Some Applications of Mixed
Volumes in Data Science

Eliza O'Reilly

Caltech



Application #1:

Prediction with Random Tessellation
Forests

Joint work with Ngoc Mai Tran (UT Austin)



Goal: Given example input-output pairs {(x;, vi)}_; € RY x R, obtain
estimator f, to predict output from new inputx: § = fﬂ(x)



Goal: Given example input-output pairs {(x;, yi) }!_; C R? x R, obtain
estimator f, to predict output from new input x:  § = f,(x)

Randomized Decision Trees:

» Recursively split data along random feature of input
» Induce a hierarchical axis-aligned partition of input space

» Random tree (regression) estimator: average over cell/leaf

2 Z?:l yil{x‘ insame cell as x}
fﬂ(X) = n
Zi:1 1{><,v in same cell as x}



Goal: Given example input-output pairs {(x;, yi) }!_; C R? x R, obtain
estimator f, to predict output from new input x:  § = f,(x)

Randomized Decision Trees:

» Recursively split data along random feature of input
» Induce a hierarchical axis-aligned partition of input space

» Random tree (regression) estimator: average over cell/leaf

2 Z?:l yil{x‘ insame cell as x}
fﬂ(X) = n
Zi:1 1{><,v in same cell as x}



Goal: Given example input-output pairs {(x;, yi) }!_; C R? x R, obtain
estimator f, to predict output from new input x:  § = f,(x)

Randomized Decision Trees:

» Recursively split data along random feature of input
» Induce a hierarchical axis-aligned partition of input space

» Random tree (regression) estimator: average over cell/leaf

2 Z?:l yil{x‘ insame cell as x}
fﬂ(X) = n
Zi:1 1{><,v in same cell as x}



Goal: Given example input-output pairs {(x;, yi) }!_; C R? x R, obtain
estimator f, to predict output from new input x:  § = f,(x)

Randomized Decision Trees:

» Recursively split data along random feature of input
» Induce a hierarchical axis-aligned partition of input space

» Random tree (regression) estimator: average over cell/leaf

2 Z?:l yil{x‘ insame cell as x}
fﬂ(X) = n
Zi:1 1{><,v in same cell as x}



Goal: Given example input-output pairs {(x;, yi) }!_; C R? x R, obtain
estimator f, to predict output from new input x:  § = f,(x)

Randomized Decision Trees:

» Recursively split data along random feature of input
» Induce a hierarchical axis-aligned partition of input space

» Random tree (regression) estimator: average over cell/leaf

2 Z?:l yil{x‘ insame cell as x}
fﬂ(X) = n
Zi:1 1{><,v in same cell as x}



Goal: Given example input-output pairs {(x;, yi) }!_; C R? x R, obtain
estimator f, to predict output from new input x:  § = f,(x)

Randomized Decision Trees:

» Recursively split data along random feature of input
» Induce a hierarchical axis-aligned partition of input space

» Random tree (regression) estimator: average over cell/leaf

2 Z?:l yil{x‘ insame cell as x}
fﬂ(X) = n
Zi:1 1{><,v in same cell as x}



Random Forest (RF) Estimator

» Average of Mi.id. tree estimators [
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Random Forest (RF) Estimator

» Average of Mi.id. tree estimators
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Original RF algorithm?: splits dependent on data

v

v

State-of-the-art empirical performance for many tasks?2

v

Difficult to analyze; still a lack of theoretical understanding3

v

Purely RF variants®: splits independent of data

[Ho, 1995; 1998: Amit and Geman, 1997; Breiman, 2001]

[Caruana and Niculescu-Mizil, 2006; Fernandez-Delgado et al., 2014]

[Scornet et al., 2015; Wager and Athey, 2018; Chi et al., 2020; Klusowski and Tian, 2022]
[

1
2
3
4[Breiman, 2004; Genuer, 2012]



Mondrian process

» Introduced by Roy and Teh in 2008

» Stochastic process that recursively
builds an axis-aligned hierarchical
partition in R?

Figure: Piet Mondrian (1921).
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subrectangle with lifetime A — A
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Mondrian Random Forests

» Comparable empirical performance to RF for some tasks?
» Minimax rates under nonparametric assumptions in arbitrary dimension®

5[Lakshminarayanan, Roy, and Teh, 2014]
6[Mourtada, Gaiffas, Scornet, 2020]



Beyond axis-aligned partitions

» Non-axis-aligned splits can capture dependencies between features

» Non-axis-aligned RF variants show improved empirical performance’

» Lack of theoretical analysis, computational efficiency

7[Breiman, 2001; Fan, Li, and Sisson, 2019; Tomita et al., 2020]



Beyond axis-aligned partitions

» Non-axis-aligned splits can capture dependencies between features
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» Non-axis-aligned RF variants show improved empirical performance’

» Lack of theoretical analysis, computational efficiency

Question: Is there a generalization of the Mondrian process with
non-axis-aligned cuts?

7[Breiman, 2001; Fan, Li, and Sisson, 2019; Tomita et al., 2020]



Stable Under Iteration Processes

» Yes! Mondrian is special case of the STIT process
in stochastic geometry

» Introduced by Nagel and Weiss in 2003

» Indexed by a directional distribution ¢ on S/—!

8[Ge, Wang, Teh, Wang, and Elliott, 2019]



Stable Under Iteration Processes

v

Yes! Mondrian is special case of the STIT process
in stochastic geometry

v

Introduced by Nagel and Weiss in 2003

v

Indexed by a directional distribution ¢ on S/~

v

Improved empirical performance with uniform STIT over Mondrian®

v

General cell shapes introduce computational and theoretical challenges

8[Ge, Wang, Teh, Wang, and Elliott, 2019]
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Theoretical Challenge: Minimax Rates

v

Assumption: {(x;, y;)}_, i.i.d. samples of (X, Y) € W x R such that
Y =f(X) +e¢,
where W ¢ RYis a compact and convex window

fA,,,,M: STIT forest estimator of size M; lifetime parameter A

v

The quality of the estimator ]A‘MM is measured by the quadratic risk

v

E[(Frnm(X) = F(X))°]

The minimax risk for a function class Fis

v

min ?1€a}<1€[(%n(x) — f(X))7]
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Theoretical Challenge: Minimax Rates

Theorem (Tran and O.)

(i) Iffis Lipschitz, letting A, =< n'/(@+2) gives

E[(Fx, nm(X) = F(X))2] < o( =2/ d+2>)

1/(d+4)

(i) If fis C? and X has positive and Lipschitz density, letting A, = n and

M, > n?/(4+4) gives

E{(F, o0, () = F(X))?] < O (n=*/+4))

» STIT random forests are minimax optimal for Lipschitz and C? functions
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Rates for multi-index models”
» Supposeforg:R* — Randa; e R%i=1,...,s,
f(x) =g({a1,x),...,{as,x)), x € By(O,R).

> S:=span(ay,...,a;) € R%is the s-dimensional relevant feature subspace
> Let %A,HM be a STIT forest estimator with directional distribution

on = (1 - 5n)¢5 + entsL,
fore, € (0, 1) where supp(¢s) = SN S~ supp(¢s) = S+ NSt

Theorem

(i) Ifgis Lipschitz, letting A, = n/6+t2) and &, =< n=Y/(+2) gives
E[(Fx, nm(X) — (X))2] < O (n—2/<s+2>)

(i) Asimilar extension holds if g is C2.

?[Li,1991; Fukumizu et al., 2004; Dalalyan et al., 2008]



Proof |dea: Bias-Variance Decomposition of the Risk

» We have the following bias-variance decomposition:
E[(Frn.1(X) = F())°] = E[(FO) = F00)] + EFAX) = Faa(X))°],
where
fi(x) = Ex[fX)IX € Z], xeW,

is the orthogonal projection of f € L?(W, 1) onto the subspace of functions
that are constant within the cell of the STIT tessellation



Proof |dea: Bias-Variance Decomposition of the Risk

» We have the following bias-variance decomposition:
E[(Frn.1(X) = F())°] = E[(FO) = F00)] + EFAX) = Faa(X))°],
where
fi(x) = Ex[fX)IX € Z], xeW,

is the orthogonal projection of f € L?(W, 1) onto the subspace of functions
that are constant within the cell of the STIT tessellation

» Bias is controlled by the diameter of the cell containing X

» Variance is controlled by the expected number of cells in W



Stationary STIT Tessellation on R?

> Y(A,W): STIT in compact and convex
W C R? with lifetime A

» Consistency: For Wy C W5,

4
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Stationary STIT Tessellation on R?

> Y(A, W): STIT in compact and convex

W c R? with lifetime A

» Consistency: For Wy C W5,

4

y()\, Wl) y()\,WQ)ﬂ\/\/l

» There exists a stationary STIT tessellation J(\) on R? such that*®

> Y(A)NW 2 Y(A, W) for all compact W
» Stable Under Iteration: for all A > O,
YO Z (YN E---BYN)),

stYBY:=YU Ucece\ls(y) (Y(e)no)
where {Y(c) : ¢ € Y} arei.id. copies of Y

> Scaling property: A\Y()\) 2 (1)

10[Nagel and Weiss, 2005]
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» Cells of Y(A) form a stationary point
process on space K of compact convex
polytopes



Cells of stationary random tessellations

» Cells of Y(A) form a stationary point
process on space I of compact convex
polytopes

» Typical cell is a centered random
polytope Z such that for allA € B(K),

IE[ 3 1{C6A}] =mE[Ad1{Z+yeA}dy

Cecells(Y)



Proof |dea: Variance Bound

» Recall: Variance is controlled by the expected number of cells/leaves
» Let W c R? be a compact and convex set
» Let Y(\) be a STIT tessellation in R with lifetime A

Lemma
Let Z be the typical cell of Y(1). Then,

4 rd E[V(WI[K], Z[d — k
El Y 1{Cmvv7é®}] Z(k)Ak[ E[[V(])ld([ )] .

Cecells(Y()N)) k=0

where E[V(WIK], Z[d — K])] := E[V(W, ..., W, Z,...,2)].



Proof |dea: Variance Bound

» Recall: Variance is controlled by the expected number of cells/leaves
» Let W c R? be a compact and convex set
» Let Y(\) be a STIT tessellation in R with lifetime A

Lemma
Let Z be the typical cell of Y(1). Then,

4 rd E[V(WI[K], Z[d — k
El Y 1{Cmvv7é®}] Z(k)Ak[ E[[V(])ld([ )] .

Cecells(Y()N)) k=0

where E[V(WIK], Z[d — K])] := E[V(W, ..., W, Z,...,2)].

——
k d—k
» Proof: apply Steiner’s formulato E {ZCGP(A) Licrwz0y | = W



Proof Idea: Risk Bound

> Let ﬁ,n,M be the forest estimator of f corresponding to the STIT Y())
> Let Zp the zero cell (cell containing the origin), and Z the typical cell of Y(1)
Assumef : W — Ris L-Lipschitz. Then,
E[(fxnm(X) = (X))’]

Efdiam(Zo)’] | (SIFIZ +20%) < (@Y | EVWI, ZId — K)]
<=+ n Z<k>Ak E[vol,(7)]

k=0

» Letting A = \, < n?/(#+2) gives the minimax rate for Lipschitz functions



Proof Idea: Risk Bound for Multi-Index Model

» Supposeforg:R°— Randa e R%,i=1,...,s
f(x) :==3g({a1,x),...,{as,x))

» S:=span(as,...,ds) C R is the s-dimensional relevant feature subspace

> Let f/\,n be a STIT forest estimator with directional distribution
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Proof Idea: Risk Bound for Multi-Index Model

» Supposeforg:R°— Randa e R%,i=1,...,s
f(x) :==3g({a1,x),...,{as,x))

» S:=span(as,...,ds) C R is the s-dimensional relevant feature subspace

> Let f/\,n be a STIT forest estimator with directional distribution

n = (1 - 5n)¢5 + enPst

Assume g : R® — Ris L-Lipschitz. Then,

L?[|Allop : 2

(Adsg—s (‘j) R9kqV/(Ms[s], Ms [d — s]) + o(Adgg—5)> .

E[(fxn(X) — f(X))?] <

L Gl% +20%)
n

» [s, Mgy are convex bodies (zonoids) defined by ¢s and ¢



Summary and future work

» We have proved minimax optimal rates for a large class of random
forest/partition estimators with general split directions

» Theory of stationary random tessellations is a powerful and flexible
framework for understanding and developing random partition methods

» Performance depends on geometry of the cells (e.g. mixed volumes of
typical cell)




Summary and future work

» We have proved minimax optimal rates for a large class of random
forest/partition estimators with general split directions

» Theory of stationary random tessellations is a powerful and flexible
framework for understanding and developing random partition methods

» Performance depends on geometry of the cells (e.g. mixed volumes of
typical cell)

» How to learn directional distribution from data?

» Other applications: clustering, random feature models



Application #2:
Optimal regularizers for a data source

Joint work with Oscar Leong (Caltech), Yong Sheng Soh (National

University of Singapore), and Venkat Chandrasekaran (Caltech)



Inverse Problems and regularization

» Goalistorecover signal x from:
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» Problem may be ill-posed EES E

y=A(X)+e¢
data
where A is a known forward map and e is
observation noise




Inverse Problems and regularization
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» Goalistorecover signal x from: o\ﬁ“‘
Al
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y=A)+e¢ ; yg s
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where A is a known forward map and e is "
observation noise %‘"ess,b
e@e Ss

» Problem may be ill-posed

Functional Analytic Regularization:

» Recover x with the following optimization problem:

argminloss(.A(x), y) 4 regularizer(x)
X

» Regularizer function promotes structure in the solution

,bf’/e ’78/,’9 E

data



Variety of regularizers

Hand-crafted:

Sparsity is promoted by £4 norm (convex) and by
¢, normfor p € [0, 1) (non-convex)

argminloss(A(x),y) + [Ix]|,



Variety of regularizers

Hand-crafted:

Sparsity is promoted by £4 norm (convex) and by
¢, normfor p € [0, 1) (non-convex)
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Data-driven:
Dictionary Learning (convex)

» Learn A € R¥%P such that x ~ Az,
where zis sparse

AT = [IXlags.,)

AL LB LAANUTEY PN
nmw e}




Variety of regularizers

Hand-crafted: y=Ax

Sparsity is promoted by £4 norm (convex) and by
¢, normfor p € [0, 1) (non-convex)

argminloss(A(x),y) + [Ix]|,

Data-driven:
Dictionary Learning (convex)

» Learn A € R¥%P such that x ~ Az,
where zis sparse

Generative models (non-convex)

» Neural network based
regularization

AT = [IXlags.,) R*
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Main question considered in this work

Which regularizer should one choose?




Main question considered in this work

Which regularizer should one choose?

» Whatis the optimal regularizer to impose for a given data source?

» Convex versus nonconvex?



Set-up and assumptions

» Let Pbe a probability distribution on RY modeling a data source
» Define optimal regularizer f from a family F as a solution to:

argmin Ep[f(x)]
fer

» Conditionsonf € F:

» Positively homogenous: f(ax) = af(x),a > 0
» f > 0and continuous



Set-up and assumptions

» Let P be a probability distribution on R? modeling a data source
» Define optimal regularizer f from a family F as a solution to:

argmin Ep[f(x)]
fer

» Conditionsonf € F:

» Positively homogenous: f(ax) = af(x),a > 0

» f > 0and continuous

feF < f=|-|kistheMinkowski functional of a star body K
Rd

Minkowski functional of a compact set C ¢ R \

t=|lxlle

IIXllc :=inf{t > 0 :x e tC}




Star bodies and radial functions

» The radial function of a compact set K ¢ R is defined by
pr(x) == sup{t > 0 : tx € K} = [|x||*

» Acompact set K € R%is astar body if p is continuous and it is starshaped
(with respect to the origin)

x€eK=10,x €K

» Star bodies are uniquely determined by their radial functions

AV
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Let P be a distribution on R? with density p and assume Ep[||x||¢,] < co.
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Unique optimal regularizer

Theorem (Leong, Soh, Chandrasekaran, O., 2022+)

Let P be a distribution on R? with density p and assume Ep[||x||¢,] < co. Suppose the
following function is continuous:

S 1/(d+1)
pp(u) = (/o r%(ru)dr) , ue st (1)

Then 3 a unique star body Lp with radial function pp, and
K o= VOld(Lp)il/de
is the unique solution to

argmin  Ep[||x||«]
Ke&9:voly(K)=1

» If Lpis convex, then the optimal regularizer is convex!
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(i) Densities induced by star bodies:
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Examples
(i) Densities induced by star bodies:

p(x) = P(lIXll) = Lp = cyl

(i) Gaussian Mixtures:
1 1
P = EN(O, 21) + EN(O, 22)

where ¥4 :=[1,0;0,¢] € R?*? and X, := [¢,0; 0, 1] € R?*?

e=0.1 e=0.01

2 2

1

2 2 L L L
2 -1 0 1 2 -2 -1 0 1

Figure: Plots of Lp for e = 0.1 (left) and e = 0.01 (right).



Proof

Goal: Characterize unigque solution to

argmin  Ep[||x||«]
KeS9:voly(K)=1

By change to polar coordinates,

Bellid = [ IleCome= [ Jullc [ eouaras

- / pe(U) =L pp(u)idu s = d7_ (K. Lp)
Sd—1



Proof

Goal: Characterize unigque solution to

argmin  Ep[||x||«]
KeS9:voly(K)=1

By change to polar coordinates,

Bellid = [ IleCome= [ Jullc [ eouaras

- / pe(U) =L pp(u)idu s = d7_ (K. Lp)
Sd—1

Theorem (Dual Mixed Volume Inequality (Lutwak, 1975))
For star bodies K and L,

V_1(K, L) > voly(K) ™ voly(L)™F,

and equality hold if and only if L and K are dilates, i.e. L = AK for some A > O



Summary and future work

» Dual Brunn-Minkowski theory provides tools for characterizing optimal
functional for imposing structure on a dataset for inverse problems

» Other results: convergence of empirical minimizers and generalization
error bounds




Summary and future work

» Dual Brunn-Minkowski theory provides tools for characterizing optimal
functional for imposing structure on a dataset for inverse problems

» Other results: convergence of empirical minimizers and generalization

N

m

» How do optimal regularizers perform in downstream tasks?

» How to efficiently compute the optimal regularizer?

>* @




Papers

“Minimax Rates for High-Dimensional Random Tessellation Forests”
Joint with Ngoc Mai Tran. https://arxiv.org/abs/2109.10541

“Optimal Convex and Nonconvex Regularizers for a Data Source”
Joint with Oscar Leong, Yong Sheng Soh, and Venkat Chandrasekaran. In
preparation.

Thank you!



