Trivial way to get $Q(X)=0$ or $L_{\text {Jac }} X^{n_{j}}=0$: use vector-field generating -parameter family of isometries ("Killing field"), e.g. rotation-field:

Define quasi-center vector-field c
Fact 1: if $\Sigma_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere, $c_{i j}$ is constant.
Fact 2: cij locally constant iff

On a standard bubble with N^{\perp}-symmetry, $c_{i j} \in N^{\perp}$ is constant on Σ

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\psi)=-\left\langle L_{J a c} \psi, \psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow I I=0$.
On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry. We are given a hint: want to have $Q_{0}^{\mathrm{tr}}(\Psi)=0$ on standard bubbles.
Trivial way to get $Q(X)=0$ or $L_{\text {Jac }} X^{n_{T}}=0$: use vector-field generating -parameter family of isometries ("Killing field"), e.g. rotation-field:

Define quasi-center vector-field c Fact 1: if $\Sigma_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere, $c_{i j}$ is constant.
Fact 2: cij locally constant iff

On a standard bubble with N^{\perp}-symmetry,
is constant on

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{\mathrm{Jac}} \psi, \Psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow \|=0$.
On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry. We are given a hint: want to have $Q_{0}^{\mathrm{tr}}(\Psi)=0$ on standard bubbles.
Trivial way to get $Q(X)=0$ or $L_{\text {Jac }} X^{n_{j}}=0$: use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

$$
R_{\theta, N}=\langle N, p\rangle \theta-\langle\theta, p\rangle N\left(\nabla R_{\theta, N}=N \otimes \theta-\theta \otimes N\right) .
$$

Define quasi-center vector-field
Fact 1 : if $\sum_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere,
is constant.

On a standard bubble with
-symmetry,

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{J a c} \psi, \psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow I I=0$.
On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry. We are given a hint: want to have $Q_{0}^{\mathrm{tr}}(\Psi)=0$ on standard bubbles.
Trivial way to get $Q(X)=0$ or $L_{J a c} X^{n_{i j}}=0$: use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

$$
R_{\theta, N}=\langle N, p\rangle \theta-\langle\theta, p\rangle N\left(\nabla R_{\theta, N}=N \otimes \theta-\theta \otimes N\right) .
$$

Define quasi-center vector-field $\mathfrak{c}_{i j}=\mathfrak{n}_{i j}-\kappa_{i j} p$ on $\sum_{i j}, \kappa_{i j}=H_{\Sigma_{i j}} /(n-1)$.
Fact 2:
locally constant iff

On a standard bubble with
-symmetry,

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{J a c} \psi, \psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow I I=0$.
On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry. We are given a hint: want to have $Q_{0}^{\mathrm{tr}}(\Psi)=0$ on standard bubbles.
Trivial way to get $Q(X)=0$ or $L_{J a c} X^{n_{j i}}=0$: use vector-field generating
1-parameter family of isometries ("Killing field"), e.g. rotation-field:

$$
R_{\theta, N}=\langle N, p\rangle \theta-\langle\theta, p\rangle N\left(\nabla R_{\theta, N}=N \otimes \theta-\theta \otimes N\right) .
$$

Define quasi-center vector-field $\mathfrak{c}_{i j}=\mathfrak{n}_{i j}-\kappa_{i j} p$ on $\sum_{i j}, \kappa_{i j}=H_{\Sigma_{i j}} /(n-1)$. Fact 1 : if $\Sigma_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere, $c_{i j}$ is constant.
Fact 2: $\mathfrak{c}_{i j}$ locally constant iff $\|_{0}=0\left(\nabla_{\theta t} \mathfrak{c}=\| \|_{0} \theta^{t}\right), \mathfrak{c}_{i j}+\mathfrak{c}_{j k}+\mathfrak{c}_{k i}=0$.

On a standard bubble with
-symmetry,
is constant on

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{\mathrm{Jac}} \psi, \Psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow I I=0$.
On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry. We are given a hint: want to have $Q_{0}^{\mathrm{tr}}(\Psi)=0$ on standard bubbles.
Trivial way to get $Q(X)=0$ or $L_{J a c} X^{n_{j i}}=0$: use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

$$
R_{\theta, N}=\langle N, p\rangle \theta-\langle\theta, p\rangle N\left(\nabla R_{\theta, N}=N \otimes \theta-\theta \otimes N\right) .
$$

Define quasi-center vector-field $\mathfrak{c}_{i j}=\mathfrak{n}_{i j}-\kappa_{i j} p$ on $\sum_{i j}, \kappa_{i j}=H_{\Sigma_{i j}} /(n-1)$. Fact 1: if $\Sigma_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere, $c_{i j}$ is constant.
Fact 2: $\mathfrak{c}_{i j}$ locally constant iff $\|_{0}=0\left(\nabla_{\theta t} \mathfrak{c}=\| \|_{0} \theta^{t}\right), \mathfrak{c}_{i j}+\mathfrak{c}_{j k}+\mathfrak{c}_{k i}=0$.

$$
R_{\theta, N}^{\mathfrak{n}_{i j}}=\langle N, p\rangle\left\langle\theta, \mathfrak{n}_{i j}\right\rangle-\langle\theta, p\rangle\left\langle N, \mathfrak{n}_{i j}\right\rangle=\langle N, p\rangle\left\langle\theta, \mathfrak{c}_{i j}\right\rangle-\langle\theta, p\rangle\left\langle N, \mathfrak{c}_{i j}\right\rangle .
$$

On a standard bubble with N^{\perp}-symmetry, $c_{i j} \in N^{\perp}$ is constant on $\Sigma_{i j}$:

Which ψ to use?

Goal: find ψ s.t. $\int_{\Sigma_{i j}} \psi d \mu^{n-1}=0 \forall i, j$ and $Q_{0}^{\mathrm{tr}}(\Psi)=-\left\langle L_{\mathrm{Jac}} \psi, \Psi\right\rangle \leq 0$.
On \mathbb{G}^{n} when $q<n+1, \Omega=\tilde{\Omega} \times \mathbb{R}, \gamma^{n}=\gamma^{n-1} \otimes \gamma$, odd $\psi\left(x_{n}\right) \Rightarrow I I=0$.
On $\mathbb{R}^{n} / \mathbb{S}^{n}$ when $q<n+2$, no product structure, only N^{\perp}-symmetry. We are given a hint: want to have $Q_{0}^{\mathrm{tr}}(\Psi)=0$ on standard bubbles.
Trivial way to get $Q(X)=0$ or $L_{J a c} X^{n_{i j}}=0$: use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

$$
R_{\theta, N}=\langle N, p\rangle \theta-\langle\theta, p\rangle N\left(\nabla R_{\theta, N}=N \otimes \theta-\theta \otimes N\right) .
$$

Define quasi-center vector-field $\mathfrak{c}_{i j}=\mathfrak{n}_{i j}-\kappa_{i j} p$ on $\sum_{i j}, \kappa_{i j}=H_{\Sigma_{i j}} /(n-1)$. Fact 1: if $\Sigma_{i j} \subset \mathbb{R}^{n} / \mathbb{S}^{n}$ is a sphere, $c_{i j}$ is constant.
Fact 2 : $\mathfrak{c}_{i j}$ locally constant iff $\|_{0}=0\left(\nabla_{\theta t} \mathfrak{c}=\| I_{0} \theta^{t}\right), \mathfrak{c}_{i j}+\mathfrak{c}_{j k}+\mathfrak{c}_{k i}=0$.

$$
R_{\theta, N}^{\mathfrak{n}_{i j}}=\langle N, p\rangle\left\langle\theta, \mathfrak{n}_{i j}\right\rangle-\langle\theta, p\rangle\left\langle N, \mathfrak{n}_{i j}\right\rangle=\langle N, p\rangle\left\langle\theta, \mathfrak{c}_{i j}\right\rangle-\langle\theta, p\rangle\left\langle N, \mathfrak{c}_{i j}\right\rangle .
$$

On a standard bubble with N^{\perp}-symmetry, $c_{i j} \in N^{\perp}$ is constant on $\Sigma_{i j}$:

$$
R_{\theta, N}^{\mathfrak{n}_{i j}}=a_{i j}\langle N, p\rangle, a_{i j}=\left\langle\theta, c_{i j}\right\rangle \Rightarrow Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)=0 .
$$

So let's use $\psi=\langle N, p\rangle$ on our minimizing cluster!

Not enough! Need Dilation Fields

On $\mathbb{R}^{n} / \mathbb{S}^{n}$, by stability:
$0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)=-\sum_{i<j} \int_{\Sigma_{i j}}\left(\langle N, p\rangle^{2}\left\|I_{0}^{i j}\right\|^{2}-(n-1) \kappa_{i j}\langle N, p\rangle\left\langle N, c_{i j}\right\rangle\right) d p \leq ? ? ? 0$.
No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (\& scaling), its generators are:

These are conformal Killing-fields = generate 1-parameter family of conformal maps; $\nabla W_{\theta}=$ Anti-Sym $+f_{p}$ Id ($f_{p}=0$ for Killing). Properties:

- $L_{J a c} X^{n_{j j}}=\delta_{X}^{1} H_{\Sigma_{i j}}$ has nice formula (recall $=0$ for Killing X).

Not enough! Need Dilation Fields

On $\mathbb{R}^{n} / \mathbb{S}^{n}$, by stability:

$$
0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)=-\sum_{i<j} \int_{\Sigma_{i j}}\left(\langle N, p\rangle^{2}\left\|\Pi_{0}^{i j}\right\|^{2}-(n-1) \kappa_{i j}\langle N, p\rangle\left\langle N, c_{i j}\right\rangle\right) d p \leq ? ? ? 0 .
$$

No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (\& scaling), its generators are:

$$
W_{\theta}:=\left\{\begin{array}{ll}
\frac{\left|| |^{2}\right.}{2} \theta-\langle\theta, p\rangle p & \text { on } \mathbb{R}^{n} \\
\theta-\langle\theta, p\rangle p & \text { on } \mathbb{S}^{n}
\end{array} \quad\right. \text { ("dilation-fields"). }
$$

These are conformal Killing-fields = generate 1 -parameter family of conformal maps; $\nabla W_{\theta}=$ Anti-Sym $+f_{p}$ Id ($f_{p}=0$ for Killing). Properties:

Not enough! Need Dilation Fields

On $\mathbb{R}^{n} / \mathbb{S}^{n}$, by stability:

$$
0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)=-\sum_{i<j} \int_{\Sigma_{i j}}\left(\langle N, p\rangle^{2}\left\|I_{0}^{i j}\right\|^{2}-(n-1) \kappa_{i j}\langle N, p\rangle\left\langle N, c_{i j}\right\rangle\right) d p \leq ? ? ? 0 .
$$

No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (\& scaling), its generators are:

$$
W_{\theta}:=\left\{\begin{array}{ll}
\frac{|p|^{2}}{2} \theta-\langle\theta, p\rangle p & \text { on } \mathbb{R}^{n} \\
\theta-\langle\theta, p\rangle p & \text { on } \mathbb{S}^{n}
\end{array}\right. \text { ("dilation-fields"). }
$$

These are conformal Killing-fields = generate 1-parameter family of conformal maps; $\nabla W_{\theta}=$ Anti-Sym $+f_{p}$ Id ($f_{p}=0$ for Killing). Properties:

- $f_{i j}=X^{n_{i j}}$ satisfy conformal $B C s$ on $\partial \Sigma_{i j} \leadsto Q_{0}$ bdry integrand $=0$.
- $L_{J a c} X^{\mathbf{n}_{i j}}=\delta_{X}^{1} H_{\Sigma_{i j}}$ has nice formula (recall $=0$ for Killing X).

Not enough! Need Dilation Fields

On $\mathbb{R}^{n} / \mathbb{S}^{n}$, by stability:

$$
0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)=-\sum_{i<j} \int_{\Sigma_{i j}}\left(\langle N, p\rangle^{2}\left\|I_{0}^{i j}\right\|^{2}-(n-1) \kappa_{i j}\langle N, p\rangle\left\langle N, c_{i j}\right\rangle\right) d p \leq ? ? ? 0 .
$$

No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (\& scaling), its generators are:

$$
W_{\theta}:=\left\{\begin{array}{ll}
\frac{|p|^{2}}{2} \theta-\langle\theta, p\rangle p & \text { on } \mathbb{R}^{n} \\
\theta-\langle\theta, p\rangle p & \text { on } \mathbb{S}^{n}
\end{array}\right. \text { ("dilation-fields"). }
$$

These are conformal Killing-fields = generate 1-parameter family of conformal maps; $\nabla W_{\theta}=$ Anti-Sym $+f_{p}$ Id ($f_{p}=0$ for Killing). Properties:

- $f_{i j}=X^{n_{i j}}$ satisfy conformal BCs on $\partial \Sigma_{i j} \leadsto Q_{0}$ bdry integrand $=0$.
- $L_{J a c} X^{\mathbf{n}_{i j}}=\delta_{X}^{1} H_{\Sigma_{i j}}$ has nice formula (recall $=0$ for Killing X).

We will use W_{N}, since $W_{N}^{\text {n }}$ is odd w.r.t. N^{\perp} and hence $\delta_{W_{N}}^{1} V=0$.

Concluding Sphericity on $\mathbb{S}^{n} / \mathbb{R}^{n}$

- On \mathbb{S}^{n}, by stability (applied twice!):
(1) $\forall i, j \int_{\Sigma_{i j}}\langle N, p\rangle d p=0 \Rightarrow 0 \leq Q_{0}^{\operatorname{tr}}(\langle N, p\rangle)$.
(2) $\delta_{W_{N}}^{1} V=0 \Rightarrow 0 \leq Q\left(W_{N}\right)$.

In both cases, boundary term vanishes (averaging / conformal BCs):

Hence $\|_{0} \equiv 0$ and

- On \mathbb{R}^{n}, it turns out that $Q\left(W_{N}\right)=0$ without stability. This is equivalent to the isotropicity of Σ^{1} (regardless of q or $V(\Omega)$!):

Again, $\|_{0} \equiv 0$ and

Concluding Sphericity on $\mathbb{S}^{n} / \mathbb{R}^{n}$

- On \mathbb{S}^{n}, by stability (applied twice!):
(1) $\forall i, j \int_{\Sigma_{i j}}\langle N, p\rangle d p=0 \Rightarrow 0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)$.
(2) $\delta_{W_{N}}^{1} V=0 \Rightarrow 0 \leq Q\left(W_{N}\right)$.

In both cases, boundary term vanishes (averaging / conformal BCs):
$0 \leq Q_{0}^{\operatorname{tr}}(\langle N, p\rangle)+Q\left(W_{N}\right)=-\sum_{i<j} \int_{\Sigma_{i j}}\left(\langle N, p\rangle^{2}\left\|I_{0}^{i j}\right\|^{2}+(n-1)\left\langle N, c_{i j}\right\rangle^{2}\right) d p$
Hence $\|_{0} \equiv 0$ and

- On \mathbb{R}^{n}, it turns out that $Q\left(W_{N}\right)=0$ without stability. This is
equivalent to the isotropicity of Σ^{1} (regardless of q or $V(\Omega)!$):

Concluding Sphericity on $\mathbb{S}^{n} / \mathbb{R}^{n}$

- On \mathbb{S}^{n}, by stability (applied twice!):
(1) $\forall i, j \int_{\Sigma_{i j}}\langle N, p\rangle d p=0 \Rightarrow 0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)$.
(2) $\delta_{W_{N}}^{1} V=0 \Rightarrow 0 \leq Q\left(W_{N}\right)$.

In both cases, boundary term vanishes (averaging / conformal BCs):
$0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)+Q\left(W_{N}\right)=-\sum_{i<j} \int_{\Sigma_{i j}}\left(\langle N, p\rangle^{2}\left\|I_{0}^{i j}\right\|^{2}+(n-1)\left\langle N, c_{i j}\right\rangle^{2}\right) d p \leq 0!$
Hence $\|_{0} \equiv 0$ and $\mathfrak{c}_{i j} \perp N$.

- On \mathbb{R}^{n}, it turns out that $Q\left(W_{N}\right)=0$ without stability. This is
equivalent to the isotropicity of Σ^{1} (regardless of q or $V(\Omega)!$):

Concluding Sphericity on $\mathbb{S}^{n} / \mathbb{R}^{n}$

- On \mathbb{S}^{n}, by stability (applied twice!):
(1) $\forall i, j \int_{\Sigma_{i j}}\langle N, p\rangle d p=0 \Rightarrow 0 \leq Q_{0}^{\mathrm{tr}}(\langle N, p\rangle)$.
(2) $\delta_{W_{N}}^{1} V=0 \Rightarrow 0 \leq Q\left(W_{N}\right)$.

In both cases, boundary term vanishes (averaging / conformal BCs):
$0 \leq Q_{0}^{\operatorname{tr}}(\langle N, p\rangle)+Q\left(W_{N}\right)=-\sum_{i<j} \int_{\Sigma_{i j}}\left(\langle N, p\rangle^{2}\| \| I_{0}^{i j} \|^{2}+(n-1)\left\langle N, c_{i j}\right\rangle^{2}\right) d p \leq 0!$
Hence $\|_{0} \equiv 0$ and $c_{i j} \perp N$.

- On \mathbb{R}^{n}, it turns out that $Q\left(W_{N}\right)=0$ without stability. This is equivalent to the isotropicity of Σ^{1} (regardless of q or $V(\Omega)$!):

$$
\int_{\Sigma^{1}} \mathfrak{n} \otimes \mathfrak{n} d p=\frac{1}{n} \int_{\Sigma^{1}} \mathrm{ld} d p
$$

Again, $\mathrm{Il}_{0} \equiv 0$ and $\mathrm{c}_{i j} \perp \mathrm{~N}$.

Is isotropicity obvious?

Proof: Steps 2 \& 3 - Minimizer is Voronoi Cluster

On \mathbb{G}^{n} : These steps not needed; jump to Step 4!
minimizer is spherical Voronoi cluster:
There exist and so that:

- For every
lies on a (generalized) geodesic sphere with quasi-center $c_{i j}=c_{i}-c_{j}$ and curvature The quasi-center $\mathrm{c}:=\mathfrak{n}-\kappa p$ is constant on a sphere
(2) On \mathbb{S}^{n}, the following V/oronoi representation holds:

Similarly on \mathbb{R}^{n}, after stereographic projection to
Furthermore each \cap is connected
Step 2 involves simplicial homology of
Step 3 involves stability again, elliptic regularity, maximum principle.

Proof: Steps 2 \& 3 - Minimizer is Voronoi Cluster

On \mathbb{G}^{n} : These steps not needed; jump to Step 4!
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical Voronoi cluster:

Proof: Steps 2 \& 3 - Minimizer is Voronoi Cluster

On \mathbb{G}^{n} : These steps not needed; jump to Step 4!
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical Voronoi cluster:

and

Euclidean Voronoi Cells:
$\Omega_{i}=\left\{x: \arg \min _{j}\left|x-x_{j}\right|^{2}=i\right\}$

There exist
so that:
(1) For every with quasi-center $\mathrm{ch}=\mathrm{c}-\mathrm{a}$ and curvature

Proof: Steps 2 \& 3 - Minimizer is Voronoi Cluster

On \mathbb{G}^{n} : These steps not needed; jump to Step 4!
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical Voronoi cluster:

Proof: Steps 2 \& 3 - Minimizer is Voronoi Cluster

On \mathbb{G}^{n} : These steps not needed; jump to Step 4!
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical Voronoi cluster:
There exist $\left\{\mathfrak{c}_{i}\right\}_{i=1, \ldots, q} \subset \mathbb{R}^{n+1} / \mathbb{R}^{n}$ and $\left\{\kappa_{i}\right\}_{i=1, \ldots, q} \subset \mathbb{R}$ so that:
(1) For every $\Sigma_{i j} \neq \varnothing, \Sigma_{i j}$ lies on a (generalized) geodesic sphere $S_{i j}$ with quasi-center $\mathfrak{c}_{i j}=\mathfrak{c}_{i}-\mathfrak{c}_{j}$ and curvature $\kappa_{i j}=\kappa_{i}-\kappa_{j}$. The quasi-center $c:=\mathfrak{n}-\kappa p$ is constant on a sphere $S \subset \mathbb{S}^{n} / \mathbb{R}^{n}$.
(2) On \mathbb{S}^{n}, the following Voronoi representation holds:

$$
\Omega_{i}=\operatorname{int}\left\{p \in \mathbb{S}^{n} ; \underset{j=1, \ldots, q}{\arg \min }\left\langle\mathfrak{c}_{j}, p\right\rangle+\kappa_{j}=i\right\}=\bigcap_{j \neq i}\left\{p \in \mathbb{S}^{n} ;\left\langle\mathfrak{c}_{i j}, p\right\rangle+\kappa_{i j}<0\right\} .
$$

Similarly on \mathbb{R}^{n}, after stereographic projection to \mathbb{S}^{n}.
Furthermore, each Ω_{i} is connected.
Step 2 involves simplicial homology of
Step 3 involves stability again, elliptic regularity, maximum principle.

Proof: Steps 2 \& 3 - Minimizer is Voronoi Cluster

On \mathbb{G}^{n} : These steps not needed; jump to Step 4!
On $\mathbb{S}^{n} / \mathbb{R}^{n}: q \leq n+1 \Rightarrow$ minimizer is spherical Voronoi cluster:
There exist $\left\{\mathfrak{c}_{i}\right\}_{i=1, \ldots, q} \subset \mathbb{R}^{n+1} / \mathbb{R}^{n}$ and $\left\{\kappa_{i}\right\}_{i=1, \ldots, q} \subset \mathbb{R}$ so that:
(1) For every $\Sigma_{i j} \neq \varnothing, \Sigma_{i j}$ lies on a (generalized) geodesic sphere $S_{i j}$ with quasi-center $\mathfrak{c}_{i j}=\mathfrak{c}_{i}-\mathfrak{c}_{j}$ and curvature $\kappa_{i j}=\kappa_{i}-\kappa_{j}$. The quasi-center $c:=\mathfrak{n}-\kappa p$ is constant on a sphere $S \subset \mathbb{S}^{n} / \mathbb{R}^{n}$.
(2) On \mathbb{S}^{n}, the following Voronoi representation holds:

$$
\Omega_{i}=\operatorname{int}\left\{p \in \mathbb{S}^{n} ; \underset{j=1, \ldots, q}{\arg \min }\left\langle\mathfrak{c}_{j}, p\right\rangle+\kappa_{j}=i\right\}=\bigcap_{j \neq i}\left\{p \in \mathbb{S}^{n} ;\left\langle\mathfrak{c}_{i j}, p\right\rangle+\kappa_{i j}<0\right\} .
$$

Similarly on \mathbb{R}^{n}, after stereographic projection to \mathbb{S}^{n}.
Furthermore, each Ω_{i} is connected.
Step 2 involves simplicial homology of $\left\{\Omega_{i}\right\}_{i=1, \ldots, q}$, Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

An interlude - Lemma in Convex Geometry

From Almost Local to Global Convexity (M.-Neeman '18)
Let Ω be an open connected subset of \mathbb{R}^{n}, and let $B \subset \partial \Omega$ with $\mathcal{H}^{n-2}(B)=0$. Assume that $\forall p \in \partial \Omega \backslash B$ there exists an open neighborhood N_{p} of p so that $\Omega \cap N_{p}$ is convex. Then Ω is convex.

- Classical for $B=\varnothing$ (Tietze, Nakajima 1928).
- False without connectedness, open / closed, $\mathcal{H}^{n-\alpha}$ for $\alpha<2$.

An interlude - Lemma in Convex Geometry

From Almost Local to Global Convexity (M.-Neeman '18)
Let Ω be an open connected subset of \mathbb{R}^{n}, and let $B \subset \partial \Omega$ with $\mathcal{H}^{n-2}(B)=0$. Assume that $\forall p \in \partial \Omega \backslash B$ there exists an open neighborhood N_{p} of p so that $\Omega \cap N_{p}$ is convex. Then Ω is convex.

- Classical for $B=\varnothing$ (Tietze, Nakajima 1928).
- False without connectedness, open / closed, $\mathcal{H}^{n-\alpha}$ for $\alpha<2$.

Proof: Step 4 - Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with $\Sigma_{i j} \neq \varnothing \forall i<j$ coincides with the class of conjectured minimizers.

Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

Proof: Step 4 - Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with $\Sigma_{i j} \neq \varnothing \forall i<j$ coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:

Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

Proof: Step 4 - Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with $\Sigma_{i j} \neq \varnothing \forall i<j$ coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:

Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

Double and Triple bubble on $\mathbb{R}^{n} / \mathbb{S}^{n}$

This already concludes proof of double/triple-bubble on $\mathbb{R}^{n} / \mathbb{S}^{n}$!

Quadruple bubble on $\mathbb{R}^{n} / \mathbb{S}^{n}$

For quadruple-bubble, analyze adjacency graphs on $q=5$ vertices. Many graphs, but most are ruled out after showing that the minimal degree ≥ 3 :

We are left with two non-standard cases to rule-out:

Quadruple bubble on $\mathbb{R}^{n} / \mathbb{S}^{n}$

For quadruple-bubble, analyze adjacency graphs on $q=5$ vertices. Many graphs, but most are ruled out after showing that the minimal degree ≥ 3 :

We are left with two non-standard cases to rule-out:

For $q \gg 1$, leads to questions on incidence structure of
How to proceed? How do we conclude on

Quadruple bubble on $\mathbb{R}^{n} / \mathbb{S}^{n}$

For quadruple-bubble, analyze adjacency graphs on $q=5$ vertices. Many graphs, but most are ruled out after showing that the minimal degree ≥ 3 :

We are left with two non-standard cases to rule-out:

For $q \gg 1$, leads to questions on incidence structure of $\left\{\Omega_{i}\right\}_{i=1, \ldots, q}$. How to proceed? How do we conclude on \mathbb{G}^{n} ?

Ruling out $K_{5} \backslash\{e\}$

The Isoperimetric Profile for Multi-Bubbles

$\left(M^{n}, g, \mu\right) \in\left\{\mathbb{G}^{n}, \mathbb{S}^{n}\right\}$. Need finite volume, so cannot work on \mathbb{R}^{n}. $V(\Omega)=\left(V\left(\Omega_{1}\right), \ldots, V\left(\Omega_{q}\right)\right) \in \Delta^{(q-1)}:=\left\{v \in \mathbb{R}^{q} ; v_{i} \geq 0, \sum_{i=1}^{q} v_{i}=1\right\}$. Isoperimetric Profile: $/^{(q-1)}: \Delta^{(q-1)} \rightarrow \mathbb{R}_{+}$,

$$
I^{(q-1)}(v):=\inf \{A(\Omega) ; V(\Omega)=v\} .
$$

Model Isoperimetric Profile: $I_{m}^{(q-1)}:$ int $\Delta^{(q-1)} \rightarrow \mathbb{R}_{+}$,
(denoting by Ω^{m} the conjectured model standard q-cluster),
can show that this is well-defined; extend continuously to
\square
Inducting on q, can assume $I^{(q-1)}=I_{m}^{(q-1)}$ on the boundary $\partial \Delta$

The Isoperimetric Profile for Multi-Bubbles

$\left(M^{n}, g, \mu\right) \in\left\{\mathbb{G}^{n}, \mathbb{S}^{n}\right\}$. Need finite volume, so cannot work on \mathbb{R}^{n}. $V(\Omega)=\left(V\left(\Omega_{1}\right), \ldots, V\left(\Omega_{q}\right)\right) \in \Delta^{(q-1)}:=\left\{v \in \mathbb{R}^{q} ; v_{i} \geq 0, \sum_{i=1}^{q} v_{i}=1\right\}$. Isoperimetric Profile: $/^{(q-1)}: \Delta^{(q-1)} \rightarrow \mathbb{R}_{+}$,

$$
I^{(q-1)}(v):=\inf \{A(\Omega) ; V(\Omega)=v\} .
$$

Model Isoperimetric Profile: $I_{m}^{(q-1)}:$ int $\Delta^{(q-1)} \rightarrow \mathbb{R}_{+}$, (denoting by Ω^{m} the conjectured model standard q-cluster),

$$
I_{m}^{(q-1)}(v)=A\left(\Omega^{m}\right) \text { s.t. } V\left(\Omega^{m}\right)=v \in \operatorname{int} \Delta^{(q-1)} ;
$$

can show that this is well-defined; extend continuously to $\partial \Delta^{(q-1)}$.

The Isoperimetric Profile for Multi-Bubbles

$\left(M^{n}, g, \mu\right) \in\left\{\mathbb{G}^{n}, \mathbb{S}^{n}\right\}$. Need finite volume, so cannot work on \mathbb{R}^{n}. $V(\Omega)=\left(V\left(\Omega_{1}\right), \ldots, V\left(\Omega_{q}\right)\right) \in \Delta^{(q-1)}:=\left\{v \in \mathbb{R}^{q} ; v_{i} \geq 0, \sum_{i=1}^{q} v_{i}=1\right\}$. Isoperimetric Profile: $/^{(q-1)}: \Delta^{(q-1)} \rightarrow \mathbb{R}_{+}$,

$$
I^{(q-1)}(v):=\inf \{A(\Omega) ; V(\Omega)=v\} .
$$

Model Isoperimetric Profile: $I_{m}^{(q-1)}:$ int $\Delta^{(q-1)} \rightarrow \mathbb{R}_{+}$, (denoting by Ω^{m} the conjectured model standard q-cluster),

$$
I_{m}^{(q-1)}(v)=A\left(\Omega^{m}\right) \text { s.t. } V\left(\Omega^{m}\right)=v \in \operatorname{int} \Delta^{(q-1)} ;
$$

can show that this is well-defined; extend continuously to $\partial \Delta^{(q-1)}$.
Obviously $I^{(q-1)} \leq I_{m}^{(q-1)}$; want to show: $I^{(q-1)} \geq I_{m}^{(q-1)}$ on $\Delta^{(q-1)}$. Inducting on q, can assume $I^{(q-1)}=I_{m}^{(q-1)}$ on the boundary $\partial \Delta^{(q-1)}$.

Partial Differential Inequality for Profile

On \mathbb{G}^{n}, one can show that a fully non-linear elliptic PDE holds:

$$
\operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}_{m}\right)^{-1}\right)=2 \mathcal{I}_{m} \text { on } \Delta^{(q-1)} .
$$

Similar (but more complicated) PDE holds on \mathbb{S}^{n}.
If we could show that the following PDI holds (in the viscosity sense):
since on by induction, by maximum-principle.

This is our global information!! PDI takes into account entire Key idea: instead of using global information in space parameters PDI propagates global information in volume parameters \triangle

Hence, need upper' bounds on $\nabla^{2} I^{\prime}(V)$ for a given
How? using a local 2nd order variation of our minimizing cluster

Partial Differential Inequality for Profile

On \mathbb{G}^{n}, one can show that a fully non-linear elliptic PDE holds:

$$
\operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}_{m}\right)^{-1}\right)=2 \mathcal{I}_{m} \text { on } \Delta^{(q-1)} .
$$

Where does this PDE come from?
In the single-bubble case, $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-|x|^{2} / 2}, \Phi(y)=\int_{-\infty}^{y} \varphi(x) d x$:

$$
\mathcal{I}_{\mathbb{G}^{n}}(v)=\mathcal{I}_{\mathbb{G}^{1}}(v)=\{\varphi(a) ; \Phi(a)=v\}=\varphi \circ \Phi^{-1}(v) .
$$

Hence:

$$
\mathcal{I}^{\prime}(v)=\frac{\varphi^{\prime}}{\varphi} \circ \Phi^{-1}(v)=-\Phi^{-1}(v), \mathcal{I}^{\prime \prime}(v)=-\frac{1}{\varphi \circ \Phi^{-1}}(v)=-\frac{1}{\mathcal{I}(v)} .
$$

Hence:

$$
\left(-\mathcal{I}^{\prime \prime}\right)^{-1}=\mathcal{I} \text { on }[0,1]\left(\text { would be } 2 \mathcal{I} \text { on } \Delta^{(1)}\right) .
$$

If we could show that the following PDI holds (in the viscosity sense):

Partial Differential Inequality for Profile

On \mathbb{G}^{n}, one can show that a fully non-linear elliptic PDE holds:

$$
\operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}_{m}\right)^{-1}\right)=2 \mathcal{I}_{m} \text { on } \Delta^{(q-1)} .
$$

Similar (but more complicated) PDE holds on \mathbb{S}^{n}.
If we could show that the following PDI holds (in the viscosity sense):

$$
\nabla^{2} \mathcal{I}<0, \operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}\right)^{-1}\right) \leq 2 \mathcal{I} \text { on int } \Delta^{(q-1)},
$$

since $I=I_{m}$ on $\partial \Delta^{(q-1)}$ by induction, $I \geq I_{m}$ by maximum-principle.
This is our global information!! PDI takes into account entire
Key idea: instead of using global information in space parameters
PDI propagates global information in volume parameters
Hence, need upper bounds on $\nabla^{2} I(v)$ for a given
How? using a local 2nd order variation of our minimizing cluster

Partial Differential Inequality for Profile

On \mathbb{G}^{n}, one can show that a fully non-linear elliptic PDE holds:

$$
\operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}_{m}\right)^{-1}\right)=2 \mathcal{I}_{m} \text { on } \Delta^{(q-1)} .
$$

Similar (but more complicated) PDE holds on \mathbb{S}^{n}.
If we could show that the following PDI holds (in the viscosity sense):

$$
\nabla^{2} \mathcal{I}<0, \operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}\right)^{-1}\right) \leq 2 \mathcal{I} \text { on int } \Delta^{(q-1)},
$$

since $I=I_{m}$ on $\partial \Delta^{(q-1)}$ by induction, $I \geq I_{m}$ by maximum-principle.
This is our global information!! PDI takes into account entire $\Delta^{(q-1)}$. Key idea: instead of using global information in space parameters \mathbb{G}^{n}, PDI propagates global information in volume parameters $\Delta^{(q-1)}$.

Hence, need upper bounds on $\nabla^{2} I(v)$ for a given
How? using a local 2nd order variation of our minimizing cluster

Partial Differential Inequality for Profile

On \mathbb{G}^{n}, one can show that a fully non-linear elliptic PDE holds:

$$
\operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}_{m}\right)^{-1}\right)=2 \mathcal{I}_{m} \text { on } \Delta^{(q-1)} .
$$

Similar (but more complicated) PDE holds on \mathbb{S}^{n}.
If we could show that the following PDI holds (in the viscosity sense):

$$
\nabla^{2} \mathcal{I}<0, \operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}\right)^{-1}\right) \leq 2 \mathcal{I} \text { on int } \Delta^{(q-1)},
$$

since $I=I_{m}$ on $\partial \Delta^{(q-1)}$ by induction, $I \geq I_{m}$ by maximum-principle.
This is our global information!! PDI takes into account entire $\Delta^{(q-1)}$. Key idea: instead of using global information in space parameters \mathbb{G}^{n}, PDI propagates global information in volume parameters $\Delta^{(q-1)}$. Hence, need upper bounds on $\nabla^{2} \mathcal{I}(v)$ for a given $v \in$ int $\Delta^{(q-1)}$. How? using a local 2 nd order variation of our minimizing cluster Ω.

Upper bounding $\nabla^{2} \mathcal{I}$ via $Q(X)$

Recall $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeo, $\Omega_{t}=F_{t}(\Omega), \mathcal{I}\left(V\left(\Omega_{t}\right)\right) \leq A\left(\Omega_{t}\right)$. Hence:

$$
\begin{aligned}
\left\langle\nabla \mathcal{I}, \delta_{X}^{1} V\right\rangle & =\delta_{X}^{1} A=\left\langle\lambda, \delta_{X}^{1} V\right\rangle \Rightarrow \nabla \mathcal{I}=\lambda . \\
\left(\delta_{X}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{X}^{1} V & \leq \delta_{X}^{2} A-\left\langle\nabla \mathcal{I}, \delta_{X}^{2} V\right\rangle=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle=: Q(X) .
\end{aligned}
$$

This generalizes stability:
The goal: choose X well to get a sharp PDI for I.
Natural idea: use generators X of group generating conjectured minimizers (modulo isometries of the space)!

- \mathbb{G}^{n} - Translation group generated by $T_{\theta} \equiv \theta$ constant fields.
- \mathbb{S}^{n} - Möbius group generated by $W_{\theta}=\theta-\langle\theta, p\rangle$ p "dilation-fields".

This definitely yields sharp upper bounds on $\nabla^{2} I$.
Problem: cannot a-priori exclude that cluster is lower-dimensional:

cluster on

In this case, the generators will only yield $d<q-1$ independent inqs, which is not enough to bound

Upper bounding $\nabla^{2} \mathcal{I}$ via $Q(X)$

Recall $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeo, $\Omega_{t}=F_{t}(\Omega), \mathcal{I}\left(V\left(\Omega_{t}\right)\right) \leq A\left(\Omega_{t}\right)$. Hence:

$$
\begin{aligned}
\left\langle\nabla \mathcal{I}, \delta_{X}^{1} V\right\rangle & =\delta_{X}^{1} A=\left\langle\lambda, \delta_{X}^{1} V\right\rangle \Rightarrow \nabla \mathcal{I}=\lambda . \\
\left(\delta_{X}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{X}^{1} V & \leq \delta_{X}^{2} A-\left\langle\nabla \mathcal{I}, \delta_{X}^{2} V\right\rangle=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle=: Q(X) .
\end{aligned}
$$

This generalizes stability: $\delta_{x}^{1} V=0 \Rightarrow 0 \leq Q(X)$.
The goal: choose X well to get a sharp PDI for I.
Natural idea: use generators X of group generating conjectured minimizers (modulo isometries of the space)!

- Th - Translation group generated by $T_{0} \equiv 0$ constant fields.
- \mathbb{S}^{n} - Möbius group generated by $W_{\theta}=\theta-\langle\theta, p\rangle$ p "dilation-fields".

This definitely yields sharp upper bounds on
Problem: cannot a-priori exclude that cluster is lower-dimensional: cluster on

In this case, the generators will only yield $d<q-1$ independent inqs, which is not enough to bound

Upper bounding $\nabla^{2} \mathcal{I}$ via $Q(X)$

Recall $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeo, $\Omega_{t}=F_{t}(\Omega), \mathcal{I}\left(V\left(\Omega_{t}\right)\right) \leq A\left(\Omega_{t}\right)$. Hence:

$$
\begin{aligned}
\left\langle\nabla \mathcal{I}, \delta_{X}^{1} V\right\rangle & =\delta_{X}^{1} A=\left\langle\lambda, \delta_{X}^{1} V\right\rangle \Rightarrow \nabla \mathcal{I}=\lambda . \\
\left(\delta_{X}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{X}^{1} V & \leq \delta_{X}^{2} A-\left\langle\nabla \mathcal{I}, \delta_{X}^{2} V\right\rangle=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle=: Q(X) .
\end{aligned}
$$

This generalizes stability: $\delta_{X}^{1} V=0 \Rightarrow 0 \leq Q(X)$.
The goal: choose X well to get a sharp PDI for \mathcal{I}.

This definitely yields sharp upper bounds on
Problem: cannot a-priori exclude that cluster is lower-dimensional: cluster on

In this case, the generators will only yield $d<q-1$ independent inqs, which is not enough to bound

Upper bounding $\nabla^{2} \mathcal{I}$ via $Q(X)$

Recall $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeo, $\Omega_{t}=F_{t}(\Omega), \mathcal{I}\left(V\left(\Omega_{t}\right)\right) \leq A\left(\Omega_{t}\right)$. Hence:

$$
\begin{aligned}
\left\langle\nabla \mathcal{I}, \delta_{X}^{1} V\right\rangle & =\delta_{X}^{1} A=\left\langle\lambda, \delta_{X}^{1} V\right\rangle \Rightarrow \nabla \mathcal{I}=\lambda . \\
\left(\delta_{X}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{X}^{1} V & \leq \delta_{X}^{2} A-\left\langle\nabla \mathcal{I}, \delta_{X}^{2} V\right\rangle=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle=: Q(X) .
\end{aligned}
$$

This generalizes stability: $\delta_{x}^{1} V=0 \Rightarrow 0 \leq Q(X)$.
The goal: choose X well to get a sharp PDI for \mathcal{I}.
Natural idea: use generators X of group generating conjectured minimizers (modulo isometries of the space)!

- \mathbb{G}^{n} - Translation group generated by $T_{\theta} \equiv \theta$ constant fields.
- \mathbb{S}^{n} - Möbius group generated by $W_{\theta}=\theta-\langle\theta, p\rangle$ p "dilation-fields".

This definitely yields sharp upper bounds on $\nabla^{2} \mathcal{I}$.
Problem: cannot a-priori exclude that cluster is lower-dimensional:
cluster on

Upper bounding $\nabla^{2} \mathcal{I}$ via $Q(X)$

Recall $\frac{d}{d t} F_{t}=X \circ F_{t}$ diffeo, $\Omega_{t}=F_{t}(\Omega), \mathcal{I}\left(V\left(\Omega_{t}\right)\right) \leq A\left(\Omega_{t}\right)$. Hence:

$$
\begin{aligned}
\left\langle\nabla \mathcal{I}, \delta_{X}^{1} V\right\rangle & =\delta_{X}^{1} A=\left\langle\lambda, \delta_{X}^{1} V\right\rangle \Rightarrow \nabla \mathcal{I}=\lambda . \\
\left(\delta_{X}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{X}^{1} V & \leq \delta_{X}^{2} A-\left\langle\nabla \mathcal{I}, \delta_{X}^{2} V\right\rangle=\delta_{X}^{2} A-\left\langle\lambda, \delta_{X}^{2} V\right\rangle=: Q(X) .
\end{aligned}
$$

This generalizes stability: $\delta_{x}^{1} V=0 \Rightarrow 0 \leq Q(X)$.
The goal: choose X well to get a sharp PDI for \mathcal{I}.
Natural idea: use generators X of group generating conjectured minimizers (modulo isometries of the space)!

- \mathbb{G}^{n} - Translation group generated by $T_{\theta} \equiv \theta$ constant fields.
- \mathbb{S}^{n} - Möbius group generated by $W_{\theta}=\theta-\langle\theta, p\rangle p^{\prime}$ "dilation-fields".

This definitely yields sharp upper bounds on $\nabla^{2} \mathcal{I}$.
Problem: cannot a-priori exclude that cluster is lower-dimensional:

- $\mathbb{G}^{n}-\Omega=\tilde{\Omega} \times \mathbb{R}^{n-d}, \tilde{\Omega}$ cluster on $\mathbb{R}^{d}, d<q-1$.
- $\mathbb{S}^{n}-\operatorname{affine-rank}\left(\left\{\mathfrak{c}_{i}\right\}_{i=1, \ldots, q}\right)=d<q-1$.

In this case, the generators will only yield $d<q-1$ independent inqs, which is not enough to bound $\nabla^{2} \mathcal{I}$ on $E^{(q-1)}=T \Delta^{(q-1)}$.

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{J a c} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $I I=\kappa_{i j}$ ld on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\| \| \|^{2}\right) f= \begin{cases}\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\ \Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}\end{cases}
$$

On \mathbb{G}^{n} : use
The scalar-fielc
non-physical, but can be approximated by "outward-fields".

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{J a c} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $I I=\kappa_{i j}$ ld on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\| \| \|^{2}\right) f= \begin{cases}\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\ \Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}\end{cases}
$$

On \mathbb{G}^{n} : use $f=1!L_{\text {Jac }} 1=1$ and $\operatorname{bdry}(1,0)=0$.
non-physical, but can be approximated by "outward-fields".

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{T} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{J a c} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $I I=\kappa_{i j}$ ld on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\| \| \|^{2}\right) f= \begin{cases}\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\ \Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}\end{cases}
$$

On \mathbb{G}^{n} : use $f=1!L_{\mathrm{Jac}} 1=1$ and $\operatorname{bdry}(1,0)=0$.
The scalar-field $f_{i j}^{a}=\left(a_{i}-a_{j}\right) 1=\sum_{k=1}^{q} a_{k}\left(\delta_{i}^{k}-\delta_{j}^{k}\right), a \in \mathbb{E}^{(q-1)}$, is non-physical, but can be approximated by "outward-fields".

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{\top} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, n_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{J a c} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $I I=\kappa_{i j}$ ld on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\|I\| \|^{2}\right) f=\left\{\begin{array}{ll}
\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\
\Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}
\end{array} .\right.
$$

On \mathbb{G}^{n} : use $f=1$! $L_{\mathrm{Jac}} 1=1$ and $\operatorname{bdry}(1,0)=0$.
The scalar-field $f_{i j}^{a}=\left(a_{i}-a_{j}\right) 1=\sum_{k=1}^{q} a_{k}\left(\delta_{i}^{k}-\delta_{j}^{k}\right), a \in \mathbb{E}^{(q-1)}$, is non-physical, but can be approximated by "outward-fields".

$$
Q_{0}\left(f^{a}\right)=-\left\langle L_{J a c} f^{a}, f^{a}\right\rangle_{\Sigma_{1}}=-\sum_{i<j} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right)^{2} d \gamma^{n-1}=-a^{T} L_{\gamma} a .
$$

where $L_{\gamma}:=\sum_{i<j} \gamma^{n-1}\left(\sum_{i j}\right)\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top}$, graph Laplacian.
Note: $L_{\gamma} \geq 0$ on $\mathbb{R}^{q}, L_{\gamma} 1=0, L_{\gamma}>0$ on $1^{\perp}=E^{(q-1)}, \operatorname{tr}\left(L_{\gamma}\right)=2 I$.

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{\top} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{J a c} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $I I=\kappa_{i j}$ Id on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\|I\|^{2}\right) f= \begin{cases}\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\ \Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}\end{cases}
$$

On \mathbb{G}^{n} : use $f=1!L_{\text {Jac }} 1=1$ and $\operatorname{bdry}(1,0)=0$.
The scalar-field $f_{i j}^{a}=\left(a_{i}-a_{j}\right) 1=\sum_{k=1}^{q} a_{k}\left(\delta_{i}^{k}-\delta_{j}^{k}\right), a \in \mathbb{E}^{(q-1)}$, is non-physical, but can be approximated by "outward-fields".

$$
\begin{aligned}
Q_{0}\left(f^{a}\right) & =-\left\langle L_{J a c} f^{a}, f^{a}\right\rangle_{\Sigma_{1}}=-\sum_{i<j} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right)^{2} d \gamma^{n-1}=-a^{T} L_{\gamma} a . \\
\delta_{f^{a}}^{1} V\left(\Omega_{i}\right) & =\int_{\partial^{*} \Omega_{i}} f^{a} d \gamma^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right) d \gamma^{n-1}=\left(L_{\gamma} a\right)_{i} \Rightarrow \delta_{f^{a}}^{1} V=L_{\gamma} a .
\end{aligned}
$$

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{\top} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{J a c} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $I I=\kappa_{i j}$ Id on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\|I\|^{2}\right) f= \begin{cases}\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\ \Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}\end{cases}
$$

On \mathbb{G}^{n} : use $f=1!L_{\text {Jac }} 1=1$ and $\operatorname{bdry}(1,0)=0$.
The scalar-field $f_{i j}^{a}=\left(a_{i}-a_{j}\right) 1=\sum_{k=1}^{q} a_{k}\left(\delta_{i}^{k}-\delta_{j}^{k}\right), a \in \mathbb{E}^{(q-1)}$, is non-physical, but can be approximated by "outward-fields".

$$
\begin{aligned}
& Q_{0}\left(f^{a}\right)=-\left\langle L_{J a c} f^{a}, f^{a}\right\rangle_{\Sigma_{1}}=-\sum_{i<j} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right)^{2} d \gamma^{n-1}=-a^{T} L_{\gamma} a . \\
& \delta_{f a}^{1} V\left(\Omega_{i}\right)=\int_{\partial * \Omega_{i}} f^{a} d \gamma^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right) d \gamma^{n-1}=\left(L_{\gamma} a\right)_{i} \Rightarrow \delta_{f a}^{1} V=L_{\gamma} a . \\
& L_{\gamma} \nabla^{2} I L_{\gamma} \leq-L_{\gamma}=\nabla_{\gamma} I \text { linearly-independent fields and sharpPDI. } \\
& \text { We obtained }
\end{aligned}
$$

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{\top} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{\mathrm{Jac}} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $I I=\kappa_{i j}$ ld on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\|I\| \|^{2}\right) f=\left\{\begin{array}{ll}
\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\
\Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}
\end{array} .\right.
$$

On \mathbb{G}^{n} : use $f=1$! $L_{\mathrm{Jac}} 1=1$ and $\operatorname{bdry}(1,0)=0$.
The scalar-field $f_{i j}^{a}=\left(a_{i}-a_{j}\right) 1=\sum_{k=1}^{q} a_{k}\left(\delta_{i}^{k}-\delta_{j}^{k}\right), a \in \mathbb{E}^{(q-1)}$, is non-physical, but can be approximated by "outward-fields".

$$
\begin{aligned}
& Q_{0}\left(f^{a}\right)=-\left\langle L_{J a c} f^{a}, f^{a}\right\rangle_{\Sigma_{1}}=-\sum_{i<j} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right)^{2} d \gamma^{n-1}=-a^{T} L_{\gamma} a . \\
& \delta_{f^{a}}^{1} V\left(\Omega_{i}\right)=\int_{\partial^{*} \Omega_{i}} f^{a} d \gamma^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right) d \gamma^{n-1}=\left(L_{\gamma} a\right)_{i} \Rightarrow \delta_{f a}^{1} V=L_{\gamma} a . \\
& L_{\gamma} \nabla^{2} \mathcal{I} L_{\gamma} \leq-L_{\gamma} \Rightarrow \nabla^{2} \mathcal{I} \leq-L_{\gamma}^{-1}<0 \Rightarrow \operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}\right)^{-1}\right) \leq \operatorname{tr}\left(L_{\gamma}\right)=2 \mathcal{I} .
\end{aligned}
$$

$$
\text { We obtained } q-1 \text { linearly-independent fields and sharp PDI. }
$$

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{\top} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, n_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{J a c} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $\|=\kappa_{i j}$ ld on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\|I\|^{2}\right) f= \begin{cases}\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\ \Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}\end{cases}
$$

On \mathbb{G}^{n} : use $f=1!L_{\mathrm{Jac}} 1=1$ and $\operatorname{bdry}(1,0)=0$.
The scalar-field $f_{i j}^{a}=\left(a_{i}-a_{j}\right) 1=\sum_{k=1}^{q} a_{k}\left(\delta_{i}^{k}-\delta_{j}^{k}\right), a \in \mathbb{E}^{(q-1)}$, is non-physical, but can be approximated by "outward-fields".

$$
\begin{aligned}
& Q_{0}\left(f^{a}\right)=-\left\langle L_{J a c} f^{a}, f^{a}\right\rangle_{\Sigma_{1}}=-\sum_{i<j} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right)^{2} d \gamma^{n-1}=-a^{\top} L_{\gamma} a . \\
& \delta_{f a}^{1} V\left(\Omega_{i}\right)=\int_{\partial^{*} \Omega_{i}} f^{a} d \gamma^{n-1}=\sum_{j \neq i} \int_{\Sigma_{i j}}\left(a_{i}-a_{j}\right) d \gamma^{n-1}=\left(L_{\gamma} a\right)_{i} \Rightarrow \delta_{f a}^{1} V=L_{\gamma} a . \\
& L_{\gamma} \nabla^{2} I L_{\gamma} \leq-L_{\gamma} \Rightarrow \nabla^{2} \mathcal{I} \leq-L_{\gamma}^{-1}<0 \Rightarrow \operatorname{tr}\left(\left(-\nabla^{2} \mathcal{I}\right)^{-1}\right) \leq \operatorname{tr}\left(L_{\gamma}\right)=2 \mathcal{I} .
\end{aligned}
$$

We obtained q-1 linearly-independent fields and sharp PDI.

Obtaining PDI for \mathbb{G}^{n}

Source of information: $\left(\delta_{x}^{1} V\right)^{\top} \nabla^{2} \mathcal{I} \delta_{x}^{1} V \leq Q(X)$.
Recall $Q(X)=Q_{0}(f), f=\left(f_{i j}\right)$ the scalar-field $f_{i j}=\left\langle X, \mathfrak{n}_{i j}\right\rangle$ on $\left(\Sigma_{i j}, \partial \Sigma_{i j}\right)$:

$$
Q_{0}(f)=-\left\langle L_{\mathrm{Jac}} f, f\right\rangle_{\Sigma^{1}}+\int_{\Sigma^{2}} \operatorname{bdry}(f, I I) .
$$

Since $I I=0$ on \mathbb{G}^{n} and $\|=\kappa_{i j} I d$ on \mathbb{S}^{n}, everything is explicit:

$$
L_{J a c} f=\Delta_{\Sigma, \mu} f+\left(\operatorname{Ric}_{g, \mu}(\mathfrak{n}, \mathfrak{n})+\| \| \|^{2}\right) f= \begin{cases}\Delta_{\Sigma, \gamma} f+f & \mathbb{G}^{n} \\ \Delta_{\Sigma} f+(n-1)\left(1+\kappa_{i j}^{2}\right) f & \mathbb{S}^{n}\end{cases}
$$

On \mathbb{S}^{n} : fields yielding sharp PDI exist (non-trivial). But we don't have explicit formula, unless cluster is (pseudo)-conformally-flat ($\left\{\mathfrak{c}_{i}, \kappa_{i}\right\}$). E.g.: • when cluster is full-dimenional, i.e. affine-rank $\left\{\mathfrak{c}_{i}\right\}_{i=1}^{q}=q-1$;

- if all bubbles have a mutual common point.

In those cases, we obtain the sharp PDI for I.
But what if the cluster is not pseudo-conformally-flat??? While this should never happen, we cannot a-priori exclude this. Using Step 5 (= some tricks), we can go up to $q \leq 6$ on \mathbb{S}^{n}.

So why is

	\mathbb{G}^{n}	$\mathbb{S}^{n} / \mathbb{R}^{n}$	
Group Generating Minimizers	Translations	Möbius Transformations (Liouville, $n \geq 3:$ constitute all conformal automorphisms)	
Effect on curvature ॥?	Invariant under translation	$\\| I^{\prime}=a_{p} I I+b_{p}$ Id. Sphericity preserved, but curvature changes	
Conjectured Minimizers	Flat	Conformally Flat (CF) on \mathbb{S}^{n} (great spheres)	
We can show	Flat	Spherical; However, showing CF requires finding conformal map, i.e. extra parameters	

Thank you for your attention!

Equal Volume Case in \mathbb{S}^{n} and \mathbb{R}^{n}

Equal Volume Multi-Bubble on \mathbb{S}^{n} (M.-Neeman '18)

On \mathbb{S}^{n}, for any $q \leq n+2$, if $V\left(\Omega_{1}\right)=\ldots=V\left(\Omega_{q}\right)=\frac{1}{q}$ then the unique minimizer is a standard bubble.

Proof: immediate consequence from \mathbb{G}^{n}, since spherical and Gaussian volume/area coincide for centered cones on $\mathbb{S}^{n} \subset \mathbb{G}^{n+1}$, and the unique equal volumes minimizer on \mathbb{G}^{n+1} for $q \leq(n+1)+1$ is the centered simplicial cluster (whose cells are centered cones).

Equal Volume Triple-Bubble on \mathbb{R}^{3} (Lawlor '22)

On \mathbb{R}^{3}, if $V\left(\Omega_{1}\right)=V\left(\Omega_{2}\right)=V\left(\Omega_{3}\right)$, then the unique (?) minimizer is a standard triple-bubble.

* Jump back...

Möbius Group

Stereographic projection $T: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$:

- T conformal $=$ preserves angles $\langle d T u, d T v\rangle=c\langle u, v\rangle$.
- T preserves (generalized) spheres.

Stereographic projection preserves angles and takes circles to circles or lines
Taken from Delman-Galperin, "A tale of Three Circles".
What is the group generating standard bubbles?
(composition of stereographic projections is conformal map on

Möbius Group

Stereographic projection $T: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$:

- T conformal $=$ preserves angles $\langle d T u, d T v\rangle=c\langle u, v\rangle$.
- T preserves (generalized) spheres.

What is the group generating standard bubbles? (composition of stereographic projections is conformal map on \mathbb{R}^{n}).

Thm (Liouville): All global conformal maps on
Equivalent definitions of Möbius transformations on

- Comnositions of stereo-projections to and back
- Compositions of spherical / hyperplane inversions;
- Compositions of isometries, scaling, and unit-sphere inversion.
(similarly on
by first stereographically projecting to
So the Möbius group generates standard-bubbles on

Möbius Group

Stereographic projection $T: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$:

- T conformal $=$ preserves angles $\langle d T u, d T v\rangle=c\langle u, v\rangle$.
- T preserves (generalized) spheres.

What is the group generating standard bubbles? (composition of stereographic projections is conformal map on \mathbb{R}^{n}).

Thm (Liouville): All global conformal maps on $\mathbb{R}^{n}(n \geq 3)$ are Möbius. Equivalent definitions of Möbius transformations on \mathbb{R}^{n} :

- Compositions of stereo-projections to and back \mathbb{S}^{n};
- Compositions of spherical / hyperplane inversions;
- Compositions of isometries, scaling, and unit-sphere inversion.
(similarly on \mathbb{S}^{n}, by first stereographically projecting to \mathbb{R}^{n}).
So the Möbius group generates standard-bubbles on $\mathbb{R}^{n} / \mathbb{S}^{n}$.
* Jump back....

[^0]: Multi-Bubble Uniqueness on (up to null-sets) on \mathbb{S}^{n} for (up to null-sets) on \mathbb{R}^{n} for

 Q: Why is \mathbb{S}^{n} case harder than \mathbb{G}^{n} ? And \mathbb{R}^{n} case even more so?
 A1: $\mathbb{S}^{N} \Rightarrow \mathbb{G}^{n}$ by projection;

