# Multi-Bubble Isoperimetric Problems - Old and New

### Emanuel Milman Technion - Israel Institute of Technology and Oden Institute at UT Austin

Workshop on "Convexity and High-dimensional probability" Georgia Tech May 2022

joint work (in progress) with Joe Neeman (UT Austin)

## The Classical Isoperimetric Inequality

"Among all sets in Euclidean space  $\mathbb{R}^n$  having a given volume, Euclidean balls minimize surface area."

 $V(\Omega) = V(Ball) \implies A(\Omega) \ge A(Ball).$ 

 $\Omega \in \mathcal{B}(\mathbb{R}^n)$ ,  $V = \text{Leb}^n$ , A = Surface Area.

What is Surface Area? Various (non-equivalent) definitions:

- If  $\partial \Omega$  smooth,  $\int_{\partial \Omega} d \operatorname{Vol}_{\partial \Omega}$ .
- Hausdorff measure  $\mathcal{H}^{n-1}(\partial \Omega)$ .
- Minkowski exterior boundary measure:
  V<sup>+</sup>(Ω) = lim inf<sub>e→0+</sub> V(Ω<sub>e</sub> \Ω)/ε, Ω<sub>e</sub> := {y ∈ ℝ<sup>n</sup>; d(y, Ω) < ε}.</li>
- De Giorgi Perimeter P(Ω) = H<sup>n-1</sup>(∂<sup>\*</sup>Ω) = ||1<sub>Ω</sub>||<sub>BV</sub> = ||∇1<sub>Ω</sub>||<sub>TV</sub> = sup {∫<sub>Ω</sub> ∇ · X ; X ∈ C<sup>∞</sup><sub>c</sub>(ℝ<sup>n</sup>; Tℝ<sup>n</sup>), |X| ≤ 1}.
  Stronger than rest, I.s.c., invariant under null-set modifications.

## The Classical Isoperimetric Inequality

"Among all sets in Euclidean space  $\mathbb{R}^n$  having a given volume, Euclidean balls minimize surface area."

 $V(\Omega) = V(Ball) \implies A(\Omega) \ge A(Ball).$ 

 $\Omega \in \mathcal{B}(\mathbb{R}^n)$ ,  $V = \text{Leb}^n$ , A = Surface Area.

What is Surface Area? Various (non-equivalent) definitions:

- If  $\partial \Omega$  smooth,  $\int_{\partial \Omega} d \operatorname{Vol}_{\partial \Omega}$ .
- Hausdorff measure  $\mathcal{H}^{n-1}(\partial\Omega)$ .
- Minkowski exterior boundary measure:
  V<sup>+</sup>(Ω) = lim inf<sub>ε→0+</sub> V(Ω<sub>ε</sub> ∨Ω)/ε (Y ∈ ℝ<sup>n</sup>; d(Y,Ω) < ε).</li>
- De Giorgi Perimeter P(Ω) = H<sup>n-1</sup>(∂\*Ω) = ||1<sub>Ω</sub>||<sub>BV</sub> = ||∇1<sub>Ω</sub>||<sub>TV</sub> = sup {∫<sub>Ω</sub> ∇ · X ; X ∈ C<sup>∞</sup><sub>c</sub>(ℝ<sup>n</sup>; Tℝ<sup>n</sup>), |X| ≤ 1}.
  Stronger than rest, I.s.c., invariant under null-set modifications.

# Isoperimetric Inequalities in Metric-Measure setting

Classical isoperimetric inequality is on  $\mathbb{R}^n = (\mathbb{R}^n, |\cdot|, \text{Leb}^n)$ . Study in weighted-manifold setting  $(M^n, g, \mu = \Psi(x) d\text{Vol}_g), \Psi > 0$ .

Weighted Volume and Area:

- $V(\Omega) = \mu(\Omega) = \int_{\Omega} \Psi(x) d \operatorname{Vol}_g.$
- $\mathbf{A}(\Omega) = \mathbf{P}_{\Psi}(\Omega) = \int_{\partial^*\Omega} \Psi(\mathbf{x}) d\mathcal{H}^{n-1}(\mathbf{x}).$

Denote  $\mu^k = \Psi \mathcal{H}^k$ , i.e.  $\mu^{n-1} = \Psi \mathcal{H}^{n-1}$ ,  $\mu^{n-2} = \Psi \mathcal{H}^{n-2}$ , ...

Examples:

S<sup>n</sup> = (S<sup>n</sup>, g<sub>can</sub>, λ<sub>S<sup>n</sup></sub> = Vol<sub>gn</sub>/Vol<sub>gn</sub>) - P. Lévy, Schmidt 20-30's: geodesic balls are isoperimetric minimizers.

**(2)**  $\mathbb{G}^{n} = (\mathbb{R}^{n}, |\cdot|, \gamma^{n} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{|x|^{2}}{2}} dx)$  - Sudakov–Tsirelson, Borell '75: half-spaces are isoperimetric minimizers.

<u>Relation</u> (Maxwell, Poincaré, Borel):  $(\pi_{\mathbb{R}^n})_*(\lambda_{\sqrt{NS^N}}) \rightarrow_{N \rightarrow \infty} \gamma^n$ .

# Isoperimetric Inequalities in Metric-Measure setting

Classical isoperimetric inequality is on  $\mathbb{R}^n = (\mathbb{R}^n, |\cdot|, \text{Leb}^n)$ . Study in weighted-manifold setting  $(M^n, g, \mu = \Psi(x) d\text{Vol}_g), \Psi > 0$ .

Weighted Volume and Area:

- $V(\Omega) = \mu(\Omega) = \int_{\Omega} \Psi(x) d \operatorname{Vol}_g.$
- $\mathbf{A}(\Omega) = \mathbf{P}_{\Psi}(\Omega) = \int_{\partial^*\Omega} \Psi(\mathbf{x}) d\mathcal{H}^{n-1}(\mathbf{x}).$

Denote  $\mu^k = \Psi \mathcal{H}^k$ , i.e.  $\mu^{n-1} = \Psi \mathcal{H}^{n-1}$ ,  $\mu^{n-2} = \Psi \mathcal{H}^{n-2}$ , ...

Examples:

S<sup>n</sup> = (S<sup>n</sup>, g<sub>can</sub>, λ<sub>S<sup>n</sup></sub> = Vol<sub>s<sup>n</sup></sub>/Vol<sub>s<sup>n</sup></sub>) - P. Lévy, Schmidt 20-30's: geodesic balls are isoperimetric minimizers.

**2**  $\mathbb{G}^n = (\mathbb{R}^n, |\cdot|, \gamma^n = \frac{1}{(2\pi)^{n/2}} e^{-\frac{|x|^2}{2}} dx)$  - Sudakov–Tsirelson, Borell '75: half-spaces are isoperimetric minimizers.

<u>Relation</u> (Maxwell, Poincaré, Borel):  $(\pi_{\mathbb{R}^n})_*(\lambda_{\sqrt{NS^N}}) \rightarrow_{N \rightarrow \infty} \gamma^n$ .

# **Isoperimetric Inequalities for Clusters**

Cluster  $\Omega = (\Omega_1, ..., \Omega_q)$  is a partition  $M = \Omega_1 \cup ... \cup \Omega_q$  (up to null-sets) Given  $V(\Omega) = (V(\Omega_1) \dots V(\Omega_q))$  minimize  $A(\Omega) = \frac{1}{2} \sum_{i=1}^q A(\Omega_i) = \sum_{i < j} A_{ij}$ .

Previous examples: q = 2 ( $\Omega_1 = U, \Omega_2 = M \setminus U$ ), "Single Bubble". Would like to study  $q \ge 3$ , "Multi Bubble" case. Case q = 3 is called "Double Bubble" ( $\Omega_1, \Omega_2, M \setminus (\Omega_1 \cup \Omega_2)$ ).

- R<sup>n</sup> <u>Theorem</u>: for all V(Ω) = (v<sub>1</sub>, v<sub>2</sub>, ∞), standard double bubble
   (3 spherical caps meeting at 120° along (n − 2)-dim sphere)
   minimizes total surface area:
  - R<sup>2</sup> F. Morgan's "SMALL" undergraduate group (Foisy–Alfaro–Brock–Hodges– Zimba) '93.
  - $\mathbb{R}^3$  Hass–Hutchings–Schlafly '95  $v_1 = v_2$ , Hutchings–Morgan–Ritoré–Ros '00.
  - ℝ<sup>4</sup> SMALL (Reichardt–Heilmann–Lai– Spielman) '03.
  - $\mathbb{R}^n$  Reichardt '07.



## **Isoperimetric Inequalities for Clusters**

Cluster  $\Omega = (\Omega_1, ..., \Omega_q)$  is a partition  $M = \Omega_1 \cup ... \cup \Omega_q$  (up to null-sets) Given  $V(\Omega) = (V(\Omega_1) \dots V(\Omega_q))$  minimize  $A(\Omega) = \frac{1}{2} \sum_{i=1}^{q} A(\Omega_i) = \sum_{i < j} A_{ij}$ .

Previous examples: q = 2 ( $\Omega_1 = U, \Omega_2 = M \setminus U$ ), "Single Bubble". Would like to study  $q \ge 3$ , "Multi Bubble" case. Case q = 3 is called "Double Bubble" ( $\Omega_1, \Omega_2, M \setminus (\Omega_1 \cup \Omega_2)$ ).

- R<sup>n</sup> <u>Theorem</u>: for all V(Ω) = (v<sub>1</sub>, v<sub>2</sub>, ∞), standard double bubble (3 spherical caps meeting at 120° along (n − 2)-dim sphere) minimizes total surface area:
  - R<sup>2</sup> F. Morgan's "SMALL" undergraduate group (Foisy–Alfaro–Brock–Hodges– Zimba) '93.
  - $\mathbb{R}^3$  Hass–Hutchings–Schlafly '95  $v_1 = v_2$ , Hutchings–Morgan–Ritoré–Ros '00.
  - ℝ<sup>4</sup> SMALL (Reichardt–Heilmann–Lai– Spielman) '03.
  - $\mathbb{R}^n$  Reichardt '07.



## **Isoperimetric Inequalities for Clusters**

Cluster  $\Omega = (\Omega_1, ..., \Omega_q)$  is a partition  $M = \Omega_1 \cup ... \cup \Omega_q$  (up to null-sets) Given  $V(\Omega) = (V(\Omega_1) \dots V(\Omega_q))$  minimize  $A(\Omega) = \frac{1}{2} \sum_{i=1}^q A(\Omega_i) = \sum_{i < j} A_{ij}$ .

Previous examples: q = 2 ( $\Omega_1 = U, \Omega_2 = M \setminus U$ ), "Single Bubble". Would like to study  $q \ge 3$ , "Multi Bubble" case. Case q = 3 is called "Double Bubble" ( $\Omega_1, \Omega_2, M \setminus (\Omega_1 \cup \Omega_2)$ ).

- R<sup>n</sup> <u>Theorem</u>: for all V(Ω) = (v<sub>1</sub>, v<sub>2</sub>, ∞), standard double bubble (3 spherical caps meeting at 120° along (n − 2)-dim sphere) minimizes total surface area:
  - R<sup>2</sup> F. Morgan's "SMALL" undergraduate group (Foisy–Alfaro–Brock–Hodges– Zimba) '93.
  - $\mathbb{R}^3$  Hass–Hutchings–Schlafly '95  $v_1 = v_2$ , Hutchings–Morgan–Ritoré–Ros '00.
  - ℝ<sup>4</sup> SMALL (Reichardt–Heilmann–Lai– Spielman) '03.
  - $\mathbb{R}^n$  Reichardt '07.



q = 3 regions in dimension  $n \ge 2$ :

- S<sup>*n*</sup> Double-Bubble Conjecture: for all  $V(\Omega) = (v_1, v_2, v_3)$ , standard double bubble (3 spherical caps in S<sup>*n*</sup> meeting at 120° along (n-2)-dim sphere) minimizes total surface area.
  - S<sup>2</sup> Proved by Masters '96.
  - S<sup>3</sup> Cotton−Freeman '02, Corneli−Hoffman-HLLMS '07, partial.
  - $\mathbb{S}^n$  Corneli–Corwin–Hoffman-HSADLVX '08, if  $|v_i \frac{1}{3}| \le 0.04$ .

**(2) G**<sup>*n*</sup> - Double-Bubble Conjecture: for all  $V(\Omega) = (v_1, v_2, v_3)$ , standard "tripod" / "Y" (3 half-hyperplanes meeting at 120° along (n-2)-dim plane) minimizes total (Gaussian) surface area. **(G**<sup>*n*</sup> - Corneli–Corwin–Hoffman-HSADLVX '08, if  $|v_i - \frac{1}{3}| \le 0.04$ .

Interaction between G and S:

 $\mathbb{G}^2 \Rightarrow \mathbb{S}^N \ \forall N \gg 1 \Rightarrow \mathbb{S}^n \ \forall n \ge 2 \Rightarrow \mathbb{G}^n \ \forall n \ge 2$  by projection.

q = 3 regions in dimension  $n \ge 2$ :

- S<sup>*n*</sup> Double-Bubble Conjecture: for all  $V(\Omega) = (v_1, v_2, v_3)$ , standard double bubble (3 spherical caps in S<sup>*n*</sup> meeting at 120° along (n-2)-dim sphere) minimizes total surface area.
  - S<sup>2</sup> Proved by Masters '96.
  - S<sup>3</sup> Cotton–Freeman '02, Corneli–Hoffman-HLLMS '07, partial.
  - S<sup>n</sup> Corneli–Corwin–Hoffman-HSADLVX '08, if  $|v_i \frac{1}{3}| \le 0.04$ .
- **2 G**<sup>*n*</sup> Double-Bubble Conjecture: for all  $V(\Omega) = (v_1, v_2, v_3)$ , standard "tripod" / "Y" (3 half-hyperplanes meeting at 120° along (n-2)-dim plane) minimizes total (Gaussian) surface area.

**G**<sup>*n*</sup> - Corneli–Corwin–Hoffman-HSADLVX '08, if  $|v_i - \frac{1}{3}| \le 0.04$ .

Interaction between  $\mathbb{G}$  and  $\mathbb{S}$ :

 $\mathbb{G}^2 \Rightarrow \mathbb{S}^N \ \forall N \gg 1 \Rightarrow \mathbb{S}^n \ \forall n \ge 2 \Rightarrow \mathbb{G}^n \ \forall n \ge 2$  by projection.

# Y cone



Higher-order cluster  $\Omega = (\Omega_1, \dots, \Omega_q)$ . There's no reasonable conjecture when  $q \gg n$ :



#### Image from Cox, Garner, et al.

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble: Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in  $\mathbb{R}^n$  to  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ ).

### Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$ .

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble:





Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in  $\mathbb{R}^n$  to  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ ).

Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n+1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in  $\mathbb{R}^n$  (appropriately translated).

#### Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$ .

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble:



#### Multi-Bubble Conjecture on $\mathbb{S}^n$ : If $q - 1 \le n + 1$ , for all

Higher-order cluster  $\Omega = (\Omega_1, \ldots, \Omega_q)$ .

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$  and apply all stereographic projections to  $\mathbb{R}^n$ .



Montesinos Amilibia '01 - standard bubbles exist and are uniquely determined (up to isometries) for all prescribed volumes, for all  $q-1 \le n+1$ .

Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 spherical-bubble

Higher-order cluster  $\Omega = (\Omega_1, \ldots, \Omega_q)$ .

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$  and apply all stereographic projections to  $\mathbb{R}^n$ .

Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in  $\mathbb{R}^n$  to  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ ).



Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n+1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ ,

Higher-order cluster  $\Omega = (\Omega_1, \ldots, \Omega_q)$ .

Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n+1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in  $\mathbb{R}^n$  (appropriately translated).



Higher-order cluster  $\Omega = (\Omega_1, \ldots, \Omega_q)$ .

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$  and apply all stereographic projections to  $\mathbb{R}^n$ .

Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in  $\mathbb{R}^n$  to  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ ).

Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in  $\mathbb{R}^n$  (appropriately translated).

Higher-order cluster  $\Omega = (\Omega_1, \ldots, \Omega_q)$ .

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$  and apply all stereographic projections to  $\mathbb{R}^n$ .

Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in  $\mathbb{R}^n$  to  $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ ).

Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in  $\mathbb{R}^n$  (appropriately translated).

q = 2 corresponds to the classical isoperimetric inqs. q = 3 is the double-bubble theorem ( $\mathbb{R}^n$ ) / conjecture ( $\mathbb{S}^n$  /  $\mathbb{G}^n$ ,  $n \ge 3$ ). q = 4 and n = 2 in  $\mathbb{R}^n$  (planar triple-bubble) proved by Wichiramala '04. Not aware of any other results when  $q \ge 4$  prior to 2018. Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n+1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in  $\mathbb{R}^n$ ).

Gaussian Double/Multi-Bubble Thm (M.–Neeman '18)

For all  $n \ge 2$  and  $2 \le q \le n + 1$ , the Multi-Bubble Conjecture on  $\mathbb{G}^n$  is true: "a standard simplicial *q*-cluster is a Gaussian minimizer".

#### Gaussian Double/Multi-Bubble

(M.–Neeman '18)

For all  $n \ge 2$  and  $2 \le q \le n + 1$ , simplicial *q*-clusters are the *unique* minimizers of Gaussian perimeter, up to null-sets.

In single-bubble setting (q = 2), uniqueness due to Ehrhard '86 and Carlen-Kerce '00.

Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n+1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in  $\mathbb{R}^n$ ).

Gaussian Double/Multi-Bubble Thm (M.–Neeman '18)

For all  $n \ge 2$  and  $2 \le q \le n+1$ , the Multi-Bubble Conjecture on  $\mathbb{G}^n$  is true: "a standard simplicial *q*-cluster is a Gaussian minimizer".

#### Gaussian Double/Multi-Bubble

(M.–Neeman '18)

For all  $n \ge 2$  and  $2 \le q \le n + 1$ , simplicial *q*-clusters are the *unique* minimizers of Gaussian perimeter, up to null-sets.

In single-bubble setting (q = 2), uniqueness due to Ehrhard '86 and Carlen-Kerce '00.

Multi-Bubble Conjecture on  $\mathbb{G}^n$ : If  $q \le n+1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in  $\mathbb{R}^n$ ).

Gaussian Double/Multi-Bubble Thm (M.-Neeman '18)

For all  $n \ge 2$  and  $2 \le q \le n+1$ , the Multi-Bubble Conjecture on  $\mathbb{G}^n$  is true: "a standard simplicial *q*-cluster is a Gaussian minimizer".

#### Gaussian Double/Multi-Bubble Uniqueness (M.–Neeman '18)

For all  $n \ge 2$  and  $2 \le q \le n+1$ , simplicial *q*-clusters are the *unique* minimizers of Gaussian perimeter, up to null-sets.

In single-bubble setting (q = 2), uniqueness due to Ehrhard '86 and Carlen-Kerce '00.

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 bubble.  $\Rightarrow$  Equal volume case?

#### 1-2-3-4-5-Bubble Thm on ℝ<sup>n</sup> / S<sup>n</sup> (M.–Neeman '22)

For all  $n \ge 2$  and  $2 \le q \le \min(6, n + 1)$ , the Multi-Bubble Conjecture on  $\mathbb{R}^n / \mathbb{S}^n$  is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble  $(n \ge 2)$ , Triple-Bubble  $(n \ge 3)$ , Quadruple-Bubble  $(n \ge 4)$ , Quintuple-Bubble  $(n \ge 5)$ .

#### Multi-Bubble Uniqueness on R<sup>n</sup> / S<sup>n</sup> (M.–Neeman '22)

Uniqueness (up to null-sets) on  $\mathbb{S}^n$  for  $2 \le q \le \min(6, n+1)$ . Uniqueness (up to null-sets) on  $\mathbb{R}^n$  for  $2 \le q \le \min(5, n+1)$ .

Q: Why is  $\mathbb{S}^n$  case harder than  $\mathbb{G}^n$ ? And  $\mathbb{R}^n$  case even more so? A1:  $\mathbb{S}^N \Rightarrow \mathbb{G}^n$  by projection;  $\mathbb{S}^n \Rightarrow \mathbb{R}^n$  by scale-invariance and shrinking to a point, but uniqueness is lost in both cases.

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 bubble.

#### 1-2-3-4-5-Bubble Thm on **R**<sup>*n*</sup> / **S**<sup>*n*</sup> (M.–Neeman '22)

For all  $n \ge 2$  and  $2 \le q \le \min(6, n + 1)$ , the Multi-Bubble Conjecture on  $\mathbb{R}^n / \mathbb{S}^n$  is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble  $(n \ge 2)$ , Triple-Bubble  $(n \ge 3)$ , Quadruple-Bubble  $(n \ge 4)$ , Quintuple-Bubble  $(n \ge 5)$ .

#### Multi-Bubble Uniqueness on R<sup>n</sup> / S<sup>n</sup> (M.–Neeman '22)

Uniqueness (up to null-sets) on  $\mathbb{S}^n$  for  $2 \le q \le \min(6, n+1)$ . Uniqueness (up to null-sets) on  $\mathbb{R}^n$  for  $2 \le q \le \min(5, n+1)$ .

Q: Why is  $\mathbb{S}^n$  case harder than  $\mathbb{G}^n$ ? And  $\mathbb{R}^n$  case even more so? A1:  $\mathbb{S}^N \Rightarrow \mathbb{G}^n$  by projection;  $\mathbb{S}^n \Rightarrow \mathbb{R}^n$  by scale-invariance and shrinking to a point, but uniqueness is lost in both cases. A2: TBD; Moral: we were lucky to have started with  $\mathbb{G}^n$ ...

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 bubble.

#### 1-2-3-4-5-Bubble Thm on **R**<sup>*n*</sup> / **S**<sup>*n*</sup> (M.–Neeman '22)

For all  $n \ge 2$  and  $2 \le q \le \min(6, n + 1)$ , the Multi-Bubble Conjecture on  $\mathbb{R}^n / \mathbb{S}^n$  is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble  $(n \ge 2)$ , Triple-Bubble  $(n \ge 3)$ , Quadruple-Bubble  $(n \ge 4)$ , Quintuple-Bubble  $(n \ge 5)$ .

#### Multi-Bubble Uniqueness on R<sup>n</sup> / S<sup>n</sup> (M.–Neeman '22)

Uniqueness (up to null-sets) on  $\mathbb{S}^n$  for  $2 \le q \le \min(6, n+1)$ . Uniqueness (up to null-sets) on  $\mathbb{R}^n$  for  $2 \le q \le \min(5, n+1)$ .

Q: Why is  $\mathbb{S}^n$  case harder than  $\mathbb{G}^n$ ? And  $\mathbb{R}^n$  case even more so? A1:  $\mathbb{S}^N \Rightarrow \mathbb{G}^n$  by projection;  $\mathbb{S}^n \Rightarrow \mathbb{R}^n$  by scale-invariance and shrinking to a point, but uniqueness is lost in both cases. A2: TBD; Moral: we were lucky to have started with  $\mathbb{G}^n$ ...

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 bubble.

#### 1-2-3-4-5-Bubble Thm on **R**<sup>*n*</sup> / **S**<sup>*n*</sup> (M.–Neeman '22)

For all  $n \ge 2$  and  $2 \le q \le \min(6, n + 1)$ , the Multi-Bubble Conjecture on  $\mathbb{R}^n / \mathbb{S}^n$  is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble  $(n \ge 2)$ , Triple-Bubble  $(n \ge 3)$ , Quadruple-Bubble  $(n \ge 4)$ , Quintuple-Bubble  $(n \ge 5)$ .

#### Multi-Bubble Uniqueness on R<sup>n</sup> / S<sup>n</sup> (M.–Neeman '22)

Uniqueness (up to null-sets) on  $\mathbb{S}^n$  for  $2 \le q \le \min(6, n+1)$ . Uniqueness (up to null-sets) on  $\mathbb{R}^n$  for  $2 \le q \le \min(5, n+1)$ .

Q: Why is  $\mathbb{S}^n$  case harder than  $\mathbb{G}^n$ ? And  $\mathbb{R}^n$  case even more so? A1:  $\mathbb{S}^N \Rightarrow \mathbb{G}^n$  by projection;  $\mathbb{S}^n \Rightarrow \mathbb{R}^n$  by scale-invariance and shrinking to a point, but uniqueness is lost in both cases. A2: TBD: Moral: we were lucky to have started with  $\mathbb{G}^n$ ...

Multi-Bubble Conjecture on  $\mathbb{R}^n$  (J. Sullivan '95): If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$ , the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on  $\mathbb{S}^n$ : If  $q - 1 \le n + 1$ , for all  $V(\Omega) = (v_1, \ldots, v_q)$ , the minimizer is a standard q - 1 bubble.

#### 1-2-3-4-5-Bubble Thm on **R**<sup>*n*</sup> / **S**<sup>*n*</sup> (M.–Neeman '22)

For all  $n \ge 2$  and  $2 \le q \le \min(6, n + 1)$ , the Multi-Bubble Conjecture on  $\mathbb{R}^n / \mathbb{S}^n$  is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble  $(n \ge 2)$ , Triple-Bubble  $(n \ge 3)$ , Quadruple-Bubble  $(n \ge 4)$ , Quintuple-Bubble  $(n \ge 5)$ .

#### Multi-Bubble Uniqueness on **R**<sup>n</sup> / **S**<sup>n</sup> (M.–Neeman '22)

Uniqueness (up to null-sets) on  $\mathbb{S}^n$  for  $2 \le q \le \min(6, n+1)$ . Uniqueness (up to null-sets) on  $\mathbb{R}^n$  for  $2 \le q \le \min(5, n+1)$ .

Q: Why is  $\mathbb{S}^n$  case harder than  $\mathbb{G}^n$ ? And  $\mathbb{R}^n$  case even more so? A1:  $\mathbb{S}^N \Rightarrow \mathbb{G}^n$  by projection;  $\mathbb{S}^n \Rightarrow \mathbb{R}^n$  by scale-invariance and shrinking to a point, but uniqueness is lost in both cases. A2: TBD; Moral: we were lucky to have started with  $\mathbb{G}^n$ ...

### Single Bubble (q = 2):

- S<sup>n</sup> symmetrization, GMT, Localization.
- G<sup>n</sup> Projection of S<sup>N</sup>, symmetrization (Ehrhard), Brunn-Minkowski (Borell), Localization, heat-flow, GMT.

### Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):



Emanuel Milman

Multi-Bubble Isoperimetric Problems - Old and New

### Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):



Extension to  $\mathbb{S}^n$  by Cotton–Freeman '02: If all  $\Omega_i$  are connected then  $\Omega$  is standard double-bubble

Meta-Calibrations / Unification (Lawlor) - alternative proof on ℝ<sup>n</sup>.
 We proceed rather differently in our work.

### Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):



Extension to  $\mathbb{S}^n$  by Cotton–Freeman '02: If all  $\Omega_i$  are connected then  $\Omega$  is standard double-bubble

Meta-Calibrations / Unification (Lawlor) - alternative proof on ℝ<sup>n</sup>.
 We proceed rather differently in our work.

#### Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):



Extension to  $S^n$  by Cotton–Freeman '02: If all  $\Omega_i$  are connected then  $\Omega$  is standard double-bubble.

• Meta-Calibrations / Unification (Lawlor) - alternative proof on  $\mathbb{R}^n$ . We proceed rather differently in our work.

### Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):



Extension to  $\mathbb{S}^n$  by Cotton–Freeman '02: If all  $\Omega_i$  are connected then  $\Omega$  is standard double-bubble.

Meta-Calibrations / Unification (Lawlor) - alternative proof on ℝ<sup>n</sup>.
 We proceed rather differently in our work.

# Proof: Step 0 - Symmetry

Lemmas:

- 1 Simple symmetry on  $\mathbb{R}^n/\mathbb{S}^n$ :  $\forall 2 \le q \le n+1$ , exists minimizing *q*-cluster symmetric w.r.t. reflection about hyperplane  $H^{n-1}$ .
- 1b Full symmetry on ℝ<sup>n</sup>/S<sup>n</sup> (White, Hutchings '97): ∀2 ≤ q ≤ n, every minimizing *q*-cluster is symmetric w.r.t. M<sup>q-2</sup> (M ∈ {ℝ, S}), i.e. invariant under all isometries which preserve every x ∈ M<sup>q-2</sup>.
  - 2 Product structure on G<sup>n</sup> (M.–Neeman '18): ∀2 ≤ q ≤ n, every stable (in particular, minimizing) q-cluster is a product Ω × ℝ<sup>n+1-q</sup>.

Remarks:

- We don't need 1b in our approach.
- 1b and 2 reduce the problem to dimension q 1;
  1 does not reduce dimension.
- No expected symmetry / product structure in maximal case (q = n + 2 in ℝ<sup>n</sup>/S<sup>n</sup>, q = n + 1 in G<sup>n</sup>) →
  Need separate argument for G<sup>n</sup>, out-of-reach on ℝ<sup>n</sup>/S<sup>n</sup>.

1 Simple symmetry on  $\mathbb{R}^n/\mathbb{S}^n$ :  $\forall 2 \le q \le n+1$ , exists minimizing *q*-cluster symmetric w.r.t. reflection about hyperplane  $H^{n-1}$ .

Proof on S<sup>n</sup>:

Borsuk-Ulam Thm:

For any continuous  $f : \mathbb{S}^n \to \mathbb{R}^n$  (or  $\mathbb{R}^m, m \le n$ ),  $\exists \theta \in \mathbb{S}^n f(\theta) = f(-\theta)$ .

• Cor ("Ham-Sandwich"):  $\exists H^{n-1} = \theta^{\perp}$  bisecting *q*-cells if  $q \le n+1$  (just use  $f(\theta) = (2V(\Omega_i \cap \theta^{\perp}_+))_{i=1,...,q-1} \in \mathbb{R}^{q-1}$ ).

• If  $\Omega$  minimizer,  $\Omega_{\pm} \coloneqq \Omega \cap H_{\pm}^{n-1}$ , reflect  $\Omega_{\pm}$  about  $H^{n-1}$  – both have same volumes **and total perimeter** as  $\Omega$ , otherwise one of  $\Omega_{\pm}^{\text{sym}}$  would reduce it.  $\Box$ 

• Remark  $\partial_{\text{reg}}\Omega$  must meet bisecting  $H^{n-1}$  perpendicularly, otherwise could reduce perimeter of  $\Omega_{\pm}^{\text{sym}}$  by smoothing the angle out.

1 Simple symmetry on  $\mathbb{R}^n/\mathbb{S}^n$ :  $\forall 2 \le q \le n+1$ , exists minimizing *q*-cluster symmetric w.r.t. reflection about hyperplane  $H^{n-1}$ .

Proof on S<sup>n</sup>:

Borsuk-Ulam Thm:

For any continuous  $f : \mathbb{S}^n \to \mathbb{R}^n$  (or  $\mathbb{R}^m, m \le n$ ),  $\exists \theta \in \mathbb{S}^n f(\theta) = f(-\theta)$ .

• Cor ("Ham-Sandwich"):  $\exists H^{n-1} = \theta^{\perp}$  bisecting *q*-cells if  $q \le n+1$  (just use  $f(\theta) = (2V(\Omega_i \cap \theta^{\perp}_+))_{i=1,...,q-1} \in \mathbb{R}^{q-1}$ ).

• If  $\Omega$  minimizer,  $\Omega_{\pm} := \Omega \cap H_{\pm}^{n-1}$ , reflect  $\Omega_{\pm}$  about  $H^{n-1}$  – both have same volumes **and total perimeter** as  $\Omega$ , otherwise one of  $\Omega_{\pm}^{\text{sym}}$  would reduce it.  $\Box$ 

• Remark  $\partial_{\text{reg}}\Omega$  must meet bisecting  $H^{n-1}$  perpendicularly, otherwise could reduce perimeter of  $\Omega^{\text{sym}}_{\pm}$  by smoothing the angle out.

1 Simple symmetry on  $\mathbb{R}^n/\mathbb{S}^n$ :  $\forall 2 \le q \le n+1$ , exists minimizing *q*-cluster symmetric w.r.t. reflection about hyperplane  $H^{n-1}$ .

Proof on S<sup>n</sup>:

Borsuk-Ulam Thm:

For any continuous  $f : \mathbb{S}^n \to \mathbb{R}^n$  (or  $\mathbb{R}^m, m \le n$ ),  $\exists \theta \in \mathbb{S}^n f(\theta) = f(-\theta)$ .

• Cor ("Ham-Sandwich"):  $\exists H^{n-1} = \theta^{\perp}$  bisecting *q*-cells if  $q \le n+1$  (just use  $f(\theta) = (2V(\Omega_i \cap \theta^{\perp}_+))_{i=1,...,q-1} \in \mathbb{R}^{q-1}$ ).

• If  $\Omega$  minimizer,  $\Omega_{\pm} := \Omega \cap H_{\pm}^{n-1}$ , reflect  $\Omega_{\pm}$  about  $H^{n-1}$  – both have same volumes **and total perimeter** as  $\Omega$ , otherwise one of  $\Omega_{\pm}^{\text{sym}}$  would reduce it.  $\Box$ 

• Remark  $\partial_{\text{reg}}\Omega$  must meet bisecting  $H^{n-1}$  perpendicularly, otherwise could reduce perimeter of  $\Omega_{\pm}^{\text{sym}}$  by smoothing the angle out.
## Step 0 (Not needed!): Full Symmetry on $\mathbb{R}^n/\mathbb{S}^n$

1b Full symmetry on R<sup>n</sup>/S<sup>n</sup> (White, Hutchings '97): ∀2 ≤ q ≤ n, every minimizing *q*-cluster is symmetric w.r.t. M<sup>q-2</sup> (M ∈ {R,S}), i.e. invariant under all isometries which preserve every x ∈ M<sup>q-2</sup>.

We don't need this! We'll prove existence of such minimizer:

 $\exists \theta_1^{\perp} \text{ bisecting } \Omega \qquad ; \text{ symmetrize and continue on } \mathbb{S}^n \cap \theta_1^{\perp} \to \mathbb{R}^{q-1}. \\ \exists \theta_2^{\perp} \text{ bisecting } \Omega^{\text{sym},1}; \text{ symmetrize and continue on } \mathbb{S}^n \cap \theta_1^{\perp} \cap \theta_2^{\perp} \to \mathbb{R}^{q-1}. \\ \dots$ 

continue for n + 2 - q steps.

Obtain minimizing cluster  $\Omega^{\text{sym}}$  symmetric w.r.t. reflection in mutually perpendicular hyperplanes  $\theta_1^{\perp}, \ldots, \theta_{n+2-a}^{\perp}$  ("unconditional").

 $\begin{array}{l} \forall \theta \in \operatorname{span}(\theta_1, \ldots, \theta_{n+2-q}) = F^{\perp}, \ \theta^{\perp} \ \text{bisects} \ \Omega^{\operatorname{sym}} \Rightarrow \ \partial_{\operatorname{reg}} \Omega^{\operatorname{sym}} \perp \theta^{\perp}, \\ \partial_{\operatorname{reg}} \Omega^{\operatorname{sym}} \ \text{is rotation-invariant on} \ F^{\perp}, \ \text{i.e. symmetric w.r.t.} \ F. \\ \Rightarrow \ \Omega^{\operatorname{sym}} \ \text{symmetric w.r.t.} \ F. \ \operatorname{Use} \ M^{q-2} = F \cap M^n \quad \Box \end{array}$ 

## Step 0 (Not needed!): Full Symmetry on $\mathbb{R}^n/\mathbb{S}^n$

1b Full symmetry on R<sup>n</sup>/S<sup>n</sup> (White, Hutchings '97): ∀2 ≤ q ≤ n, every minimizing *q*-cluster is symmetric w.r.t. M<sup>q-2</sup> (M ∈ {R,S}), i.e. invariant under all isometries which preserve every x ∈ M<sup>q-2</sup>.

We don't need this! We'll prove existence of such minimizer:

 $\begin{array}{l} \exists \theta_1^{\perp} \text{ bisecting } \Omega \\ \exists \theta_2^{\perp} \text{ bisecting } \Omega^{\text{sym},1} \text{; symmetrize and continue on } \mathbb{S}^n \cap \theta_1^{\perp} \to \mathbb{R}^{q-1}. \end{array} \\ \end{array}$ 

continue for n + 2 - q steps.

Obtain minimizing cluster  $\Omega^{\text{sym}}$  symmetric w.r.t. reflection in mutually perpendicular hyperplanes  $\theta_1^{\perp}, \ldots, \theta_{n+2-a}^{\perp}$  ("unconditional").

 $\begin{array}{l} \forall \theta \in \operatorname{span}(\theta_1, \ldots, \theta_{n+2-q}) = F^{\perp}, \ \theta^{\perp} \ \text{bisects} \ \Omega^{\operatorname{sym}} \Rightarrow \ \partial_{\operatorname{reg}} \Omega^{\operatorname{sym}} \perp \theta^{\perp}.\\ \partial_{\operatorname{reg}} \Omega^{\operatorname{sym}} \ \text{is rotation-invariant on} \ F^{\perp}, \ \text{i.e. symmetric w.r.t.} \ F.\\ \Rightarrow \ \Omega^{\operatorname{sym}} \ \text{symmetric w.r.t.} \ F. \ \operatorname{Use} \ M^{q-2} = F \cap M^n \quad \Box \end{array}$ 

## Step 0 (Not needed!): Full Symmetry on $\mathbb{R}^n/\mathbb{S}^n$

1b Full symmetry on R<sup>n</sup>/S<sup>n</sup> (White, Hutchings '97): ∀2 ≤ q ≤ n, every minimizing *q*-cluster is symmetric w.r.t. M<sup>q-2</sup> (M ∈ {R,S}), i.e. invariant under all isometries which preserve every x ∈ M<sup>q-2</sup>.

We don't need this! We'll prove existence of such minimizer:

 $\begin{array}{l} \exists \theta_1^{\perp} \text{ bisecting } \Omega \\ \exists \theta_2^{\perp} \text{ bisecting } \Omega^{\text{sym},1} \text{; symmetrize and continue on } \mathbb{S}^n \cap \theta_1^{\perp} \to \mathbb{R}^{q-1}. \end{array} \\ \end{array}$ 

continue for n + 2 - q steps.

Obtain minimizing cluster  $\Omega^{\text{sym}}$  symmetric w.r.t. reflection in mutually perpendicular hyperplanes  $\theta_1^{\perp}, \ldots, \theta_{n+2-a}^{\perp}$  ("unconditional").

 $\begin{array}{l} \forall \theta \in \operatorname{span}(\theta_1, \dots, \theta_{n+2-q}) = F^{\perp}, \ \theta^{\perp} \ \text{bisects} \ \Omega^{\operatorname{sym}} \Rightarrow \ \partial_{\operatorname{reg}} \Omega^{\operatorname{sym}} \perp \theta^{\perp}.\\ \partial_{\operatorname{reg}} \Omega^{\operatorname{sym}} \ \text{is rotation-invariant on} \ F^{\perp}, \ \text{i.e. symmetric w.r.t.} \ F.\\ \Rightarrow \ \Omega^{\operatorname{sym}} \ \text{symmetric w.r.t.} \ F. \ \operatorname{Use} M^{q-2} = F \cap M^n \quad \Box \end{array}$ 

On smooth  $(M^n, g, \mu^n = e^{-W} dvol)$ , finite volume, GMT guarantees:

- Minimizing Ω = (Ω<sub>1</sub>,...,Ω<sub>q</sub>) exists (Almgren: also on ℝ<sup>n</sup>); cells are open, ∂<sup>\*</sup>Ω<sub>i</sub> = ∂Ω<sub>i</sub>. Denote interfaces: Σ<sub>ij</sub> := ∂<sup>\*</sup>Ω<sub>i</sub> ∩ ∂<sup>\*</sup>Ω<sub>j</sub>.
- Almgren 70's: Σ<sub>ij</sub> are C<sup>∞</sup> embedded mnflds w/ good properties.
  Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If  $X \in C_c^{\infty}(M^n; TM^n)$ ,  $\frac{d}{dt}F_t = X \circ F_t$  diffeomorphism,  $\Omega_t = F_t(\Omega)$ .  $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$ .
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E<sup>(q-1)</sup> = {v ∈ ℝ<sup>q</sup> ; Σ<sup>q</sup><sub>i=1</sub> v<sub>i</sub> = 0}, s.t.:

Ω is "stationary" (critical point)  $\delta_X^1 A - \langle \lambda, \delta_X^1 V \rangle = 0.$ 

 $\Omega \text{ is "stable" (local minimizer)} \quad \delta^1_X V = \mathbf{0} \Rightarrow \delta^2_X A - \left\langle \lambda, \delta^2_X V \right\rangle \ge \mathbf{0}.$ 

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then H<sub>Σij</sub>, μ = λ<sub>i</sub> - λ<sub>j</sub> is constant (CMC) on Σ<sub>ij</sub>.
- $\Sigma^1 := \bigcup_{i < j} \Sigma_{ij}$  has no boundary in weak sense  $(\int_{\Sigma^1} d\omega^{n-2} = 0)$ . So if  $\Sigma_{ij}$ ,  $\Sigma_{jk}$ ,  $\Sigma_{ki}$  meet in threes, it must be in 120° angles.

On smooth  $(M^n, g, \mu^n = e^{-W} dvol)$ , finite volume, GMT guarantees:

- Minimizing Ω = (Ω<sub>1</sub>,...,Ω<sub>q</sub>) exists (Almgren: also on ℝ<sup>n</sup>); cells are open, ∂<sup>\*</sup>Ω<sub>i</sub> = ∂Ω<sub>i</sub>. Denote interfaces: Σ<sub>ij</sub> := ∂<sup>\*</sup>Ω<sub>i</sub> ∩ ∂<sup>\*</sup>Ω<sub>j</sub>.
- Almgren 70's: Σ<sub>ij</sub> are C<sup>∞</sup> embedded mnflds w/ good properties.
  Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If  $X \in C_c^{\infty}(M^n; TM^n)$ ,  $\frac{d}{dt}F_t = X \circ F_t$  diffeomorphism,  $\Omega_t = F_t(\Omega)$ .  $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$ .
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E<sup>(q-1)</sup> = {v ∈ ℝ<sup>q</sup> ; Σ<sup>q</sup><sub>i=1</sub> v<sub>i</sub> = 0}, s.t.:

Ω is "stationary" (critical point)  $\delta_X^1 A - \langle \lambda, \delta_X^1 V \rangle = 0.$ 

 $\Omega \text{ is "stable" (local minimizer)} \quad \delta^1_X V = \mathbf{0} \Rightarrow \delta^2_X A - \left\langle \lambda, \delta^2_X V \right\rangle \ge \mathbf{0}.$ 

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then H<sub>Σij,μ</sub> = λ<sub>i</sub> - λ<sub>j</sub> is constant (CMC) on Σ<sub>ij</sub>.
- $\Sigma^1 := \bigcup_{i < j} \Sigma_{ij}$  has no boundary in weak sense  $(\int_{\Sigma^1} d\omega^{n-2} = 0)$ . So if  $\Sigma_{ij}$ ,  $\Sigma_{jk}$ ,  $\Sigma_{ki}$  meet in threes, it must be in 120° angles.

On smooth ( $M^n$ , g,  $\mu^n = e^{-W} dvol$ ), finite volume, GMT guarantees:

- Minimizing Ω = (Ω<sub>1</sub>,...,Ω<sub>q</sub>) exists (Almgren: also on ℝ<sup>n</sup>); cells are open, ∂<sup>\*</sup>Ω<sub>i</sub> = ∂Ω<sub>i</sub>. Denote interfaces: Σ<sub>ij</sub> := ∂<sup>\*</sup>Ω<sub>i</sub> ∩ ∂<sup>\*</sup>Ω<sub>j</sub>.
- Almgren 70's: Σ<sub>ij</sub> are C<sup>∞</sup> embedded mnflds w/ good properties.
  Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If  $X \in C_c^{\infty}(M^n; TM^n)$ ,  $\frac{d}{dt}F_t = X \circ F_t$  diffeomorphism,  $\Omega_t = F_t(\Omega)$ .  $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$ .
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E<sup>(q-1)</sup> = {v ∈ ℝ<sup>q</sup> ; Σ<sup>q</sup><sub>i=1</sub> v<sub>i</sub> = 0}, s.t.:

Ω is "stationary" (critical point)  $\delta_X^1 A - \langle \lambda, \delta_X^1 V \rangle = 0.$ 

 $\Omega \text{ is "stable" (local minimizer)} \quad \delta^1_X V = 0 \Rightarrow \delta^2_X A - \left\langle \lambda, \delta^2_X V \right\rangle \ge 0.$ 

= Q(X) "index-form"

 Since the first-variation of (weighted) area is (weighted) mean-curvature, then H<sub>Σij</sub>,μ = λ<sub>i</sub> - λ<sub>j</sub> is constant (CMC) on Σ<sub>ij</sub>.

•  $\Sigma^1 := \bigcup_{i < j} \Sigma_{ij}$  has no boundary in weak sense  $(\int_{\Sigma^1} d\omega^{n-2} = 0)$ .

On smooth ( $M^n$ , g,  $\mu^n = e^{-W} dvol$ ), finite volume, GMT guarantees:

- Minimizing Ω = (Ω<sub>1</sub>,...,Ω<sub>q</sub>) exists (Almgren: also on ℝ<sup>n</sup>); cells are open, ∂<sup>\*</sup>Ω<sub>i</sub> = ∂Ω<sub>i</sub>. Denote interfaces: Σ<sub>ij</sub> := ∂<sup>\*</sup>Ω<sub>i</sub> ∩ ∂<sup>\*</sup>Ω<sub>j</sub>.
- Almgren 70's: Σ<sub>ij</sub> are C<sup>∞</sup> embedded mnflds w/ good properties.
  Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If  $X \in C_c^{\infty}(M^n; TM^n)$ ,  $\frac{d}{dt}F_t = X \circ F_t$  diffeomorphism,  $\Omega_t = F_t(\Omega)$ .  $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$ .
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E<sup>(q-1)</sup> = {v ∈ ℝ<sup>q</sup> ; Σ<sup>q</sup><sub>i=1</sub> v<sub>i</sub> = 0}, s.t.:

Ω is "stationary" (critical point)  $\delta_X^1 A - \langle \lambda, \delta_X^1 V \rangle = 0.$ 

 $\Omega \text{ is "stable" (local minimizer)} \quad \delta_X^1 V = \mathbf{0} \Rightarrow \delta_X^2 A - \left\langle \lambda, \delta_X^2 V \right\rangle \ge \mathbf{0}.$ 

 Since the first-variation of (weighted) area is (weighted) mean-curvature, then H<sub>Σij</sub>, μ = λ<sub>i</sub> − λ<sub>j</sub> is constant (CMC) on Σ<sub>ij</sub>.

•  $\Sigma^1 := \bigcup_{i < j} \Sigma_{ij}$  has no boundary in weak sense  $(\int_{\Sigma^1} d\omega^{n-2} = 0)$ . So if  $\Sigma_{ij}, \Sigma_{jk}, \Sigma_{kl}$  meet in threes, it must be in 120° angles.

On smooth  $(M^n, g, \mu^n = e^{-W} dvol)$ , finite volume, GMT guarantees:

- Minimizing Ω = (Ω<sub>1</sub>,...,Ω<sub>q</sub>) exists (Almgren: also on ℝ<sup>n</sup>); cells are open, ∂<sup>\*</sup>Ω<sub>i</sub> = ∂Ω<sub>i</sub>. Denote interfaces: Σ<sub>ij</sub> := ∂<sup>\*</sup>Ω<sub>i</sub> ∩ ∂<sup>\*</sup>Ω<sub>j</sub>.
- Almgren 70's: Σ<sub>ij</sub> are C<sup>∞</sup> embedded mnflds w/ good properties.
  Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If  $X \in C_c^{\infty}(M^n; TM^n)$ ,  $\frac{d}{dt}F_t = X \circ F_t$  diffeomorphism,  $\Omega_t = F_t(\Omega)$ .  $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$ .
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E<sup>(q-1)</sup> = {v ∈ ℝ<sup>q</sup> ; Σ<sup>q</sup><sub>i=1</sub> v<sub>i</sub> = 0}, s.t.:

Ω is "stationary" (critical point)  $\delta_X^1 A - \langle \lambda, \delta_X^1 V \rangle = 0.$ 

 $\Omega \text{ is "stable" (local minimizer)} \quad \delta_X^1 V = 0 \Rightarrow \delta_X^2 A - \left\langle \lambda, \delta_X^2 V \right\rangle \ge 0.$ 

 Since the first-variation of (weighted) area is (weighted) mean-curvature, then H<sub>Σij</sub>, μ = λ<sub>i</sub> − λ<sub>j</sub> is constant (CMC) on Σ<sub>ij</sub>.

Σ<sup>1</sup> := ∪<sub>i<j</sub> Σ<sub>ij</sub> has no boundary in weak sense (∫<sub>Σ1</sub> dω<sup>n-2</sup> = 0).
 So if Σ<sub>ij</sub>, Σ<sub>jk</sub>, Σ<sub>ki</sub> meet in threes, it must be in 120° angles.

2 Product structure on G<sup>n</sup> (M.–Neeman '18): ∀2 ≤ q ≤ n, every stable (in particular, minimizing) *q*-cluster is a product Ω̃ × ℝ<sup>n+1-q</sup>.

<u>Proof</u>: Gaussian conjectured minimizers are generated by Translation group; its generators are  $T_{\theta} \equiv \theta$  constant vector-fields.

Define:

- $\mathbb{R}^n \ni \theta \mapsto \boldsymbol{M}\theta \coloneqq \delta_{T_\theta}^1 \boldsymbol{V} = \left(\int_{\partial^*\Omega_i} \langle \theta, \mathfrak{n}_i \rangle \, d\gamma^{n-1}\right)_{i=1,\dots,q} \in \boldsymbol{E}^{(q-1)}.$
- $\mathcal{N} := \text{span}(\mathfrak{n}|_{\Sigma^1})$ ; easy to show  $\Omega = \tilde{\Omega} \times \mathcal{N}^{\perp}$ ,  $\tilde{\Omega} \subset \mathcal{N}$ .

Claim:  $\mathcal{N}^{\perp} = \ker M$ ; would yield dim  $\mathcal{N}^{\perp} = \dim \ker M \ge n + 1 - q \iff \Box$ .

<u>**Proof**</u>:  $\subseteq$  is trivial;  $\supseteq$ : let  $\theta \in \ker M$ , i.e.  $\delta_{T_{\alpha}}^{1} V = 0$ . By stability:

$$0 \le Q(T_{\theta}) =_{\text{calculation}} = -\int_{\Sigma^{1}} \langle \theta, \mathfrak{n} \rangle^{2} \, d\gamma^{n-1} \le 0 \implies \theta \perp \mathcal{N} \quad \Box$$

Very lucky that  $Q(T_{\theta}) \le 0$ ! That's the difference with  $\mathbb{R}^n / \mathbb{S}^n$ , where conjectured minimizers are generated by Möbius group;  $Q(W_{\theta}) \le 0$ .

2 Product structure on G<sup>n</sup> (M.–Neeman '18): ∀2 ≤ q ≤ n, every stable (in particular, minimizing) *q*-cluster is a product Ω̃ × ℝ<sup>n+1-q</sup>.

<u>Proof</u>: Gaussian conjectured minimizers are generated by Translation group; its generators are  $T_{\theta} \equiv \theta$  constant vector-fields.

Define:

- $\mathbb{R}^n \ni \theta \mapsto \mathbf{M}\theta \coloneqq \delta^1_{\mathcal{T}_\theta} \mathbf{V} = \left(\int_{\partial^* \Omega_i} \langle \theta, \mathfrak{n}_i \rangle \, d\gamma^{n-1}\right)_{i=1,\dots,q} \in E^{(q-1)}.$
- $\mathcal{N} := \text{span}(\mathfrak{n}|_{\Sigma^1})$ ; easy to show  $\Omega = \tilde{\Omega} \times \mathcal{N}^{\perp}$ ,  $\tilde{\Omega} \subset \mathcal{N}$ .

Claim:  $\mathcal{N}^{\perp} = \ker M$ ; would yield dim  $\mathcal{N}^{\perp} = \dim \ker M \ge n + 1 - q \iff \Box$ .

<u>**Proof**</u>:  $\subseteq$  is trivial;  $\supseteq$ : let  $\theta \in \ker M$ , i.e.  $\delta_{T_{\theta}}^{1} V = 0$ . By stability:

$$0 \leq Q(T_{\theta}) =_{\text{calculation}} = -\int_{\Sigma^{1}} \langle \theta, \mathfrak{n} \rangle^{2} \, d\gamma^{n-1} \leq 0 \implies \theta \perp \mathcal{N} \quad \Box$$

Very lucky that  $Q(T_{\theta}) \leq 0$ ! That's the difference with  $\mathbb{R}^n / \mathbb{S}^n$ , where conjectured minimizers are generated by Möbius group;  $Q(W_{\theta}) \leq 0$ .

### Proof: Step 1 – Minimizer has Trivial Curvature

On  $\mathbb{G}^n$ :  $q \le n+1 \implies$  minimizer is flat II = 0. For q < n+1: use product structure  $\Omega = \tilde{\Omega} \times \mathbb{R}^{n+1-q}$ . Maximal case q = n+1: separate argument, Q(Translations)  $\le 0$ .

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \implies$  minimizer is spherical  $II_0 = II - \frac{H}{n-1}Id = 0$ . For q < n+2: use reflection symmetry of  $\Omega$  about  $H^{n-1}$ . Cannot handle maximal case q = n+2, because  $Q(M\"obius) \le 0$ ?

Our tool is Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - (\lambda, \delta_X^2 V).$ 

This is harder on  $\mathbb{S}^n/\mathbb{R}^n$  since  $H_{ij} = \lambda_i - \lambda_j$  is unknown, and we need to combine several fields & discover integration by parts formulas.

#### Proof: Step 1 – Minimizer has Trivial Curvature

On  $\mathbb{G}^n$ :  $q \le n+1 \implies$  minimizer is flat II = 0. For q < n+1: use product structure  $\Omega = \tilde{\Omega} \times \mathbb{R}^{n+1-q}$ . Maximal case q = n+1: separate argument, Q(Translations)  $\le 0$ .

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \implies$  minimizer is spherical  $II_0 = II - \frac{H}{n-1}Id = 0$ . For q < n+2: use reflection symmetry of  $\Omega$  about  $H^{n-1}$ . Cannot handle maximal case q = n+2, because  $Q(M\"obius) \le 0$ ?

Our tool is Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - (\lambda, \delta_X^2 V).$ 

This is harder on  $\mathbb{S}^n/\mathbb{R}^n$  since  $H_{ij} = \lambda_i - \lambda_j$  is unknown, and we need to combine several fields & discover integration by parts formulas.

#### Proof: Step 1 – Minimizer has Trivial Curvature

On  $\mathbb{G}^n$ :  $q \le n+1 \implies$  minimizer is flat II = 0. For q < n+1: use product structure  $\Omega = \tilde{\Omega} \times \mathbb{R}^{n+1-q}$ . Maximal case q = n+1: separate argument, Q(Translations)  $\le 0$ .

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \Rightarrow$  minimizer is spherical  $II_0 = II - \frac{H}{n-1}Id = 0$ . For q < n+2: use reflection symmetry of  $\Omega$  about  $H^{n-1}$ . Cannot handle maximal case q = n+2, because  $Q(Möbius) \le 0$ ?

Our tool is Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - (\lambda, \delta_X^2 V).$ 

This is harder on  $\mathbb{S}^n/\mathbb{R}^n$  since  $H_{ij} = \lambda_i - \lambda_j$  is unknown, and we need to combine several fields & discover integration by parts formulas.

On  $\mathbb{G}^n$ :  $q \le n+1 \implies$  minimizer is flat II = 0. For q < n+1: use product structure  $\Omega = \tilde{\Omega} \times \mathbb{R}^{n+1-q}$ . Maximal case q = n+1: separate argument, Q(Translations)  $\le 0$ .

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \Rightarrow$  minimizer is spherical  $II_0 = II - \frac{H}{n-1}Id = 0$ . For q < n+2: use reflection symmetry of  $\Omega$  about  $H^{n-1}$ . Cannot handle maximal case q = n+2, because  $Q(Möbius) \le 0$ ?

Our tool is Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$ .

This is harder on  $\mathbb{S}^n/\mathbb{R}^n$  since  $H_{ij} = \lambda_i - \lambda_j$  is unknown, and we need to combine several fields & discover integration by parts formulas.

On  $\mathbb{G}^n$ :  $q \le n+1 \implies$  minimizer is flat II = 0. For q < n+1: use product structure  $\Omega = \tilde{\Omega} \times \mathbb{R}^{n+1-q}$ . Maximal case q = n+1: separate argument, Q(Translations)  $\le 0$ .

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \Rightarrow$  minimizer is spherical  $II_0 = II - \frac{H}{n-1}Id = 0$ . For q < n+2: use reflection symmetry of  $\Omega$  about  $H^{n-1}$ . Cannot handle maximal case q = n+2, because  $Q(Möbius) \le 0$ ?

Our tool is Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$ .

This is harder on  $\mathbb{S}^n/\mathbb{R}^n$  since  $H_{ij} = \lambda_i - \lambda_j$  is unknown, and we need to combine several fields & discover integration by parts formulas.

On  $\mathbb{G}^n$ :  $q \le n+1 \implies$  minimizer is flat II = 0. For q < n+1: use product structure  $\Omega = \tilde{\Omega} \times \mathbb{R}^{n+1-q}$ . Maximal case q = n+1: separate argument, Q(Translations)  $\le 0$ .

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \Rightarrow$  minimizer is spherical  $II_0 = II - \frac{H}{n-1}Id = 0$ . For q < n+2: use reflection symmetry of  $\Omega$  about  $H^{n-1}$ . Cannot handle maximal case q = n+2, because  $Q(M\"{o}bius) \le 0$ ?

Our tool is Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - (\lambda, \delta_X^2 V).$ 

This is harder on  $\mathbb{S}^n/\mathbb{R}^n$  since  $H_{ij} = \lambda_i - \lambda_j$  is unknown, and we need to combine several fields & discover integration by parts formulas.

Regularity of higher codimension boundary (Morgan '94 n = 2; Taylor '76 n = 2, 3; White '86, Colombo–Edelen–Spolaor '17  $n \ge 4$ )

Let  $\Omega$  be a minimizing *q*-cluster. Recall the cones  $\mathbf{Y} \subset \mathbb{R}^2$ ,  $\mathbf{T} \subset \mathbb{R}^3$ .

1.  $\Sigma := \cup_i \partial \Omega_i$  is the disjoint union of  $\Sigma^1 := \cup_{i < j} \Sigma_{ij}, \Sigma^2, \Sigma^3, \Sigma^4$ , where:

2.  $\forall p \in \Sigma^2$  (triple pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $\mathbf{Y} \times \mathbb{R}^{n-2}$ .

3.  $\forall p \in \Sigma^3$  (quad pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $\mathbf{T} \times \mathbb{R}^{n-3}$ .

4.  $\Sigma^4$  (singular) is closed,  $\mathcal{H}^{n-3}(\Sigma^4) = 0$  (loc. finite  $\mathcal{H}^{n-4}$ -measure).

Hence  $\Sigma^2 = \bigcup_{i < j < k} \Sigma_{ijk}$ . Denote  $\partial \Sigma_{ij} := \bigcup_{k \neq i, j} \Sigma_{ijk}$ ;  $(\Sigma_{ij}, \partial \Sigma_{ij})$  incomplete. By stationarity,  $\forall p \in \Sigma_{ijk}, \Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$  meet at 120° angles.

Kinderlehrer–Nirenberg–Spruck '78: in 2. regularity upgrades to  $C^{\infty}$ . Optimal regularity in 3. is open;  $C^{1,\alpha}$  suspected to be optimal.

Local Integrability of Curvature (M.–Neeman '18)

For any compact K disjoint from  $\Sigma^4$ ,  $\Pi^{ij} \in L^2(\Sigma_{ij} \cap K), L^1(\partial \Sigma_{ij} \cap K)$ .

Idea: using Schauder estimates,  $\|\mathbf{II}^{ij}(p)\| \leq C_K/d(p,\Sigma^3)^{1-\alpha}$ .

Regularity of higher codimension boundary (Morgan '94 n = 2; Taylor '76 n = 2, 3; White '86, Colombo–Edelen–Spolaor '17  $n \ge 4$ )

Let  $\Omega$  be a minimizing *q*-cluster. Recall the cones  $\mathbf{Y} \subset \mathbb{R}^2$ ,  $\mathbf{T} \subset \mathbb{R}^3$ .

1.  $\Sigma := \cup_i \partial \Omega_i$  is the disjoint union of  $\Sigma^1 := \cup_{i < j} \Sigma_{ij}, \Sigma^2, \Sigma^3, \Sigma^4$ , where:

- 2.  $\forall p \in \Sigma^2$  (triple pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $\mathbf{Y} \times \mathbb{R}^{n-2}$ .
- 3.  $\forall p \in \Sigma^3$  (quad pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $T \times \mathbb{R}^{n-3}$ .
- 4.  $\Sigma^4$  (singular) is closed,  $\mathcal{H}^{n-3}(\Sigma^4) = 0$  (loc. finite  $\mathcal{H}^{n-4}$ -measure).

Hence  $\Sigma^2 = \bigcup_{i < j < k} \Sigma_{ijk}$ . Denote  $\partial \Sigma_{ij} := \bigcup_{k \neq i, j} \Sigma_{ijk}$ ;  $(\Sigma_{ij}, \partial \Sigma_{ij})$  incomplete. By stationarity,  $\forall p \in \Sigma_{ijk}, \Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$  meet at 120° angles.

Kinderlehrer–Nirenberg–Spruck '78: in 2. regularity upgrades to  $C^{\infty}$ . Optimal regularity in 3. is open;  $C^{1,\alpha}$  suspected to be optimal.

Local Integrability of Curvature (M.–Neeman '18)

For any compact K disjoint from  $\Sigma^4$ ,  $\Pi^{ij} \in L^2(\Sigma_{ij} \cap K), L^1(\partial \Sigma_{ij} \cap K)$ .

Idea: using Schauder estimates,  $\|\mathbf{II}^{ij}(p)\| \leq C_K/d(p,\Sigma^3)^{1-\alpha}$ .

Regularity of higher codimension boundary (Morgan '94 n = 2; Taylor '76 n = 2, 3; White '86, Colombo–Edelen–Spolaor '17  $n \ge 4$ )

Let  $\Omega$  be a minimizing *q*-cluster. Recall the cones  $\mathbf{Y} \subset \mathbb{R}^2$ ,  $\mathbf{T} \subset \mathbb{R}^3$ .

1.  $\Sigma := \cup_i \partial \Omega_i$  is the disjoint union of  $\Sigma^1 := \cup_{i < j} \Sigma_{ij}, \Sigma^2, \Sigma^3, \Sigma^4$ , where:

- 2.  $\forall p \in \Sigma^2$  (triple pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $\mathbf{Y} \times \mathbb{R}^{n-2}$ .
- 3.  $\forall p \in \Sigma^3$  (quad pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $\mathbf{T} \times \mathbb{R}^{n-3}$ .
- 4.  $\Sigma^4$  (singular) is closed,  $\mathcal{H}^{n-3}(\Sigma^4) = 0$  (loc. finite  $\mathcal{H}^{n-4}$ -measure).

Hence  $\Sigma^2 = \bigcup_{i < j < k} \Sigma_{ijk}$ . Denote  $\partial \Sigma_{ij} := \bigcup_{k \neq i, j} \Sigma_{ijk}$ ;  $(\Sigma_{ij}, \partial \Sigma_{ij})$  incomplete. By stationarity,  $\forall p \in \Sigma_{ijk}, \Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$  meet at 120° angles.

Kinderlehrer–Nirenberg–Spruck '78: in 2. regularity upgrades to  $C^{\infty}$ . Optimal regularity in 3. is open;  $C^{1,\alpha}$  suspected to be optimal.

Local Integrability of Curvature (M.–Neeman '18)

For any compact K disjoint from  $\Sigma^4$ ,  $\Pi^{ij} \in L^2(\Sigma_{ij} \cap K), L^1(\partial \Sigma_{ij} \cap K)$ .

Idea: using Schauder estimates,  $\|\mathbf{II}^{ij}(p)\| \leq C_K/d(p,\Sigma^3)^{1-\alpha}$ .

Regularity of higher codimension boundary (Morgan '94 n = 2; Taylor '76 n = 2, 3; White '86, Colombo–Edelen–Spolaor '17  $n \ge 4$ )

Let  $\Omega$  be a minimizing *q*-cluster. Recall the cones  $\mathbf{Y} \subset \mathbb{R}^2$ ,  $\mathbf{T} \subset \mathbb{R}^3$ .

1.  $\Sigma := \cup_i \partial \Omega_i$  is the disjoint union of  $\Sigma^1 := \cup_{i < j} \Sigma_{ij}, \Sigma^2, \Sigma^3, \Sigma^4$ , where:

- 2.  $\forall p \in \Sigma^2$  (triple pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $\mathbf{Y} \times \mathbb{R}^{n-2}$ .
- 3.  $\forall p \in \Sigma^3$  (quad pts),  $\Sigma$  is locally  $C^{1,\alpha}$ -diffeomorphic to  $T \times \mathbb{R}^{n-3}$ .
- 4.  $\Sigma^4$  (singular) is closed,  $\mathcal{H}^{n-3}(\Sigma^4) = 0$  (loc. finite  $\mathcal{H}^{n-4}$ -measure).

Hence  $\Sigma^2 = \bigcup_{i < j < k} \Sigma_{ijk}$ . Denote  $\partial \Sigma_{ij} := \bigcup_{k \neq i, j} \Sigma_{ijk}$ ;  $(\Sigma_{ij}, \partial \Sigma_{ij})$  incomplete. By stationarity,  $\forall p \in \Sigma_{ijk}, \Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$  meet at 120° angles.

Kinderlehrer–Nirenberg–Spruck '78: in 2. regularity upgrades to  $C^{\infty}$ . Optimal regularity in 3. is open;  $C^{1,\alpha}$  suspected to be optimal.

#### Local Integrability of Curvature (M.-Neeman '18)

For any compact *K* disjoint from  $\Sigma^4$ ,  $\Pi^{ij} \in L^2(\Sigma_{ij} \cap K), L^1(\partial \Sigma_{ij} \cap K)$ .

Idea: using Schauder estimates,  $\|\mathbf{II}^{ij}(p)\| \leq C_{\mathcal{K}}/d(p,\Sigma^3)^{1-\alpha}$ .

Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$  (the "index-form").

$$\delta_X^1 V(\Omega_i) = \int_{\partial^* \Omega_i} X^{\mathfrak{n}_{ij}} d\mu^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} f_{ij} d\mu^{n-1} =: \delta_f^1 V(\Omega_i),$$

where  $f_{ij} = X^{n_{ij}} := \langle X, n_{ij} \rangle$  on  $\Sigma_{ij}$ . We'll call  $f = (f_{ij})$  a "scalar-field". Under favorable conditions:  $Q(X) = Q_0(f)$ , integration on  $(\Sigma_{ii}, \partial \Sigma_{ij})$ 

$$\boldsymbol{Q_0(f)} = -\sum_{i < j} \left( \int_{\Sigma_{ij}} F(f, \nabla_{\Sigma} f, \|\mathbf{II}\|^2) d\mu^{n-1} + \int_{\partial \Sigma_{ij}} G(f, \mathbf{II}) d\mu^{n-2} \right).$$

Can justify if supp(X) disjoint from  $\Sigma^4$ ; need integrability of II. Stability for "physical" scalar-fields,  $f_{ij} = X^{n_{ij}}$ :  $\delta_f^1 V = 0 \Rightarrow Q_0(f) \ge 0$ . Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{ki} = 0$  on  $\Sigma_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ? Even for single-bubble, NO! Simons cone { $x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2$ }. So let's approximate:  $\delta_X^1 V = \delta_f^1 V$  and  $Q(X) \simeq Q_0(f)$ .

Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$  (the "index-form").

$$\delta_X^1 V(\Omega_i) = \int_{\partial^* \Omega_i} X^{\mathfrak{n}_{ij}} d\mu^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} f_{ij} d\mu^{n-1} =: \delta_f^1 V(\Omega_i),$$

where  $f_{ij} = X^{\mathfrak{n}_{ij}} := \langle X, \mathfrak{n}_{ij} \rangle$  on  $\Sigma_{ij}$ . We'll call  $f = (f_{ij})$  a "scalar-field". Under favorable conditions:  $Q(X) = Q_0(f)$ , integration on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ 

$$Q_0(f) = -\sum_{i < j} \left( \int_{\Sigma_{ij}} F(f, \nabla_{\Sigma} f, \|\mathbf{I}\|^2) d\mu^{n-1} + \int_{\partial \Sigma_{ij}} G(f, \mathbf{I}) d\mu^{n-2} \right).$$

Can justify if supp(X) disjoint from  $\Sigma^4$ ; need integrability of II. Stability for "physical" scalar-fields,  $f_{ij} = X^{n_{ij}}$ :  $\delta_f^1 V = 0 \Rightarrow Q_0(f) \ge 0$ . Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{ki} = 0$  on  $\Sigma_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ? Even for single-bubble, NO! Simons cone { $x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2$ }. So let's approximate:  $\delta_X^1 V = \delta_f^1 V$  and  $Q(X) \simeq Q_0(f)$ .

Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$  (the "index-form").

$$\delta_X^1 V(\Omega_i) = \int_{\partial^* \Omega_i} X^{\mathfrak{n}_{ij}} d\mu^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} f_{ij} d\mu^{n-1} =: \delta_f^1 V(\Omega_i),$$

where  $f_{ij} = X^{n_{ij}} := \langle X, n_{ij} \rangle$  on  $\Sigma_{ij}$ . We'll call  $f = (f_{ij})$  a "scalar-field". Under favorable conditions:  $Q(X) = Q_0(f)$ , integration on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$\boldsymbol{Q}_{0}(\boldsymbol{f}) = -\sum_{i < j} \left( \int_{\Sigma_{ij}} F(\boldsymbol{f}, \nabla_{\Sigma} \boldsymbol{f}, \|\boldsymbol{II}\|^{2}) d\mu^{n-1} + \int_{\partial \Sigma_{ij}} G(\boldsymbol{f}, |\boldsymbol{I}|) d\mu^{n-2} \right).$$

Can justify if supp(X) disjoint from  $\Sigma^4$ ; need integrability of II.

Stability for "physical" scalar-fields,  $f_{ij} = X^{n_{ij}}$ :  $\delta_f^1 V = 0 \Rightarrow Q_0(f) \ge 0$ .

Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{kl} = 0$  on  $\sum_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ?

Even for single-bubble, NO! Simons cone  $\{x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2\}$ . So let's approximate:  $\delta_X^1 V = \delta_i^1 V$  and  $Q(X) \simeq Q_0(f)$ .

Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$  (the "index-form").

$$\delta_X^1 V(\Omega_i) = \int_{\partial^* \Omega_i} X^{\mathfrak{n}_{ij}} d\mu^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} f_{ij} d\mu^{n-1} =: \delta_f^1 V(\Omega_i),$$

where  $f_{ij} = X^{n_{ij}} := \langle X, n_{ij} \rangle$  on  $\Sigma_{ij}$ . We'll call  $f = (f_{ij})$  a "scalar-field". Under favorable conditions:  $Q(X) = Q_0(f)$ , integration on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$\boldsymbol{Q}_{0}(\boldsymbol{f}) = -\sum_{i < j} \left( \int_{\Sigma_{ij}} F(\boldsymbol{f}, \nabla_{\Sigma} \boldsymbol{f}, \|\boldsymbol{II}\|^{2}) d\mu^{n-1} + \int_{\partial \Sigma_{ij}} G(\boldsymbol{f}, |\boldsymbol{I}|) d\mu^{n-2} \right).$$

Can justify if supp(X) disjoint from  $\Sigma^4$ ; need integrability of II. Stability for "physical" scalar-fields,  $f_{ij} = X^{n_{ij}}$ :  $\delta_f^1 V = 0 \Rightarrow Q_0(f) \ge 0$ .

Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{kl} = 0$  on  $\sum_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ?

Even for single-bubble, NO! Simons cone  $\{x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2\}$ . So let's approximate:  $\delta_X^1 V = \delta_i^1 V$  and  $Q(X) \simeq Q_0(f)$ .

Stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$  (the "index-form").

$$\delta_X^1 V(\Omega_i) = \int_{\partial^* \Omega_i} X^{\mathfrak{n}_{ij}} d\mu^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} f_{ij} d\mu^{n-1} =: \delta_f^1 V(\Omega_i),$$

where  $f_{ij} = X^{n_{ij}} := \langle X, n_{ij} \rangle$  on  $\Sigma_{ij}$ . We'll call  $f = (f_{ij})$  a "scalar-field". Under favorable conditions:  $Q(X) = Q_0(f)$ , integration on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$\boldsymbol{Q}_{0}(\boldsymbol{f}) = -\sum_{i < j} \left( \int_{\Sigma_{ij}} F(\boldsymbol{f}, \nabla_{\Sigma} \boldsymbol{f}, \|\boldsymbol{II}\|^{2}) d\mu^{n-1} + \int_{\partial \Sigma_{ij}} G(\boldsymbol{f}, |\boldsymbol{I}|) d\mu^{n-2} \right).$$

Can justify if supp(X) disjoint from  $\Sigma^4$ ; need integrability of II. Stability for "physical" scalar-fields,  $f_{ij} = X^{n_{ij}}$ :  $\delta_f^1 V = 0 \Rightarrow Q_0(f) \ge 0$ . Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{ki} = 0$  on  $\Sigma_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ? Even for single-bubble, NO! Simons cone { $x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2$ }. So let's approximate:  $\delta_X^1 V = \delta_i^1 V$  and  $Q(X) \simeq Q_0(f)$ .

Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{ki} = 0$  on  $\sum_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ?

Even for single-bubble, NO! Simons cone  $\{x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2\}$ . So let's approximate:  $\delta_X^1 V = \delta_f^1 V$  and  $Q(X) \simeq Q_0(f)$ .

- Can cut away  $\Sigma^4$  effect on 2nd variations arbitrarily small.
- Can't cut  $\Sigma^3$  (will be felt by  $\delta_X^2 A$ )! Problem, since: (i)  $\mathfrak{n}_{ij}$  is  $C^{0,\alpha}$  on  $\Sigma^3$ ; (ii) curvature could be blowing-up near  $\Sigma^3$ .

Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{ki} = 0$  on  $\sum_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ?

Even for single-bubble, NO! Simons cone  $\{x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2\}$ .

• Can cut away  $\Sigma^4$  – effect on 2nd variations arbitrarily small.

• Can't cut  $\Sigma^3$  (will be felt by  $\delta_X^2 A$ )! Problem, since: (i)  $\mathfrak{n}_{ij}$  is  $C^{0,\alpha}$  on  $\Sigma^3$ ; (ii) curvature could be blowing-up near  $\Sigma^3$ .

Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{ki} = 0$  on  $\sum_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ?

Even for single-bubble, NO! Simons cone  $\{x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2\}$ . So let's approximate:  $\delta_X^1 V = \delta_f^1 V$  and  $Q(X) \simeq Q_0(f)$ .

- Can cut away  $\Sigma^4$  effect on 2nd variations arbitrarily small.
- Can't cut Σ<sup>3</sup> (will be felt by δ<sup>2</sup><sub>X</sub>A)! Problem, since: (i) n<sub>ij</sub> is C<sup>0,α</sup> on Σ<sup>3</sup>; (ii) curvature could be blowing-up near Σ<sup>3</sup>.

Working with scalar-fields is super convenient. Given smooth  $f = (f_{ij})$ w/  $f_{ij} + f_{jk} + f_{ki} = 0$  on  $\sum_{ijk}$  (Kirchhoff), can we find smooth X w/  $X^{n_{ij}} = f_{ij}$ ?

Even for single-bubble, NO! Simons cone  $\{x \in \mathbb{R}^8 : \sum_{i=1}^4 x_i^2 = \sum_{i=5}^8 x_i^2\}$ . So let's approximate:  $\delta_X^1 V = \delta_f^1 V$  and  $Q(X) \simeq Q_0(f)$ .

- Can cut away ∑<sup>4</sup> effect on 2nd variations arbitrarily small.
- Can't cut Σ<sup>3</sup> (will be felt by δ<sup>2</sup><sub>X</sub>A)! Problem, since: (i) n<sub>ij</sub> is C<sup>0,α</sup> on Σ<sup>3</sup>; (ii) curvature could be blowing-up near Σ<sup>3</sup>.

Under very favorable conditions, stability yields  $\delta_f^1 V = 0 \Rightarrow 0 \le Q_0(f)$ . Idea 1.0: find *f* with  $\delta_f^1 V = 0$  and  $Q_0(f) \le 0$ . Read off information on II.

$$\boldsymbol{Q}_{0}(\boldsymbol{f}) = \sum_{i < j} \left( -\int_{\Sigma_{ij}} f \boldsymbol{L}_{Jac} \boldsymbol{f} \, d\mu^{n-1} + \int_{\partial \Sigma_{ij}} \boldsymbol{f} \left( \nabla_{\mathfrak{n}_{\partial ij}} \boldsymbol{f} - \frac{\boldsymbol{\Pi}_{\partial \partial}^{k} + \boldsymbol{\Pi}_{\partial \partial}^{k}}{\sqrt{3}} \boldsymbol{f} \right) d\mu^{n-2} \right).$$

*L<sub>Jac</sub>* is the Jacobi operator:

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^{2})f.$$

Here  $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 0$  on  $\mathbb{R}^n$ , = n - 1 on  $\mathbb{S}^n$  and = 1 on  $\mathbb{G}^n$ .  $\Delta_{\Sigma,\mu}$  - (weighted) surface Laplacian.  $\mathfrak{n}_{\partial ij}$  outer normal to  $\partial_{\Sigma_{ij}}$  in  $T\Sigma_{ij}$ . *Problem*: II a-priori unknown, no control over boundary's sign. <u>Idea 2.0</u>: use stability for family of scalar-fields  $f_{ij}^a = (a_i - a_j)\Psi$ ,  $a \in \mathbb{R}^q$ , so that  $\delta_{f^a}^1 V = 0$  and  $\mathbb{E}_a Q_0(f^a) \le 0$ ,  $a \sim \mathbb{S}^{q-1}$ . Read off information on II.

$$Q_0^{\mathrm{tr}}(\Psi) = \frac{1}{2} \mathrm{tr}(a \mapsto Q_0((a_i - a_j)\Psi)) = -\sum_{i < j} \int_{\Sigma_{ij}} \Psi L_{Jac} \Psi \ d\mu^{n-1}.$$

Under very favorable conditions, stability yields  $\delta_f^1 V = 0 \Rightarrow 0 \le Q_0(f)$ . Idea 1.0: find *f* with  $\delta_f^1 V = 0$  and  $Q_0(f) \le 0$ . Read off information on II.

$$Q_0(f) = \sum_{i < j} \left( -\int_{\Sigma_{ij}} f \mathcal{L}_{Jac} f \, d\mu^{n-1} + \int_{\partial \Sigma_{ij}} f \left( \nabla_{\mathfrak{n}_{\partial ij}} f - \frac{|I_{\partial \partial}^{ik} + |I_{\partial \partial}^{ik}}{\sqrt{3}} f \right) d\mu^{n-2} \right).$$

*L<sub>Jac</sub>* is the Jacobi operator:

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\mathrm{II}\|^{2})f.$$

Here  $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 0$  on  $\mathbb{R}^n$ , = n - 1 on  $\mathbb{S}^n$  and = 1 on  $\mathbb{G}^n$ .  $\Delta_{\Sigma,\mu}$  - (weighted) surface Laplacian.  $\mathfrak{n}_{\partial ij}$  outer normal to  $\partial \Sigma_{ij}$  in  $T\Sigma_{ij}$ .

*Problem*: II a-priori unknown, no control over boundary's sign. <u>Idea 2.0</u>: use stability for family of scalar-fields  $f_{ij}^a = (a_i - a_j)\Psi$ ,  $a \in \mathbb{R}^q$ , so that  $\delta_{f^a}^1 V = 0$  and  $\mathbb{E}_a Q_0(f^a) \le 0$ ,  $a \sim \mathbb{S}^{q-1}$ . Read off information on II.

$$Q_0^{\mathrm{tr}}(\Psi) = \frac{1}{2} \mathrm{tr}(a \mapsto Q_0((a_i - a_j)\Psi)) = -\sum_{i < j} \int_{\Sigma_{ij}} \Psi L_{Jac} \Psi \ d\mu^{n-1}.$$

Under very favorable conditions, stability yields  $\delta_f^1 V = 0 \Rightarrow 0 \le Q_0(f)$ . Idea 1.0: find *f* with  $\delta_f^1 V = 0$  and  $Q_0(f) \le 0$ . Read off information on II.

$$Q_0(f) = \sum_{i < j} \left( -\int_{\Sigma_{ij}} f \mathcal{L}_{Jac} f \, d\mu^{n-1} + \int_{\partial \Sigma_{ij}} f \left( \nabla_{\mathfrak{n}_{\partial ij}} f - \frac{|I_{\partial \partial}^{ik} + |I_{\partial \partial}^{ik}}{\sqrt{3}} f \right) d\mu^{n-2} \right).$$

*L<sub>Jac</sub>* is the Jacobi operator:

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\mathrm{II}\|^{2})f.$$

Here  $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 0$  on  $\mathbb{R}^n$ , = n - 1 on  $\mathbb{S}^n$  and = 1 on  $\mathbb{G}^n$ .  $\Delta_{\Sigma,\mu}$  - (weighted) surface Laplacian.  $\mathfrak{n}_{\partial ij}$  outer normal to  $\partial \Sigma_{ij}$  in  $T\Sigma_{ij}$ . *Problem*: II a-priori unknown, no control over boundary's sign. <u>Idea 2.0</u>: use stability for family of scalar-fields  $f_{ij}^a = (a_i - a_j)\Psi$ ,  $a \in \mathbb{R}^q$ , so that  $\delta_{ja}^1 V = 0$  and  $\mathbb{E}_a Q_0(f^a) \le 0$ ,  $a \sim \mathbb{S}^{q-1}$ . Read off information on II.

$$Q_0^{\mathrm{tr}}(\Psi) = \frac{1}{2} \mathrm{tr}(a \mapsto Q_0((a_i - a_j)\Psi)) = -\sum_{i < j} \int_{\Sigma_{ij}} \Psi L_{Jac} \Psi \ d\mu^{n-1}.$$

Under very favorable conditions, stability yields  $\delta_f^1 V = 0 \Rightarrow 0 \le Q_0(f)$ . Idea 1.0: find *f* with  $\delta_f^1 V = 0$  and  $Q_0(f) \le 0$ . Read off information on II.

$$Q_0(f) = \sum_{i < j} \left( -\int_{\Sigma_{ij}} f \mathcal{L}_{Jac} f \, d\mu^{n-1} + \int_{\partial \Sigma_{ij}} f \left( \nabla_{\mathfrak{n}_{\partial ij}} f - \frac{|I_{\partial \partial}^{ik} + |I_{\partial \partial}^{ik}}{\sqrt{3}} f \right) d\mu^{n-2} \right).$$

*L<sub>Jac</sub>* is the Jacobi operator:

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\mathrm{II}\|^{2})f.$$

Here  $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 0$  on  $\mathbb{R}^n$ , = n - 1 on  $\mathbb{S}^n$  and = 1 on  $\mathbb{G}^n$ .  $\Delta_{\Sigma,\mu}$  - (weighted) surface Laplacian.  $\mathfrak{n}_{\partial ij}$  outer normal to  $\partial \Sigma_{ij}$  in  $T\Sigma_{ij}$ . *Problem*: II a-priori unknown, no control over boundary's sign. <u>Idea 2.0</u>: use stability for family of scalar-fields  $f_{ij}^a = (a_i - a_j)\Psi$ ,  $a \in \mathbb{R}^q$ , so that  $\delta_{f^a}^1 V = 0$  and  $\mathbb{E}_a Q_0(f^a) \le 0$ ,  $a \sim \mathbb{S}^{q-1}$ . Read off information on II.

$$Q_0^{\mathrm{tr}}(\Psi) = \frac{1}{2} \mathrm{tr}(a \mapsto Q_0((a_i - a_j)\Psi)) = -\sum_{i < j} \int_{\Sigma_{ij}} \Psi L_{Jac} \Psi \, d\mu^{n-1}.$$

#### Which $\Psi$ to use?

#### Goal: find $\Psi$ s.t. $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \ \forall i, j \text{ and } Q_0^{\text{tr}}(\Psi) = -\langle L_{Jac}\Psi, \Psi \rangle \leq 0.$

On  $\mathbb{G}^n$  when q < n+1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow \Pi = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac} X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $c_{ij} = n_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \in \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $c_{ij}$  is constant. Fact 2:  $c_{ij}$  locally constant iff  $II_0 = 0$  ( $\nabla_{\theta^{\dagger}} c = II_0 \theta^{\dagger}$ ),  $c_{ij} + c_{jk} + c_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

So let's use  $\Psi = \langle N, p \rangle$  on our minimizing cluster!

#### Which $\Psi$ to use?

#### Goal: find $\Psi$ s.t. $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{\text{tr}}(\Psi) = -\langle L_{Jac}\Psi, \Psi \rangle \leq 0.$

On  $\mathbb{G}^n$  when q < n+1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow II = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac} X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $c_{ij} = n_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \in \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $c_{ij}$  is constant. Fact 2:  $c_{ij}$  locally constant iff  $II_0 = 0$  ( $\nabla_{\theta^{\dagger}} c = II_0 \theta^{\dagger}$ ),  $c_{ij} + c_{jk} + c_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

So let's use  $\Psi = \langle N, p \rangle$  on our minimizing cluster!

#### Which $\Psi$ to use?

Goal: find  $\Psi$  s.t.  $\int_{\Sigma_{ij}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{\text{tr}}(\Psi) = -\langle L_{Jac}\Psi, \Psi \rangle \leq 0.$ On  $\mathbb{G}^n$  when q < n + 1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow \text{II} = 0.$ On  $\mathbb{R}^n / \mathbb{S}^n$  when q < n + 2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{\text{tr}}(\Psi) = 0$  on standard bubbles. Trivial way to get Q(X) = 0 or  $L_{Jac} X^{ny} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $c_{ij} = n_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \in \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $c_{ij}$  is constant. Fact 2:  $c_{ij}$  locally constant iff  $II_0 = 0$  ( $\nabla_{\theta^{\dagger}} c = II_0 \theta^{\dagger}$ ),  $c_{ij} + c_{jk} + c_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

So let's use  $\Psi = \langle N, p \rangle$  on our minimizing cluster!
Goal: find  $\Psi$  s.t.  $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{tr}(\Psi) = -\langle L_{Jac} \Psi, \Psi \rangle \leq 0.$ 

On  $\mathbb{G}^n$  when q < n+1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow II = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac} X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $\mathfrak{c}_{ij} = \mathfrak{n}_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \in \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $\mathfrak{c}_{ij}$  is constant. Fact 2:  $\mathfrak{c}_{ij}$  locally constant iff  $II_0 = 0$  ( $\nabla_{\theta^{\dagger}}\mathfrak{c} = II_0\theta^{\dagger}$ ),  $\mathfrak{c}_{ij} + \mathfrak{c}_{ik} + \mathfrak{c}_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

Goal: find  $\Psi$  s.t.  $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{tr}(\Psi) = -\langle L_{Jac} \Psi, \Psi \rangle \leq 0.$ 

On  $\mathbb{G}^n$  when q < n + 1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow \Pi = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac}X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $c_{ij} = n_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \in \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $c_{ij}$  is constant. Fact 2:  $c_{ij}$  locally constant iff  $II_0 = 0$  ( $\nabla_{\theta^{\dagger}} c = II_0 \theta^{\dagger}$ ),  $c_{ij} + c_{jk} + c_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

Goal: find  $\Psi$  s.t.  $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{tr}(\Psi) = -\langle L_{Jac} \Psi, \Psi \rangle \leq 0.$ 

On  $\mathbb{G}^n$  when q < n + 1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow \Pi = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac}X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $c_{ij} = n_{ij} - \kappa_{ij}\rho$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \in \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $c_{ij}$  is constant. Fact 2:  $c_{ij}$  locally constant iff  $II_0 = 0$  ( $\nabla_{\theta^{\dagger}} c = II_0 \theta^{\dagger}$ ),  $c_{ij} + c_{jk} + c_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

Goal: find  $\Psi$  s.t.  $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{tr}(\Psi) = -\langle L_{Jac} \Psi, \Psi \rangle \leq 0.$ 

On  $\mathbb{G}^n$  when q < n + 1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow \Pi = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac}X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $\mathbf{c}_{ij} = \mathbf{n}_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \subset \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $\mathbf{c}_{ij}$  is constant. Fact 2:  $\mathbf{c}_{ij}$  locally constant iff  $\mathbf{II}_0 = 0$  ( $\nabla_{\theta^t} \mathbf{c} = \mathbf{II}_0 \theta^t$ ),  $\mathbf{c}_{ij} + \mathbf{c}_{ik} + \mathbf{c}_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

Goal: find  $\Psi$  s.t.  $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{tr}(\Psi) = -\langle L_{Jac} \Psi, \Psi \rangle \leq 0.$ 

On  $\mathbb{G}^n$  when q < n+1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow \Pi = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac}X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $\mathbf{c}_{ij} = \mathbf{n}_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \subset \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $\mathbf{c}_{ij}$  is constant. Fact 2:  $\mathbf{c}_{ij}$  locally constant iff  $\mathbf{II}_0 = 0$  ( $\nabla_{\theta^{\dagger}} \mathbf{c} = \mathbf{II}_0 \theta^{\dagger}$ ),  $\mathbf{c}_{ij} + \mathbf{c}_{ik} + \mathbf{c}_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R^{n_{ij}}_{\theta,N} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q^{\rm tr}_0(\langle N, p \rangle) = \mathbf{0}.$ 

Goal: find  $\Psi$  s.t.  $\int_{\Sigma_{ii}} \Psi d\mu^{n-1} = 0 \quad \forall i, j \text{ and } Q_0^{tr}(\Psi) = -\langle L_{Jac} \Psi, \Psi \rangle \leq 0.$ 

On  $\mathbb{G}^n$  when q < n+1,  $\Omega = \tilde{\Omega} \times \mathbb{R}$ ,  $\gamma^n = \gamma^{n-1} \otimes \gamma$ , odd  $\Psi(x_n) \Rightarrow \Pi = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$  when q < n+2, no product structure, only  $N^{\perp}$ -symmetry. We are given a hint: want to have  $Q_0^{tr}(\Psi) = 0$  on standard bubbles.

Trivial way to get Q(X) = 0 or  $L_{Jac}X^{n_{ij}} = 0$ : use vector-field generating 1-parameter family of isometries ("Killing field"), e.g. rotation-field:

 $R_{\theta,N} = \langle N, p \rangle \, \theta - \langle \theta, p \rangle \, N \quad (\nabla R_{\theta,N} = N \otimes \theta - \theta \otimes N).$ 

Define quasi-center vector-field  $\mathbf{c}_{ij} = \mathbf{n}_{ij} - \kappa_{ij}p$  on  $\Sigma_{ij}$ ,  $\kappa_{ij} = H_{\Sigma_{ij}}/(n-1)$ . Fact 1: if  $\Sigma_{ij} \in \mathbb{R}^n / \mathbb{S}^n$  is a sphere,  $\mathbf{c}_{ij}$  is constant. Fact 2:  $\mathbf{c}_{ij}$  locally constant iff  $\mathbf{II}_0 = 0$  ( $\nabla_{\theta^t} \mathbf{c} = \mathbf{II}_0 \theta^t$ ),  $\mathbf{c}_{ij} + \mathbf{c}_{ik} + \mathbf{c}_{ki} = 0$ .

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = \langle N, p \rangle \left\langle \theta, \mathfrak{n}_{ij} \right\rangle - \langle \theta, p \rangle \left\langle N, \mathfrak{n}_{ij} \right\rangle = \langle N, p \rangle \left\langle \theta, \mathfrak{c}_{ij} \right\rangle - \left\langle \theta, p \right\rangle \left\langle N, \mathfrak{c}_{ij} \right\rangle.$ 

On a standard bubble with  $N^{\perp}$ -symmetry,  $c_{ij} \in N^{\perp}$  is constant on  $\Sigma_{ij}$ :

 $R_{\theta,N}^{\mathfrak{n}_{ij}} = a_{ij} \langle N, p \rangle \ , \ a_{ij} = \langle \theta, \mathfrak{c}_{ij} \rangle \ \Rightarrow \ Q_0^{\mathrm{tr}}(\langle N, p \rangle) = \mathbf{0}.$ 

On  $\mathbb{R}^n/\mathbb{S}^n$ , by stability:

$$0 \leq Q_0^{\rm tr}(\langle N, p \rangle) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \, \| \Pi_0^{ij} \|^2 - (n-1) \kappa_{ij} \, \langle N, p \rangle \, \langle N, c_{ij} \rangle \right) dp \leq_{???} 0.$$

No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (& scaling), its generators are:

$$W_{\theta} \coloneqq \begin{cases} \frac{|p|^2}{2}\theta - \langle \theta, p \rangle p & \text{on } \mathbb{R}^n \\ \theta - \langle \theta, p \rangle p & \text{on } \mathbb{S}^n \end{cases} \quad (\text{``dilation - fields''}).$$

These are conformal Killing-fields = generate 1-parameter family of conformal maps;  $\nabla W_{\theta}$  = Anti-Sym +  $f_{\rho}$ ld ( $f_{\rho}$  = 0 for Killing). Properties:

- $f_{ij} = X^{n_{ij}}$  satisfy conformal BCs on  $\partial \Sigma_{ij} \rightsquigarrow Q_0$  bdry integrand = 0.
- $L_{Jac}X^{n_{ij}} = \delta_X^1 H_{\Sigma_{ij}}$  has nice formula (recall = 0 for Killing X).

We will use  $W_N$ , since  $W_N^n$  is odd w.r.t.  $N^{\perp}$  and hence  $\delta^{\dagger}_{W_N}V = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$ , by stability:

$$0 \leq Q_0^{\mathrm{tr}}(\langle N, p \rangle) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \| \Pi_0^{ij} \|^2 - (n-1)\kappa_{ij} \langle N, p \rangle \langle N, \mathfrak{c}_{ij} \rangle \right) dp \leq_{???} 0.$$

No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (& scaling), its generators are:

$$W_{\theta} \coloneqq \begin{cases} \frac{|p|^2}{2} \theta - \langle \theta, p \rangle p & \text{on } \mathbb{R}^n \\ \theta - \langle \theta, p \rangle p & \text{on } \mathbb{S}^n \end{cases} \quad (\text{``dilation - fields''}).$$

These are conformal Killing-fields = generate 1-parameter family of conformal maps;  $\nabla W_{\theta}$  = Anti-Sym +  $f_{\rho}$ Id ( $f_{\rho}$  = 0 for Killing). Properties:

- $f_{ij} = X^{n_{ij}}$  satisfy conformal BCs on  $\partial \Sigma_{ij} \rightsquigarrow Q_0$  bdry integrand = 0.
- $L_{Jac}X^{n_{ij}} = \delta_X^1 H_{\Sigma_{ij}}$  has nice formula (recall = 0 for Killing X).

We will use  $W_N$ , since  $W_N^n$  is odd w.r.t.  $N^{\perp}$  and hence  $\delta^{\dagger}_{W_N} V = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$ , by stability:

$$0 \leq Q_0^{\mathrm{tr}}(\langle N, p \rangle) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \| \Pi_0^{ij} \|^2 - (n-1)\kappa_{ij} \langle N, p \rangle \langle N, \mathfrak{c}_{ij} \rangle \right) dp \leq_{???} 0.$$

No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (& scaling), its generators are:

$$W_{\theta} \coloneqq \begin{cases} \frac{|p|^2}{2} \theta - \langle \theta, p \rangle p & \text{on } \mathbb{R}^n \\ \theta - \langle \theta, p \rangle p & \text{on } \mathbb{S}^n \end{cases} \quad (\text{``dilation - fields''}).$$

These are conformal Killing-fields = generate 1-parameter family of conformal maps;  $\nabla W_{\theta}$  = Anti-Sym +  $f_{\rho}$ Id ( $f_{\rho}$  = 0 for Killing). Properties:

- $f_{ij} = X^{n_{ij}}$  satisfy conformal BCs on  $\partial \Sigma_{ij} \rightsquigarrow Q_0$  bdry integrand = 0.
- $L_{Jac}X^{n_{ij}} = \delta_X^1 H_{\Sigma_{ij}}$  has nice formula (recall = 0 for Killing X).

We will use  $W_N$ , since  $W_N^n$  is odd w.r.t.  $N^{\perp}$  and hence  $\delta^1_{W_N} V = 0$ .

On  $\mathbb{R}^n/\mathbb{S}^n$ , by stability:

$$0 \leq Q_0^{\mathrm{tr}}(\langle N, p \rangle) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \| \Pi_0^{ij} \|^2 - (n-1)\kappa_{ij} \langle N, p \rangle \langle N, \mathfrak{c}_{ij} \rangle \right) dp \leq_{???} 0.$$

No clear sign, not enough! Recall that standard-bubbles generated by Möbius group. Modding out isometries (& scaling), its generators are:

$$W_{\theta} \coloneqq \begin{cases} \frac{|p|^2}{2} \theta - \langle \theta, p \rangle p & \text{on } \mathbb{R}^n \\ \theta - \langle \theta, p \rangle p & \text{on } \mathbb{S}^n \end{cases} \quad (\text{``dilation - fields''}).$$

These are conformal Killing-fields = generate 1-parameter family of conformal maps;  $\nabla W_{\theta}$  = Anti-Sym +  $f_{\rho}$ Id ( $f_{\rho}$  = 0 for Killing). Properties:

- $f_{ij} = X^{n_{ij}}$  satisfy conformal BCs on  $\partial \Sigma_{ij} \rightsquigarrow Q_0$  bdry integrand = 0.
- $L_{Jac}X^{n_{ij}} = \delta_X^1 H_{\Sigma_{ij}}$  has nice formula (recall = 0 for Killing X).

We will use  $W_N$ , since  $W_N^n$  is odd w.r.t.  $N^{\perp}$  and hence  $\delta^1_{W_N} V = 0$ .

• On S<sup>n</sup>, by stability (applied twice!):

In both cases, boundary term vanishes (averaging / conformal BCs):

 $0 \leq Q_0^{\mathrm{tr}}(\langle N, p \rangle) + Q(W_N) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \| \Pi_0^{ij} \|^2 + (n-1) \langle N, \mathfrak{c}_{ij} \rangle^2 \right) dp \leq 0!$ 

Hence  $II_0 \equiv 0$  and  $c_{ij} \perp N$ .

• On  $\mathbb{R}^n$ , it turns out that  $Q(W_N) = 0$  without stability. This is equivalent to the isotropicity of  $\Sigma^1$  (regardless of q or  $V(\Omega)$  !):

$$\int_{\Sigma^1} \mathfrak{n} \otimes \mathfrak{n} \, dp = \frac{1}{n} \int_{\Sigma^1} \operatorname{Id} \, dp.$$

• On S<sup>n</sup>, by stability (applied twice!):

 $2 \delta^1_{W_N} V = 0 \Rightarrow 0 \le Q(W_N).$ 

In both cases, boundary term vanishes (averaging / conformal BCs):

$$0 \leq Q_0^{\mathrm{tr}}(\langle N, p \rangle) + Q(W_N) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \| \Pi_0^{ij} \|^2 + (n-1) \langle N, \mathfrak{c}_{ij} \rangle^2 \right) dp \leq 0!$$

Hence  $II_0 \equiv 0$  and  $c_{ij} \perp N$ .

• On  $\mathbb{R}^n$ , it turns out that  $Q(W_N) = 0$  without stability. This is equivalent to the isotropicity of  $\Sigma^1$  (regardless of q or  $V(\Omega)$  !):

$$\int_{\Sigma^1} \mathfrak{n} \otimes \mathfrak{n} \, dp = \frac{1}{n} \int_{\Sigma^1} \mathrm{Id} \, dp.$$

• On S<sup>n</sup>, by stability (applied twice!):

 $2 \delta^1_{W_N} V = 0 \Rightarrow 0 \le Q(W_N).$ 

In both cases, boundary term vanishes (averaging / conformal BCs):

$$0 \leq Q_0^{\mathrm{tr}}(\langle N, p \rangle) + Q(W_N) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \| \Pi_0^{ij} \|^2 + (n-1) \langle N, \mathfrak{c}_{ij} \rangle^2 \right) dp \leq 0!$$

Hence  $II_0 \equiv 0$  and  $c_{ij} \perp N$ .

• On  $\mathbb{R}^n$ , it turns out that  $Q(W_N) = 0$  without stability. This is equivalent to the isotropicity of  $\Sigma^1$  (regardless of q or  $V(\Omega)$  !):

$$\int_{\Sigma^1} \mathfrak{n} \otimes \mathfrak{n} \, dp = \frac{1}{n} \int_{\Sigma^1} \mathrm{Id} \, dp.$$

• On S<sup>n</sup>, by stability (applied twice!):

J

 $2 \delta^1_{W_N} V = 0 \Rightarrow 0 \le Q(W_N).$ 

In both cases, boundary term vanishes (averaging / conformal BCs):

$$0 \leq Q_0^{\mathrm{tr}}(\langle N, p \rangle) + Q(W_N) = -\sum_{i < j} \int_{\Sigma_{ij}} \left( \langle N, p \rangle^2 \| \Pi_0^{ij} \|^2 + (n-1) \langle N, \mathfrak{c}_{ij} \rangle^2 \right) dp \leq 0!$$

Hence  $II_0 \equiv 0$  and  $c_{ij} \perp N$ .

• On  $\mathbb{R}^n$ , it turns out that  $Q(W_N) = 0$  without stability. This is equivalent to the isotropicity of  $\Sigma^1$  (regardless of q or  $V(\Omega)$  !):

$$\int_{\Sigma^1} \mathfrak{n} \otimes \mathfrak{n} \, dp = \frac{1}{n} \int_{\Sigma^1} \operatorname{Id} \, dp.$$

# Is isotropicity obvious?



#### On G<sup>n</sup>: These steps not needed; jump to Step 4!

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \implies$  minimizer is spherical Voronoi cluster: There exist  $\{c_i\}_{i=1,...,q} \in \mathbb{R}^{n+1}/\mathbb{R}^n$  and  $\{\kappa_i\}_{i=1,...,q} \in \mathbb{R}$  so that:

For every Σ<sub>ij</sub> ≠ Ø, Σ<sub>ij</sub> lies on a (generalized) geodesic sphere S<sub>ij</sub> with quasi-center c<sub>ij</sub> = c<sub>i</sub> - c<sub>j</sub> and curvature κ<sub>ij</sub> = κ<sub>i</sub> - κ<sub>j</sub>. The quasi-center c := n - κp is constant on a sphere S ⊂ S<sup>n</sup>/ℝ<sup>n</sup>.

2 On  $\mathbb{S}^n$ , the following Voronoi representation holds:

$$\Omega_{j} = \operatorname{int}\left\{p \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,...,q}\left(\mathfrak{c}_{j},p\right) + \kappa_{j} = i\right\} = \bigcap_{j \neq i} \left\{p \in \mathbb{S}^{n} ; \left(\mathfrak{c}_{ij},p\right) + \kappa_{ij} < 0\right\}.$$

Similarly on  $\mathbb{R}^n$ , after stereographic projection to  $\mathbb{S}^n$ .

Furthermore, each  $\Omega_i$  is connected.

Step 2 involves simplicial homology of  $\{\Omega_i\}_{i=1,...,q}$ , Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

#### On G<sup>n</sup>: These steps not needed; jump to Step 4!

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \Rightarrow$  minimizer is spherical Voronoi cluster: There exist  $\{c_i\}_{i=1,...,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$  and  $\{\kappa_i\}_{i=1,...,q} \subset \mathbb{R}$  so that:

For every Σ<sub>ij</sub> ≠ Ø, Σ<sub>ij</sub> lies on a (generalized) geodesic sphere S<sub>ij</sub> with quasi-center c<sub>ij</sub> = c<sub>i</sub> - c<sub>j</sub> and curvature κ<sub>ij</sub> = κ<sub>i</sub> - κ<sub>j</sub>. The quasi-center c := n - κp is constant on a sphere S ⊂ S<sup>n</sup>/ℝ<sup>n</sup>.

2 On  $\mathbb{S}^n$ , the following Voronoi representation holds:

$$\Omega_{j} = \operatorname{int}\left\{p \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,...,q}\left(\mathfrak{c}_{j},p\right) + \kappa_{j} = i\right\} = \bigcap_{j \neq i} \left\{p \in \mathbb{S}^{n} ; \left(\mathfrak{c}_{ij},p\right) + \kappa_{ij} < 0\right\}.$$

Similarly on  $\mathbb{R}^n$ , after stereographic projection to  $\mathbb{S}^n$ .

Furthermore, each  $\Omega_i$  is connected.

Step 2 involves simplicial homology of  $\{\Omega_i\}_{i=1,...,q}$ , Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

On **G**<sup>*n*</sup>: These steps not needed; jump to Step 4!

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \implies$  minimizer is spherical Voronoi cluster:



Euclidean Voronoi Cells:  $\Omega_i = \{x : \arg \min_j |x - x_j|^2 = i\}$ 

There exist

 $\{\mathfrak{c}_i\}_{i=1,\ldots,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$  and  $\{\kappa_i\}_{i=1,\ldots,q} \subset \mathbb{R}$  so that:

For every Σ<sub>ij</sub> ≠ Ø, Σ<sub>ij</sub> lies on a (generalized) geodesic sphere S<sub>ij</sub> with quasi-center c<sub>ij</sub> = c<sub>i</sub> - c<sub>j</sub> and curvature κ<sub>ij</sub> = κ<sub>i</sub> - κ<sub>j</sub>.

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

On **G**<sup>*n*</sup>: These steps not needed; jump to Step 4!

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \implies$  minimizer is spherical Voronoi cluster:



There exist  $\{c_i\}_{i=1,...,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$  and  $\{\kappa_i\}_{i=1,...,q} \subset \mathbb{R}$  so that: So For every  $\sum_{ij} \neq \emptyset$ ,  $\sum_{ij}$  lies on a (generalized) geodesic sphere S

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

On G<sup>n</sup>: These steps not needed; jump to Step 4!

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \Rightarrow$  minimizer is spherical Voronoi cluster: There exist  $\{c_i\}_{i=1,...,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$  and  $\{\kappa_i\}_{i=1,...,q} \subset \mathbb{R}$  so that:

- For every Σ<sub>ij</sub> ≠ Ø, Σ<sub>ij</sub> lies on a (generalized) geodesic sphere S<sub>ij</sub> with quasi-center c<sub>ij</sub> = c<sub>i</sub> c<sub>j</sub> and curvature κ<sub>ij</sub> = κ<sub>i</sub> κ<sub>j</sub>. The quasi-center c := n κp is constant on a sphere S ⊂ S<sup>n</sup>/ℝ<sup>n</sup>.
- 2 On  $S^n$ , the following Voronoi representation holds:

$$\Omega_{i} = \operatorname{int} \left\{ p \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,\ldots,q} \left\langle \mathfrak{c}_{j}, p \right\rangle + \kappa_{j} = i \right\} = \bigcap_{j \neq i} \left\{ p \in \mathbb{S}^{n} ; \left\langle \mathfrak{c}_{ij}, p \right\rangle + \kappa_{ij} < 0 \right\}.$$

Similarly on  $\mathbb{R}^n$ , after stereographic projection to  $\mathbb{S}^n$ .

Furthermore, each  $\Omega_i$  is connected.

Step 2 involves simplicial homology of  $\{\Omega_i\}_{i=1,...,q}$ , Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

On G<sup>n</sup>: These steps not needed; jump to Step 4!

On  $\mathbb{S}^n/\mathbb{R}^n$ :  $q \le n+1 \Rightarrow$  minimizer is spherical Voronoi cluster: There exist  $\{c_i\}_{i=1,...,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$  and  $\{\kappa_i\}_{i=1,...,q} \subset \mathbb{R}$  so that:

- For every Σ<sub>ij</sub> ≠ Ø, Σ<sub>ij</sub> lies on a (generalized) geodesic sphere S<sub>ij</sub> with quasi-center c<sub>ij</sub> = c<sub>i</sub> c<sub>j</sub> and curvature κ<sub>ij</sub> = κ<sub>i</sub> κ<sub>j</sub>. The quasi-center c := n κp is constant on a sphere S ⊂ S<sup>n</sup>/ℝ<sup>n</sup>.
- 2 On  $S^{\prime\prime}$ , the following Voronoi representation holds:

$$\Omega_{i} = \operatorname{int} \left\{ \boldsymbol{p} \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,\ldots,q} \left\langle \boldsymbol{\mathfrak{c}}_{j}, \boldsymbol{p} \right\rangle + \kappa_{j} = i \right\} = \bigcap_{j \neq i} \left\{ \boldsymbol{p} \in \mathbb{S}^{n} ; \left\langle \boldsymbol{\mathfrak{c}}_{ij}, \boldsymbol{p} \right\rangle + \kappa_{ij} < 0 \right\}.$$

Similarly on  $\mathbb{R}^n$ , after stereographic projection to  $\mathbb{S}^n$ .

Furthermore, each  $\Omega_i$  is connected.

Step 2 involves simplicial homology of  $\{\Omega_i\}_{i=1,...,q}$ , Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

#### An interlude – Lemma in Convex Geometry

#### From Almost Local to Global Convexity (M.-Neeman '18)

Let  $\Omega$  be an open connected subset of  $\mathbb{R}^n$ , and let  $B \subset \partial \Omega$  with  $\mathcal{H}^{n-2}(B) = 0$ . Assume that  $\forall p \in \partial \Omega \setminus B$  there exists an open neighborhood  $N_p$  of p so that  $\Omega \cap N_p$  is convex. Then  $\Omega$  is convex.

- Classical for  $B = \emptyset$  (Tietze, Nakajima 1928).
- False without connectedness, open / closed,  $\mathcal{H}^{n-\alpha}$  for  $\alpha < 2$ .

#### An interlude – Lemma in Convex Geometry

#### From Almost Local to Global Convexity (M.–Neeman '18)

Let  $\Omega$  be an open connected subset of  $\mathbb{R}^n$ , and let  $B \subset \partial \Omega$  with  $\mathcal{H}^{n-2}(B) = 0$ . Assume that  $\forall p \in \partial \Omega \setminus B$  there exists an open neighborhood  $N_p$  of p so that  $\Omega \cap N_p$  is convex. Then  $\Omega$  is convex.

- Classical for  $B = \emptyset$  (Tietze, Nakajima 1928).
- False without connectedness, open / closed,  $\mathcal{H}^{n-\alpha}$  for  $\alpha < 2$ .



# Proof: Step 4 – Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with  $\sum_{ij} \neq \emptyset \ \forall i < j$  coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:





Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

# Proof: Step 4 – Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with  $\sum_{ij} \neq \emptyset \ \forall i < j$  coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:



Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

# Proof: Step 4 – Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with  $\sum_{ij} \neq \emptyset \ \forall i < j$  coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:





Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

# Double and Triple bubble on $\mathbb{R}^n/\mathbb{S}^n$



This already concludes proof of double/triple-bubble on  $\mathbb{R}^n/\mathbb{S}^n$  !

# Quadruple bubble on $\mathbb{R}^n/\mathbb{S}^n$

For quadruple-bubble, analyze adjacency graphs on q = 5 vertices. Many graphs, but most are ruled out after showing that the minimal degree  $\geq 3$ :



We are left with two non-standard cases to rule-out:



For  $q \gg 1$ , leads to questions on incidence structure of  $\{\Omega_i\}_{i=1,...,q}$ . How to proceed? How do we conclude on  $\mathbb{G}^n$ ?

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

# Quadruple bubble on $\mathbb{R}^n/\mathbb{S}^n$

For quadruple-bubble, analyze adjacency graphs on q = 5 vertices. Many graphs, but most are ruled out after showing that the minimal degree  $\geq 3$ :



We are left with two non-standard cases to rule-out:



For  $q \gg 1$ , leads to questions on incidence structure of  $\{\Omega_i\}_{i=1,...,q}$ . How to proceed? How do we conclude on  $\mathbb{G}^n$ ?

# Quadruple bubble on $\mathbb{R}^n/\mathbb{S}^n$

For quadruple-bubble, analyze adjacency graphs on q = 5 vertices. Many graphs, but most are ruled out after showing that the minimal degree  $\geq 3$ :



We are left with two non-standard cases to rule-out:



For  $q \gg 1$ , leads to questions on incidence structure of  $\{\Omega_i\}_{i=1,...,q}$ . How to proceed? How do we conclude on  $\mathbb{G}^n$ ?

# Ruling out $K_5 \setminus \{e\}$



#### The Isoperimetric Profile for Multi-Bubbles

 $(M^n, g, \mu) \in \{\mathbb{G}^n, \mathbb{S}^n\}$ . Need finite volume, so cannot work on  $\mathbb{R}^n$ .  $V(\Omega) = (V(\Omega_1), \dots, V(\Omega_q)) \in \Delta^{(q-1)} := \{v \in \mathbb{R}^q : v_i \ge 0, \sum_{i=1}^q v_i = 1\}.$ Isoperimetric Profile:  $I^{(q-1)} : \Delta^{(q-1)} \to \mathbb{R}_+,$ 

 $I^{(q-1)}(\mathbf{v}) \coloneqq \inf \{A(\Omega); V(\Omega) = \mathbf{v}\}.$ 

Model Isoperimetric Profile:  $I_m^{(q-1)}$  : int  $\Delta^{(q-1)} \to \mathbb{R}_+$ , (denoting by  $\Omega^m$  the conjectured model standard *q*-cluster),

$$I_m^{(q-1)}(v) = A(\Omega^m) \text{ s.t. } V(\Omega^m) = v \in \operatorname{int} \Delta^{(q-1)};$$

can show that this is well-defined; extend continuously to  $\partial \Delta^{(q-1)}$ .

Obviously  $I^{(q-1)} \leq I_m^{(q-1)}$ ; want to show:  $I^{(q-1)} \geq I_m^{(q-1)}$  on  $\Delta^{(q-1)}$ . Inducting on q, can assume  $I^{(q-1)} = I_m^{(q-1)}$  on the boundary  $\partial \Delta^{(q-1)}$ .

#### The Isoperimetric Profile for Multi-Bubbles

 $(M^n, g, \mu) \in \{\mathbb{G}^n, \mathbb{S}^n\}$ . Need finite volume, so cannot work on  $\mathbb{R}^n$ .  $V(\Omega) = (V(\Omega_1), \dots, V(\Omega_q)) \in \Delta^{(q-1)} := \{v \in \mathbb{R}^q ; v_i \ge 0, \sum_{i=1}^q v_i = 1\}$ . Isoperimetric Profile:  $I^{(q-1)} : \Delta^{(q-1)} \to \mathbb{R}_+$ ,

 $I^{(q-1)}(\mathbf{v}) \coloneqq \inf \{A(\Omega); V(\Omega) = \mathbf{v}\}.$ 

Model Isoperimetric Profile:  $I_m^{(q-1)}$  : int  $\Delta^{(q-1)} \rightarrow \mathbb{R}_+$ , (denoting by  $\Omega^m$  the conjectured model standard *q*-cluster),

$$I_m^{(q-1)}(\mathbf{v}) = A(\Omega^m)$$
 s.t.  $V(\Omega^m) = \mathbf{v} \in \operatorname{int} \Delta^{(q-1)};$ 

can show that this is well-defined; extend continuously to  $\partial \Delta^{(q-1)}$ .

Obviously  $I^{(q-1)} \leq I_m^{(q-1)}$ ; want to show:  $I^{(q-1)} \geq I_m^{(q-1)}$  on  $\Delta^{(q-1)}$ . Inducting on q, can assume  $I^{(q-1)} = I_m^{(q-1)}$  on the boundary  $\partial \Delta^{(q-1)}$ .

#### The Isoperimetric Profile for Multi-Bubbles

 $(M^n, g, \mu) \in \{\mathbb{G}^n, \mathbb{S}^n\}$ . Need finite volume, so cannot work on  $\mathbb{R}^n$ .  $V(\Omega) = (V(\Omega_1), \dots, V(\Omega_q)) \in \Delta^{(q-1)} := \{v \in \mathbb{R}^q ; v_i \ge 0, \sum_{i=1}^q v_i = 1\}$ . Isoperimetric Profile:  $I^{(q-1)} : \Delta^{(q-1)} \to \mathbb{R}_+$ ,

$$I^{(q-1)}(\mathbf{v}) \coloneqq \inf \{A(\Omega); V(\Omega) = \mathbf{v}\}.$$

Model Isoperimetric Profile:  $I_m^{(q-1)} : \operatorname{int} \Delta^{(q-1)} \to \mathbb{R}_+$ , (denoting by  $\Omega^m$  the conjectured model standard *q*-cluster),

$$I_m^{(q-1)}(\mathbf{v}) = A(\Omega^m)$$
 s.t.  $V(\Omega^m) = \mathbf{v} \in \operatorname{int} \Delta^{(q-1)};$ 

can show that this is well-defined; extend continuously to  $\partial \Delta^{(q-1)}$ .

Obviously  $I_m^{(q-1)} \leq I_m^{(q-1)}$ ; want to show:  $I_m^{(q-1)} \geq I_m^{(q-1)}$  on  $\Delta^{(q-1)}$ . Inducting on q, can assume  $I_m^{(q-1)} = I_m^{(q-1)}$  on the boundary  $\partial \Delta^{(q-1)}$ .

### Partial Differential Inequality for Profile

On  $\mathbb{G}^n$ , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$ 

Similar (but more complicated) PDE holds on  $\mathbb{S}^n$ .

If we could show that the following PDI holds (in the viscosity sense):

 $\nabla^2 \mathcal{I} < 0$ , tr $((-\nabla^2 \mathcal{I})^{-1}) \le 2\mathcal{I}$  on int  $\Delta^{(q-1)}$ ,

since  $\mathcal{I} = \mathcal{I}_m$  on  $\partial \Delta^{(q-1)}$  by induction,  $\mathcal{I} \ge \mathcal{I}_m$  by maximum-principle.

This is our global information!! PDI takes into account entire  $\Delta^{(q-1)}$ . *Key idea*: instead of using global information in space parameters  $\mathbb{G}^n$ , PDI propagates global information in volume parameters  $\Delta^{(q-1)}$ .

Hence, need upper bounds on  $\nabla^2 \mathcal{I}(v)$  for a given  $v \in \operatorname{int} \Delta^{(q-1)}$ . How? using a local 2nd order variation of our minimizing cluster  $\Omega$ .

# Partial Differential Inequality for Profile

On  $\mathbb{G}^n$ , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$ 

Where does this PDE come from? In the single-bubble case,  $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-|x|^2/2}$ ,  $\Phi(y) = \int_{-\infty}^{y} \varphi(x)dx$ :

$$\mathcal{I}_{\mathbb{G}^n}(\mathbf{v}) = \mathcal{I}_{\mathbb{G}^1}(\mathbf{v}) = \{\varphi(\mathbf{a}) ; \Phi(\mathbf{a}) = \mathbf{v}\} = \varphi \circ \Phi^{-1}(\mathbf{v}).$$

Hence:

$$\mathcal{I}'(v) = \frac{\varphi'}{\varphi} \circ \Phi^{-1}(v) = -\Phi^{-1}(v) \ , \ \mathcal{I}''(v) = -\frac{1}{\varphi \circ \Phi^{-1}}(v) = -\frac{1}{\mathcal{I}(v)}.$$

Hence:

$$(-\mathcal{I}'')^{-1} = \mathcal{I}$$
 on  $[0, 1]$  (would be  $2\mathcal{I}$  on  $\Delta^{(1)}$ ).

If we could show that the following PDI holds (in the viscosity sense):  $\nabla^2 \mathcal{I} < 0 \ , \ tr((-\nabla^2 \mathcal{I})^{-1}) \leq 2\mathcal{I} \ on \ int \Delta^{(q-1)},$ 

since  $\mathcal{I} = \mathcal{I}_m$  on  $\partial \Delta^{(q-1)}$  by induction,  $\mathcal{I} \ge \mathcal{I}_m$  by maximum-principle.
#### Partial Differential Inequality for Profile

On  $\mathbb{G}^n$ , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$ 

Similar (but more complicated) PDE holds on  $\mathbb{S}^n$ .

If we could show that the following PDI holds (in the viscosity sense):

 $\nabla^2 \mathcal{I} < 0 \ , \ \mathrm{tr}((-\nabla^2 \mathcal{I})^{-1}) \leq 2 \mathcal{I} \ on \ \mathrm{int} \ \Delta^{(q-1)},$ 

since  $\mathcal{I} = \mathcal{I}_m$  on  $\partial \Delta^{(q-1)}$  by induction,  $\mathcal{I} \ge \mathcal{I}_m$  by maximum-principle.

This is our global information!! PDI takes into account entire  $\Delta^{(q-1)}$ . *Key idea*: instead of using global information in space parameters  $\mathbb{G}^n$ , PDI propagates global information in volume parameters  $\Delta^{(q-1)}$ .

Hence, need upper bounds on  $\nabla^2 \mathcal{I}(v)$  for a given  $v \in \operatorname{int} \Delta^{(q-1)}$ . How? using a local 2nd order variation of our minimizing cluster  $\Omega$ .

#### Partial Differential Inequality for Profile

On  $\mathbb{G}^n$ , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$ 

Similar (but more complicated) PDE holds on  $\mathbb{S}^n$ .

If we could show that the following PDI holds (in the viscosity sense):

 $\nabla^2 \mathcal{I} < 0 \ , \ \mathrm{tr}((-\nabla^2 \mathcal{I})^{-1}) \leq 2 \mathcal{I} \ on \ \mathrm{int} \ \Delta^{(q-1)},$ 

since  $\mathcal{I} = \mathcal{I}_m$  on  $\partial \Delta^{(q-1)}$  by induction,  $\mathcal{I} \ge \mathcal{I}_m$  by maximum-principle.

This is our global information!! PDI takes into account entire  $\Delta^{(q-1)}$ . *Key idea*: instead of using global information in space parameters  $\mathbb{G}^n$ , PDI propagates global information in volume parameters  $\Delta^{(q-1)}$ .

Hence, need upper bounds on  $\nabla^2 \mathcal{I}(v)$  for a given  $v \in \operatorname{int} \Delta^{(q-1)}$ . How? using a local 2nd order variation of our minimizing cluster  $\Omega$ .

#### Partial Differential Inequality for Profile

On  $\mathbb{G}^n$ , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$ 

Similar (but more complicated) PDE holds on  $\mathbb{S}^n$ .

If we could show that the following PDI holds (in the viscosity sense):

 $\nabla^2 \mathcal{I} < 0 \ , \ \mathrm{tr}((-\nabla^2 \mathcal{I})^{-1}) \leq 2 \mathcal{I} \ on \ \mathrm{int} \ \Delta^{(q-1)},$ 

since  $\mathcal{I} = \mathcal{I}_m$  on  $\partial \Delta^{(q-1)}$  by induction,  $\mathcal{I} \ge \mathcal{I}_m$  by maximum-principle.

This is our global information!! PDI takes into account entire  $\Delta^{(q-1)}$ . *Key idea*: instead of using global information in space parameters  $\mathbb{G}^n$ , PDI propagates global information in volume parameters  $\Delta^{(q-1)}$ .

Hence, need upper bounds on  $\nabla^2 \mathcal{I}(v)$  for a given  $v \in \operatorname{int} \Delta^{(q-1)}$ . How? using a local 2nd order variation of our minimizing cluster  $\Omega$ .

Recall  $\frac{d}{dt}F_t = X \circ F_t$  diffeo,  $\Omega_t = F_t(\Omega)$ ,  $\mathcal{I}(V(\Omega_t)) \leq A(\Omega_t)$ . Hence:

 $\begin{array}{l} \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 A = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ \left( \delta_X^1 V \right)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \le \delta_X^2 A - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 A - \left\langle \lambda, \delta_X^2 V \right\rangle =: Q(X). \end{array}$ 

This generalizes stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X)$ .

The goal: choose X well to get a sharp PDI for  $\mathcal{I}$ .

*Natural idea*: use generators *X* of group generating conjectured minimizers (modulo isometries of the space)!

- $\mathbb{G}^n$  Translation group generated by  $T_{\theta} \equiv \theta$  constant fields.
- $\mathbb{S}^n$  Möbius group generated by  $W_{\theta} = \theta \langle \theta, p \rangle p$  "dilation-fields".

This definitely yields sharp upper bounds on  $\nabla^2 \mathcal{I}$ .

Problem: cannot a-priori exclude that cluster is lower-dimensional:

- $\mathbb{G}^n \Omega = \Omega \times \mathbb{R}^{n-d}$ ,  $\Omega$  cluster on  $\mathbb{R}^d$ , d < q-1.
- $\mathbb{S}^n$  affine-rank $({\mathfrak{c}_i}_{i=1,...,q}) = d < q 1$

In this case, the generators will only yield d < q - 1 independent inqs, which is not enough to bound  $\nabla^2 \mathcal{I}$  on  $E^{(q-1)} = \mathcal{T} \Delta^{(q-1)}$ .

Recall  $\frac{d}{dt}F_t = X \circ F_t$  diffeo,  $\Omega_t = F_t(\Omega)$ ,  $\mathcal{I}(V(\Omega_t)) \leq A(\Omega_t)$ . Hence:

 $\begin{array}{l} \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 A = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ \left( \delta_X^1 V \right)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \le \delta_X^2 A - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 A - \left\langle \lambda, \delta_X^2 V \right\rangle =: Q(X). \end{array}$ 

This generalizes stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X)$ .

The goal: choose X well to get a sharp PDI for  $\mathcal{I}$ .

*Natural idea*: use generators *X* of group generating conjectured minimizers (modulo isometries of the space)!

- $\mathbb{G}^n$  Translation group generated by  $T_{\theta} \equiv \theta$  constant fields.
- $\mathbb{S}^n$  Möbius group generated by  $W_{\theta} = \theta \langle \theta, p \rangle p$  "dilation-fields".

This definitely yields sharp upper bounds on  $\nabla^2 \mathcal{I}$ .

Problem: cannot a-priori exclude that cluster is lower-dimensional:

- $\mathbb{G}^n \Omega = \Omega \times \mathbb{R}^{n-d}$ ,  $\Omega$  cluster on  $\mathbb{R}^d$ , d < q-1
- $\mathbb{S}^n$  affine-rank $(\{\mathfrak{c}_i\}_{i=1,...,q}) = d < q-1$

In this case, the generators will only yield d < q-1 independent inqs, which is not enough to bound  $\nabla^2 \mathcal{I}$  on  $E^{(q-1)} = \mathcal{T} \Delta^{(q-1)}$ .

Recall  $\frac{d}{dt}F_t = X \circ F_t$  diffeo,  $\Omega_t = F_t(\Omega)$ ,  $\mathcal{I}(V(\Omega_t)) \leq A(\Omega_t)$ . Hence:

 $\begin{array}{l} \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 \mathcal{A} = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ \left( \delta_X^1 V \right)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \le \delta_X^2 \mathcal{A} - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 \mathcal{A} - \left\langle \lambda, \delta_X^2 V \right\rangle =: \mathcal{Q}(X). \end{array}$ 

This generalizes stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X)$ . The goal: choose X well to get a sharp PDI for  $\mathcal{I}$ .

*Natural idea*: use generators *X* of group generating conjectured minimizers (modulo isometries of the space)!

- $\mathbb{G}^n$  Translation group generated by  $T_{\theta} \equiv \theta$  constant fields.
- $\mathbb{S}^n$  Möbius group generated by  $W_{\theta} = \theta \langle \theta, p \rangle p$  "dilation-fields".

This definitely yields sharp upper bounds on  $\nabla^2 \mathcal{I}$ .

Problem: cannot a-priori exclude that cluster is lower-dimensional:

- $\mathbb{G}^n$   $\Omega = \Omega \times \mathbb{R}^{n-a}$ ,  $\Omega$  cluster on  $\mathbb{R}^a$ , d < q 1.
- $\mathbb{S}^n$  affine-rank $(\{\mathfrak{c}_i\}_{i=1,...,q}) = d < q-1$

In this case, the generators will only yield d < q - 1 independent inqs, which is not enough to bound  $\nabla^2 \mathcal{I}$  on  $E^{(q-1)} = \mathcal{T} \Delta^{(q-1)}$ .

Recall  $\frac{d}{dt}F_t = X \circ F_t$  diffeo,  $\Omega_t = F_t(\Omega)$ ,  $\mathcal{I}(V(\Omega_t)) \leq A(\Omega_t)$ . Hence:

 $\begin{array}{l} \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 \mathcal{A} = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ \left( \delta_X^1 V \right)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \le \delta_X^2 \mathcal{A} - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 \mathcal{A} - \left\langle \lambda, \delta_X^2 V \right\rangle =: \mathcal{Q}(X). \end{array}$ 

This generalizes stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X)$ .

The goal: choose X well to get a sharp PDI for  $\mathcal{I}$ .

*Natural idea*: use generators *X* of group generating conjectured minimizers (modulo isometries of the space)!

- $\mathbb{G}^n$  Translation group generated by  $T_{\theta} \equiv \theta$  constant fields.
- $\mathbb{S}^n$  Möbius group generated by  $W_{\theta} = \theta \langle \theta, p \rangle p$  "dilation-fields".

This definitely yields sharp upper bounds on  $\nabla^2 \mathcal{I}$ .

<u>Problem</u>: cannot a-priori exclude that cluster is lower-dimensional: •  $\mathbb{G}^n \cdot \Omega = \tilde{\Omega} \times \mathbb{R}^{n-d}$ ,  $\tilde{\Omega}$  cluster on  $\mathbb{R}^d$ , d < q - 1.

•  $\mathbb{S}^n$  - affine-rank $(\{\mathfrak{c}_i\}_{i=1,...,q}) = d < q - 1$ .

In this case, the generators will only yield d < q - 1 independent inqs, which is not enough to bound  $\nabla^2 \mathcal{I}$  on  $E^{(q-1)} = \mathcal{T} \Delta^{(q-1)}$ .

Recall  $\frac{d}{dt}F_t = X \circ F_t$  diffeo,  $\Omega_t = F_t(\Omega)$ ,  $\mathcal{I}(V(\Omega_t)) \leq A(\Omega_t)$ . Hence:

 $\begin{array}{l} \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 \mathcal{A} = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ \left( \delta_X^1 V \right)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \le \delta_X^2 \mathcal{A} - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 \mathcal{A} - \left\langle \lambda, \delta_X^2 V \right\rangle =: \mathcal{Q}(X). \end{array}$ 

This generalizes stability:  $\delta_X^1 V = 0 \implies 0 \le Q(X)$ .

The goal: choose X well to get a sharp PDI for  $\mathcal{I}$ .

*Natural idea*: use generators *X* of group generating conjectured minimizers (modulo isometries of the space)!

- $\mathbb{G}^n$  Translation group generated by  $T_{\theta} \equiv \theta$  constant fields.
- $\mathbb{S}^n$  Möbius group generated by  $W_{\theta} = \theta \langle \theta, p \rangle p$  "dilation-fields".

This definitely yields sharp upper bounds on  $\nabla^2 \mathcal{I}$ .

<u>Problem</u>: cannot a-priori exclude that cluster is lower-dimensional: •  $\mathbb{G}^n \cdot \Omega = \tilde{\Omega} \times \mathbb{R}^{n-d}$ ,  $\tilde{\Omega}$  cluster on  $\mathbb{R}^d$ , d < q - 1.

•  $\mathbb{S}^n$  - affine-rank( $\{c_i\}_{i=1,...,q}$ ) = d < q - 1.

In this case, the generators will only yield d < q-1 independent inqs, which is not enough to bound  $\nabla^2 \mathcal{I}$  on  $E^{(q-1)} = T\Delta^{(q-1)}$ .

Source of information:  $(\delta_X^{\dagger}V)^{T} \nabla^{2} \mathcal{I} \delta_X^{\dagger}V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|II\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On **G**<sup>*n*</sup>: use f = 1!  $L_{Jac} 1 = 1$  and bdry(1, 0) = 0. The scalar-field  $f_{ij}^a = (a_i - a_j) 1 = \sum_{k=1}^{q} a_k(\delta_i^k - \delta_j^k)$ ,  $a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_0(f^a) = -\langle L_{Jac}f^a, f^a \rangle_{\Sigma_1} = -\sum_{i < j} \int_{\Sigma_{ij}} (a_i - a_j)^2 d\gamma^{n-1} = -a^T L_{\gamma} a.$$

where  $L_{\gamma} := \sum_{i < j} \gamma^{n-1} (\Sigma_{ij}) (e_i - e_j) (e_i - e_j)^T$ , graph Laplacian. Note:  $L_{\gamma} \ge 0$  on  $\mathbb{R}^q$ ,  $L_{\gamma} 1 = 0$ ,  $L_{\gamma} > 0$  on  $1^{\perp} = E^{(q-1)}$ , tr $(L_{\gamma}) = 2\mathcal{I}$ .

Source of information:  $(\delta_X^1 V)^T \nabla^2 \mathcal{I} \delta_X^1 V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|I\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{G}^n$ : use  $f = 1! L_{Jac} 1 = 1$  and bdry(1,0) = 0. The scalar-field  $f_{ij}^a = (a_i - a_j)1 = \sum_{k=1}^{q} a_k(\delta_i^k - \delta_j^k)$ ,  $a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_0(f^a) = - \langle L_{Jac} f^a, f^a \rangle_{\Sigma_1} = -\sum_{i < j} \int_{\Sigma_{ij}} (a_i - a_j)^2 d\gamma^{n-1} = -a^T L_{\gamma} a.$$

where  $L_{\gamma} := \sum_{i < j} \gamma^{n-1} (\Sigma_{ij}) (e_i - e_j) (e_i - e_j)^T$ , graph Laplacian. Note:  $L_{\gamma} \ge 0$  on  $\mathbb{R}^q$ ,  $L_{\gamma} = 0$ ,  $L_{\gamma} > 0$  on  $\mathbb{1}^\perp = E^{(q-1)}$ , tr $(L_{\gamma}) = 2\mathcal{I}$ .

### Obtaining PDI for G<sup>n</sup>

Source of information:  $(\delta_X^1 V)^T \nabla^2 \mathcal{I} \delta_X^1 V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|I\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{G}^n$ : use f = 1!  $L_{Jac} 1 = 1$  and bdry(1, 0) = 0. The scalar-field  $f_{ij}^a = (a_i - a_j)\mathbf{1} = \sum_{k=1}^q a_k(\delta_i^k - \delta_j^k), a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_0(f^a) = -(L_{Jac}f^a, f^a)_{\Sigma_1} = -\sum_{j < i} \int_{\Sigma_{ij}} (a_j - a_j)^2 d\gamma^{n-1} = -a^T L_{\gamma} a.$$

where  $L_{\gamma} \coloneqq \sum_{i < j} \gamma^{n-1} (\Sigma_{ij}) (e_i - e_j) (e_i - e_j)^T$ , graph Laplacian. Note:  $L_{\gamma} \ge 0$  on  $\mathbb{R}^q$ ,  $L_{\gamma} 1 = 0$ ,  $L_{\gamma} > 0$  on  $1^{\perp} = E^{(q-1)}$ , tr $(L_{\gamma}) = 2\mathcal{I}$ .

### Obtaining PDI for G<sup>n</sup>

Source of information:  $(\delta_X^{\dagger}V)^{T} \nabla^{2} \mathcal{I} \delta_X^{\dagger}V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|I\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{G}^n$ : use f = 1!  $L_{Jac} 1 = 1$  and bdry(1, 0) = 0. The scalar-field  $f_{ij}^a = (a_i - a_j)\mathbf{1} = \sum_{k=1}^q a_k(\delta_i^k - \delta_j^k), a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_0(f^a) = -\langle L_{Jac}f^a, f^a \rangle_{\Sigma_1} = -\sum_{i < j} \int_{\Sigma_{ij}} (a_i - a_j)^2 d\gamma^{n-1} = -a^T L_{\gamma} a.$$

where  $L_{\gamma} := \sum_{i < j} \gamma^{n-1} (\Sigma_{ij}) (e_i - e_j) (e_i - e_j)^T$ , graph Laplacian. Note:  $L_{\gamma} \ge 0$  on  $\mathbb{R}^q$ ,  $L_{\gamma} = 0$ ,  $L_{\gamma} > 0$  on  $1^{\perp} = E^{(q-1)}$ , tr $(L_{\gamma}) = 2\mathcal{I}$ .

Source of information:  $(\delta_X^1 V)^T \nabla^2 \mathcal{I} \delta_X^1 V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{G}^{n}$ : use f = 1!  $L_{Jac} 1 = 1$  and bdry(1, 0) = 0. The scalar-field  $f_{ij}^{a} = (a_i - a_j)\mathbf{1} = \sum_{k=1}^{q} a_k(\delta_i^k - \delta_j^k), a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_0(f^a) = -\langle L_{Jac} f^a, f^a \rangle_{\Sigma_1} = -\sum_{i < j} \int_{\Sigma_{ij}} (a_i - a_j)^2 d\gamma^{n-1} = -a^T L_{\gamma} a.$$
  
$$\delta^1_{f^a} V(\Omega_i) = \int_{\partial^* \Omega_i} f^a d\gamma^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} (a_i - a_j) d\gamma^{n-1} = (L_{\gamma} a)_i \implies \delta^1_{f^a} V = L_{\gamma} a.$$

 $L_{\gamma} \nabla^2 \mathcal{I} L_{\gamma} \leq -L_{\gamma} \Rightarrow \nabla^2 \mathcal{I} \leq -L_{\gamma}^{-1} < 0 \Rightarrow \operatorname{tr}((-\nabla^2 \mathcal{I})^{-1}) \leq \operatorname{tr}(L_{\gamma}) = 2\mathcal{I}.$ We obtained q - 1 linearly-independent fields and sharp PDI.

Source of information:  $(\delta_X^1 V)^T \nabla^2 \mathcal{I} \delta_X^1 V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{G}^{n}$ : use f = 1!  $L_{Jac} 1 = 1$  and bdry(1, 0) = 0. The scalar-field  $f_{ij}^{a} = (a_i - a_j)\mathbf{1} = \sum_{k=1}^{q} a_k(\delta_i^k - \delta_j^k), a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_0(f^a) = - \langle L_{Jac} f^a, f^a \rangle_{\Sigma_1} = -\sum_{i < j} \int_{\Sigma_{ij}} (a_i - a_j)^2 d\gamma^{n-1} = -a^T L_{\gamma} a.$$
  
$$\delta^1_{f^a} V(\Omega_i) = \int_{\partial^* \Omega_i} f^a d\gamma^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} (a_i - a_j) d\gamma^{n-1} = (L_{\gamma} a)_i \implies \delta^1_{f^a} V = L_{\gamma} a.$$

 $L_{\gamma} \nabla^2 \mathcal{I} L_{\gamma} \leq -L_{\gamma} \Rightarrow \nabla^2 \mathcal{I} \leq -L_{\gamma}^{-1} < 0 \Rightarrow \operatorname{tr}((-\nabla^2 \mathcal{I})^{-1}) \leq \operatorname{tr}(L_{\gamma}) = 2\mathcal{I}.$ We obtained q = 1 linearly-independent fields and sharp PDI.

Multi-Bubble Isoperimetric Problems - Old and New

Source of information:  $(\delta_X^1 V)^T \nabla^2 \mathcal{I} \delta_X^1 V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{G}^{n}$ : use f = 1!  $L_{Jac} 1 = 1$  and bdry(1, 0) = 0. The scalar-field  $f_{ij}^{a} = (a_i - a_j)\mathbf{1} = \sum_{k=1}^{q} a_k(\delta_i^k - \delta_j^k), a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_{0}(f^{a}) = -\langle L_{Jac}f^{a}, f^{a}\rangle_{\Sigma_{1}} = -\sum_{i < j} \int_{\Sigma_{ij}} (a_{i} - a_{j})^{2} d\gamma^{n-1} = -a^{T}L_{\gamma}a.$$
  
$$\delta_{f^{a}}^{1}V(\Omega_{i}) = \int_{\partial^{*}\Omega_{i}} f^{a}d\gamma^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} (a_{i} - a_{j})d\gamma^{n-1} = (L_{\gamma}a)_{i} \implies \delta_{f^{a}}^{1}V = L_{\gamma}a.$$

 $L_{\gamma} \nabla^2 \mathcal{I} L_{\gamma} \leq -L_{\gamma} \Rightarrow \nabla^2 \mathcal{I} \leq -L_{\gamma}^{-1} < \mathbf{0} \Rightarrow \operatorname{tr}((-\nabla^2 \mathcal{I})^{-1}) \leq \operatorname{tr}(L_{\gamma}) = 2\mathcal{I}.$ We obtained q = 1 linearly-independent fields and sharp PDI.

Source of information:  $(\delta_X^{\dagger}V)^{T} \nabla^{2} \mathcal{I} \delta_X^{\dagger}V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac} f = \Delta_{\Sigma,\mu} f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^2) f = \begin{cases} \Delta_{\Sigma,\gamma} f + f & \mathbb{G}^n \\ \Delta_{\Sigma} f + (n-1)(1+\kappa_{ij}^2) f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{G}^{n}$ : use f = 1!  $L_{Jac} 1 = 1$  and bdry(1, 0) = 0. The scalar-field  $f_{ij}^{a} = (a_i - a_j)\mathbf{1} = \sum_{k=1}^{q} a_k(\delta_i^k - \delta_j^k), a \in \mathbb{E}^{(q-1)}$ , is non-physical, but can be approximated by "outward-fields".

$$Q_0(f^a) = -\langle L_{Jac} f^a, f^a \rangle_{\Sigma_1} = -\sum_{i < j} \int_{\Sigma_{ij}} (a_i - a_j)^2 d\gamma^{n-1} = -a^T L_{\gamma} a.$$
  
$$\delta^1_{f^a} V(\Omega_i) = \int_{\partial^* \Omega_i} f^a d\gamma^{n-1} = \sum_{j \neq i} \int_{\Sigma_{ij}} (a_i - a_j) d\gamma^{n-1} = (L_{\gamma} a)_i \implies \delta^1_{f^a} V = L_{\gamma} a.$$

 $L_{\gamma} \nabla^2 \mathcal{I} L_{\gamma} \leq -L_{\gamma} \Rightarrow \nabla^2 \mathcal{I} \leq -L_{\gamma}^{-1} < 0 \Rightarrow \operatorname{tr}((-\nabla^2 \mathcal{I})^{-1}) \leq \operatorname{tr}(L_{\gamma}) = 2\mathcal{I}.$ We obtained q - 1 linearly-independent fields and sharp PDI.

Multi-Bubble Isoperimetric Problems - Old and New

Source of information:  $(\delta_X^{\dagger}V)^{T} \nabla^{2} \mathcal{I} \delta_X^{\dagger}V \leq Q(X)$ . Recall  $Q(X) = Q_0(f)$ ,  $f = (f_{ij})$  the scalar-field  $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$  on  $(\Sigma_{ij}, \partial \Sigma_{ij})$ :

$$Q_0(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\Sigma^2} bdry(f, II).$$

Since II = 0 on  $\mathbb{G}^n$  and II =  $\kappa_{ij}$ Id on  $\mathbb{S}^n$ , everything is explicit:

$$L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^2)f = \begin{cases} \Delta_{\Sigma,\gamma}f + f & \mathbb{G}^n\\ \Delta_{\Sigma}f + (n-1)(1+\kappa_{ij}^2)f & \mathbb{S}^n \end{cases}.$$

On  $\mathbb{S}^n$ : fields yielding sharp PDI exist (non-trivial). But we don't have explicit formula, unless cluster is (pseudo)-conformally-flat ({ $c_i, \kappa_i$ }). E.g.: • when cluster is full-dimenional, i.e. affine-rank{ $c_i$ } $_{i=1}^q = q - 1$ ;

 $\bullet$  if all bubbles have a mutual common point. In those cases, we obtain the sharp PDI for  $\mathcal{I}.$ 

But what if the cluster is **not** pseudo-conformally-flat??? While this should never happen, we cannot a-priori exclude this. Using Step 5 (= some tricks), we can go up to  $q \le 6$  on  $\mathbb{S}^n$ .

#### So why is $\mathbb{R}^n/\mathbb{S}^n$ harder than $\mathbb{G}^n$ ?

|                                | <b>G</b> <sup><i>n</i></sup>   | $\mathbb{S}^n/\mathbb{R}^n$                                                                   |
|--------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|
| Group Generating<br>Minimizers | Translations                   | Möbius Transformations<br>(Liouville, $n \ge 3$ : constitute all<br>conformal automorphisms)  |
| Effect on curvature II?        | Invariant<br>under translation | $II' = a_p II + b_p Id.$<br>Sphericity preserved,<br>but curvature changes                    |
| Conjectured Minimizers         | Flat                           | Conformally Flat (CF) on $\mathbb{S}^n$ (great spheres)                                       |
| We can show                    | Flat                           | Spherical; However,<br>showing CF requires<br>finding conformal map,<br>i.e. extra parameters |

## Thank you for your attention!

#### Equal Volume Multi-Bubble on $\mathbb{S}^n$ (M.–Neeman '18)

On  $\mathbb{S}^n$ , for any  $q \le n+2$ , if  $V(\Omega_1) = \ldots = V(\Omega_q) = \frac{1}{q}$  then the unique minimizer is a standard bubble.

Proof: immediate consequence from  $\mathbb{G}^n$ , since spherical and Gaussian volume/area coincide for centered cones on  $\mathbb{S}^n \subset \mathbb{G}^{n+1}$ , and the unique equal volumes minimizer on  $\mathbb{G}^{n+1}$  for  $q \leq (n+1) + 1$  is the centered simplicial cluster (whose cells are centered cones).

#### Equal Volume Triple-Bubble on $\mathbb{R}^3$ (Lawlor '22)

On  $\mathbb{R}^3$ , if  $V(\Omega_1) = V(\Omega_2) = V(\Omega_3)$ , then the unique (?) minimizer is a standard triple-bubble.

Jump back....

#### Möbius Group

Stereographic projection  $T : \mathbb{S}^n \to \mathbb{R}^n$ :

- T conformal = preserves angles  $\langle dT u, dT v \rangle = c \langle u, v \rangle$ .
- T preserves (generalized) spheres.



Stereographic projection preserves angles and takes circles to circles or lines

#### Taken from Delman-Galperin, "A tale of Three Circles".

What is the group generating standard bubbles? (composition of stereographic projections is conformal map on  $\mathbb{R}^n$ ).

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

Stereographic projection  $T : \mathbb{S}^n \to \mathbb{R}^n$ :

- T conformal = preserves angles  $\langle dT u, dT v \rangle = c \langle u, v \rangle$ .
- T preserves (generalized) spheres.

What is the group generating standard bubbles? (composition of stereographic projections is conformal map on  $\mathbb{R}^n$ ).

Thm (Liouville): All global conformal maps on  $\mathbb{R}^n$  ( $n \ge 3$ ) are Möbius. Equivalent definitions of Möbius transformations on  $\mathbb{R}^n$ :

- Compositions of stereo-projections to and back S<sup>n</sup>;
- Compositions of spherical / hyperplane inversions;
- Compositions of isometries, scaling, and unit-sphere inversion.

(similarly on  $\mathbb{S}^n$ , by first stereographically projecting to  $\mathbb{R}^n$ ).

So the Möbius group generates standard-bubbles on  $\mathbb{R}^n/\mathbb{S}^n$ .

➡ Jump back..

Stereographic projection  $T : \mathbb{S}^n \to \mathbb{R}^n$ :

- T conformal = preserves angles  $\langle dT u, dT v \rangle = c \langle u, v \rangle$ .
- T preserves (generalized) spheres.

What is the group generating standard bubbles? (composition of stereographic projections is conformal map on  $\mathbb{R}^n$ ).

Thm (Liouville): All global conformal maps on  $\mathbb{R}^n$  ( $n \ge 3$ ) are Möbius. Equivalent definitions of Möbius transformations on  $\mathbb{R}^n$ :

- Compositions of stereo-projections to and back S<sup>n</sup>;
- Compositions of spherical / hyperplane inversions;
- Compositions of isometries, scaling, and unit-sphere inversion.

(similarly on  $\mathbb{S}^n$ , by first stereographically projecting to  $\mathbb{R}^n$ ).

So the Möbius group generates standard-bubbles on  $\mathbb{R}^n/\mathbb{S}^n$ .

▶ Jump back…