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Application #1:Prediction with Random TessellationForests
Joint work with NgocMai Tran (UT Austin)



Goal: Given example input-output pairs {(xi, yi)}ni=1 ⊂ Rd × R, obtain
estimator f̂n to predict output from new input x: ŷ = f̂n(x)

Randomized Decision Trees:
I Recursively split data along random feature of input
I Induce a hierarchical axis-aligned partition of input space

x

I Random tree (regression) estimator: average over cell/leaf

f̂n(x) =

∑n
i=1 yi1{xi in same cell as x}∑n
i=1 1{xi in same cell as x}
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Random Forest (RF) Estimator
I Average ofM i.i.d. tree estimators

I Original RF algorithm1: splits dependent on data
I State-of-the-art empirical performance for many tasks2
I Difficult to analyze; still a lack of theoretical understanding3
I Purely RF variants4: splits independent of data

1[Ho, 1995; 1998; Amit and Geman, 1997; Breiman, 2001]
2[Caruana andNiculescu-Mizil, 2006; Fernandez-Delgado et al., 2014]
3[Scornet et al., 2015;Wager and Athey, 2018; Chi et al., 2020; Klusowski and Tian, 2022]
4[Breiman, 2004; Genuer, 2012]
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Mondrian process

I Introduced by Roy and Teh in 2008
I Stochastic process that recursively
builds an axis-aligned hierarchical
partition inRd

Figure: PietMondrian (1921).



Mondrian process construction inRd

1. Fix lifetime parameter λ > 0
2. Draw

∆ ∼ Exp
[ d∑
i=1

(ui − `i)
]

3. IF∆ > λ stop,
ELSE sample a split:

I Dimension: jwith probability
proportional to uj − `j

I Location: uniform on [`j, uj]
4. Recurse independently on each
subrectangle with lifetime λ−4

`1 u1
`2

u2



Mondrian process construction inRd

1. Fix lifetime parameter λ > 0
2. Draw

∆ ∼ Exp
[ d∑
i=1

(ui − `i)
]

3. IF∆ > λ stop,
ELSE sample a split:

I Dimension: jwith probability
proportional to uj − `j

I Location: uniform on [`j, uj]
4. Recurse independently on each
subrectangle with lifetime λ−4

`1 u1
`2

u2



Mondrian process construction inRd

1. Fix lifetime parameter λ > 0
2. Draw

∆ ∼ Exp
[ d∑
i=1

(ui − `i)
]

3. IF∆ > λ stop,
ELSE sample a split:

I Dimension: jwith probability
proportional to uj − `j

I Location: uniform on [`j, uj]
4. Recurse independently on each
subrectangle with lifetime λ−4

`1 u1
`2

u2



Mondrian process construction inRd

1. Fix lifetime parameter λ > 0
2. Draw

∆ ∼ Exp
[ d∑
i=1

(ui − `i)
]

3. IF∆ > λ stop,
ELSE sample a split:

I Dimension: jwith probability
proportional to uj − `j

I Location: uniform on [`j, uj]
4. Recurse independently on each
subrectangle with lifetime λ−4

`1 u1
`2

u2



Mondrian process construction inRd

1. Fix lifetime parameter λ > 0
2. Draw

∆ ∼ Exp
[ d∑
i=1

(ui − `i)
]

3. IF∆ > λ stop,
ELSE sample a split:

I Dimension: jwith probability
proportional to uj − `j

I Location: uniform on [`j, uj]
4. Recurse independently on each
subrectangle with lifetime λ−4

`1 u1
`2

u2



Mondrian Random Forests

I Comparable empirical performance to RF for some tasks5
I Minimax rates under nonparametric assumptions in arbitrary dimension6
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5[Lakshminarayanan, Roy, and Teh, 2014]
6[Mourtada, Gaı̈ffas, Scornet, 2020]



Beyond axis-aligned partitions

I Non-axis-aligned splits can capture dependencies between features

I Non-axis-aligned RF variants show improved empirical performance7
I Lack of theoretical analysis, computational efficiency

Question: Is there a generalization of theMondrian process with
non-axis-aligned cuts?

7[Breiman, 2001; Fan, Li, and Sisson, 2019; Tomita et al., 2020]
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Stable Under Iteration Processes

I Yes!Mondrian is special case of the STIT process
in stochastic geometry

I Introduced by Nagel andWeiss in 2003
I Indexed by a directional distribution φ on Sd−1

I Improved empirical performance with uniform STIT overMondrian8
I General cell shapes introduce computational and theoretical challenges

8[Ge,Wang, Teh,Wang, and Elliott, 2019]
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Theoretical Challenge: Minimax Rates

I Assumption: {(xi, yi)}ni=1 i.i.d. samples of (X, Y) ∈ W × R such that
Y = f(X) + ε,

whereW ⊂ Rd is a compact and convex window
I f̂λ,n,M: STIT forest estimator of sizeM; lifetime parameter λ
I The quality of the estimator f̂λ,n,M is measured by the quadratic risk

E[(̂fλ,n,M(X)− f(X))2]

I Theminimax risk for a function classF is
min
f̂n

max
f∈F

E[(̂fn(X)− f(X))2]
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Theoretical Challenge: Minimax Rates

Theorem (Tran andO.)
(i) If f is Lipschitz, letting λn � n1/(d+2) gives

E[(̂fλn,n,M(X)− f(X))2] ≤ O
(
n−2/(d+2)

)

(ii) If f is C2 and X has positive and Lipschitz density, letting λn � n1/(d+4) and
Mn & n2/(d+4) gives

E[(̂fλn,n,Mn(X)− f(X))2] ≤ O
(
n−4/(d+4)

)

I STIT random forests areminimax optimal for Lipschitz and C2 functions
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Rates for multi-index models9
I Suppose for g : Rs → R and ai ∈ Rd, i = 1, . . . , s,

f(x) = g(〈a1, x〉, . . . , 〈as, x〉), x ∈ Bd(0,R).

I S := span(a1, . . . , as) ⊆ Rd is the s-dimensional relevant feature subspace
I Let f̂λ,n,M be a STIT forest estimator with directional distribution

φn = (1− εn)φS + εnφS⊥ ,

for εn ∈ (0,1)where supp(φS) = S ∩ Sd−1, supp(φS) = S⊥ ∩ Sd−1

Theorem
(i) If g is Lipschitz, letting λn � n1/(s+2) and εn � n−1/(s+2) gives

E[(̂fλn,n,M(X)− f(X))2] ≤ O
(
n−2/(s+2)

)
(ii) A similar extension holds if g is C2.

9[Li,1991; Fukumizu et al., 2004; Dalalyan et al., 2008]
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Proof Idea: Bias-Variance Decomposition of the Risk

I Wehave the following bias-variance decomposition:
E[(̂fλ,n,1(X)− f(X))2] = E[(f(X)− f̄λ(X))2] + E[(̄fλ(X)− f̂λ,n(X))2],

where
f̄λ(x) = EX[f(X)|X ∈ Zx], x ∈ W,

is the orthogonal projection of f ∈ L2(W, µ) onto the subspace of functions
that are constant within the cell of the STIT tessellation

I Bias is controlled by the diameter of the cell containing X
I Variance is controlled by the expected number of cells inW
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Stationary STIT Tessellation onRd
I Y(λ,W): STIT in compact and convex
W ⊂ Rd with lifetime λ

I Consistency: ForW1 ⊂ W2,
Y(λ,W1)

d
= Y(λ,W2) ∩W1

I There exists a stationary STIT tessellationY(λ) onRd such that10
I Y(λ) ∩W d

= Y(λ,W) for all compactW
I Stable Under Iteration: for all λ > 0,

Y(λ) d
= n(Y(λ)� · · ·� Y(λ)),

s.t. Y � Y := Y ∪
⋃
c∈cells(Y) (Y(c) ∩ c)where {Y(c) : c ∈ Y} are i.i.d. copies ofY

I Scaling property: λY(λ) d
= Y(1)

10[Nagel andWeiss, 2005]
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Cells of stationary random tessellations

I Cells ofY(λ) form a stationary point
process on spaceK of compact convex
polytopes

I Typical cell is a centered random
polytope Z such that for all A ∈ B(K),

E

 ∑
C∈cells(Y)

1{C ∈ A}

 =
1

E[vold(Z)]
E
[∫

Rd
1{Z+ y ∈ A}dy

]
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Proof Idea: Variance Bound
I Recall: Variance is controlled by the expected number of cells/leaves
I LetW ⊂ Rd be a compact and convex set
I LetY(λ) be a STIT tessellation inRd with lifetime λ

Lemma
Let Z be the typical cell ofY(1). Then,

E

 ∑
C∈cells(Y(λ))

1{C ∩W 6= ∅}

 =
d∑
k=0

(
d
k

)
λk

E[V(W[k],Z[d− k])]

E[vold(Z)]
,

whereE[V(W[k],Z[d− k])] := E[V(W, . . . ,W︸ ︷︷ ︸
k

,Z, . . . ,Z︸ ︷︷ ︸
d−k

)].

I Proof: apply Steiner’s formula toE
[∑

C∈P(λ) 1{C∩W 6=∅}
]

= E[vold(W−Zλ)]
E[vold(Zλ)]
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Proof Idea: Risk Bound

I Let f̂λ,n,M be the forest estimator of f corresponding to the STITY(λ)

I Let Z0 the zero cell (cell containing the origin), and Z the typical cell ofY(1)

Assume f : W → R is L-Lipschitz. Then,
E[(̂fλ,n,M(X)− f(X))2]

≤ LE[diam(Z0)2]

λ2 +
(5‖f‖2∞ + 2σ2)

n

d∑
k=0

(
d
k

)
λk

E[V(W[k],Z[d− k])]

E[vold(Z)]

I Letting λ = λn � n1/(d+2) gives the minimax rate for Lipschitz functions



Proof Idea: Risk Bound forMulti-IndexModel
I Suppose for g : Rs → R and ai ∈ Rd, i = 1, . . . , s

f(x) := g(〈a1, x〉, . . . , 〈as, x〉)

I S := span(a1, . . . , as) ⊆ Rd is the s-dimensional relevant feature subspace
I Let f̂λ,n be a STIT forest estimator with directional distribution

φn = (1− εn)φS + εnφS⊥

Assume g : Rs → R is L-Lipschitz. Then,

E[(̂fλ,n(X)− f(X))2] ≤ L2‖A‖op
λ2(1− εn)2E[diam(Z0 ∩ S)2]

+
(5‖f‖2∞ + 2σ2)

n

(
λdεd−sn

(
d
s

)
RdκdV(ΠS[s],ΠS⊥ [d− s]) + o(λdεd−sn )

)
.

I ΠS,ΠS⊥ are convex bodies (zonoids) defined by φS and φS⊥
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I S := span(a1, . . . , as) ⊆ Rd is the s-dimensional relevant feature subspace
I Let f̂λ,n be a STIT forest estimator with directional distribution

φn = (1− εn)φS + εnφS⊥

Assume g : Rs → R is L-Lipschitz. Then,

E[(̂fλ,n(X)− f(X))2] ≤ L2‖A‖op
λ2(1− εn)2E[diam(Z0 ∩ S)2]

+
(5‖f‖2∞ + 2σ2)

n

(
λdεd−sn

(
d
s

)
RdκdV(ΠS[s],ΠS⊥ [d− s]) + o(λdεd−sn )

)
.

I ΠS,ΠS⊥ are convex bodies (zonoids) defined by φS and φS⊥



Summary and future work
I Wehave provedminimax optimal rates for a large class of random
forest/partition estimators with general split directions

I Theory of stationary random tessellations is a powerful and flexible
framework for understanding and developing random partition methods

I Performance depends on geometry of the cells (e.g.mixed volumes of
typical cell)

I How to learn directional distribution from data?
I Other applications: clustering, random feature models
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Application #2:
Optimal regularizers for a data source

Joint work with Oscar Leong (Caltech), Yong Sheng Soh (National
University of Singapore), and Venkat Chandrasekaran (Caltech)



Inverse Problems and regularization

I Goal is to recover signal x from:
y = A(x) + ε

whereA is a known forwardmap and ε is
observation noise

I Problemmay be ill-posed

Functional Analytic Regularization:
I Recover xwith the following optimization problem:

argmin
x

loss(A(x), y) + regularizer(x)

I Regularizer function promotes structure in the solution
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Variety of regularizers
Hand-crafted:
Sparsity is promoted by `1 norm (convex) and by
`p norm for p ∈ [0,1) (non-convex)

argmin
x

loss(A(x), y) + ‖x‖p

Data-driven:
Dictionary Learning (convex)

I Learn A ∈ Rd×p such that x ≈ Az,
where z is sparse

‖ATx‖1 ⇐⇒ ‖x‖A(B`1 )

Generative models (non-convex)
I Neural network based
regularization
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Main question considered in this work

Which regularizer should one choose?

I What is the optimal regularizer to impose for a given data source?
I Convex versus nonconvex?
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Set-up and assumptions
I Let P be a probability distribution onRd modeling a data source
I Define optimal regularizer f from a familyF as a solution to:

argmin
f∈F

EP[f(x)]

I Conditions on f ∈ F :
I Positively homogenous: f(αx) = αf(x),α ≥ 0
I f ≥ 0 and continuous

f ∈ F ⇐⇒ f = ‖ · ‖K is theMinkowski functional of a star body K

Minkowski functional of a compact setC ⊂ Rd:
‖x‖C := inf{t > 0 : x ∈ tC}



Set-up and assumptions
I Let P be a probability distribution onRd modeling a data source
I Define optimal regularizer f from a familyF as a solution to:

argmin
f∈F

EP[f(x)]

I Conditions on f ∈ F :
I Positively homogenous: f(αx) = αf(x),α ≥ 0
I f ≥ 0 and continuous

f ∈ F ⇐⇒ f = ‖ · ‖K is theMinkowski functional of a star body K

Minkowski functional of a compact setC ⊂ Rd:
‖x‖C := inf{t > 0 : x ∈ tC}



Star bodies and radial functions
I The radial function of a compact set K ⊂ Rd is defined by

ρK(x) := sup{t > 0 : tx ∈ K} = ‖x‖−1K
I A compact set K ⊂ Rd is a star body if ρK is continuous and it is starshaped(with respect to the origin)

x ∈ K ⇒ [0, x] ⊆ K
I Star bodies are uniquely determined by their radial functions



Unique optimal regularizer
Theorem (Leong, Soh, Chandrasekaran, O., 2022+)
Let P be a distribution onRd with density p and assumeEP[‖x‖`2 ] <∞.

Suppose the
following function is continuous:

ρP(u) :=

(∫ ∞
0
rdp(ru)dr

)1/(d+1)
, u ∈ Sd−1. (1)

Then ∃ a unique star body LP with radial function ρP, and

K∗ := vold(LP)−1/dLP

is the unique solution to
argmin

K∈Sd:vold(K)=1
EP[‖x‖K]

I If LP is convex, then the optimal regularizer is convex!
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Examples
(i) Densities induced by star bodies:

p(x) = ψ(‖x‖L)⇒ LP = cψL

(ii) GaussianMixtures:
P =

1
2N (0,Σ1) +

1
2N (0,Σ2)

whereΣ1 := [1,0;0, ε] ∈ R2×2 andΣ2 := [ε,0;0,1] ∈ R2×2

Figure: Plots of LP for ε = 0.1 (left) and ε = 0.01 (right).
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Proof
Goal: Characterize unique solution to

argmin
K∈Sd:vold(K)=1

EP[‖x‖K]

By change to polar coordinates,
EP[‖x‖K] =

∫
Rd
‖x‖Kp(x)dx =

∫
Sd−1
‖u‖K

∫ ∞
0
rdp(ru)drdu

=

∫
Sd−1

ρK(u)−1ρP(u)d+1du := dṼ−1(K, LP)

Theorem (DualMixed Volume Inequality (Lutwak, 1975))
For star bodies K and L,

Ṽ−1(K, L)d ≥ vold(K)−1vold(L)d+1,

and equality hold if and only if L and K are dilates, i.e. L = λK for some λ > 0



Proof
Goal: Characterize unique solution to

argmin
K∈Sd:vold(K)=1

EP[‖x‖K]

By change to polar coordinates,
EP[‖x‖K] =

∫
Rd
‖x‖Kp(x)dx =

∫
Sd−1
‖u‖K

∫ ∞
0
rdp(ru)drdu

=

∫
Sd−1

ρK(u)−1ρP(u)d+1du := dṼ−1(K, LP)
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Summary and future work
I Dual Brunn-Minkowski theory provides tools for characterizing optimal
functional for imposing structure on a dataset for inverse problems

I Other results: convergence of empirical minimizers and generalization
error bounds

I How do optimal regularizers perform in downstream tasks?
I How to efficiently compute the optimal regularizer?
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Papers

“Minimax Rates for High-Dimensional Random Tessellation Forests”
Joint with NgocMai Tran. https://arxiv.org/abs/2109.10541
“Optimal Convex and Nonconvex Regularizers for a Data Source”
Joint with Oscar Leong, Yong Sheng Soh, and Venkat Chandrasekaran. In
preparation.

Thank you!


