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The Brunn Minkowki inequality

Definition (Minkowski sum)

A BCR"
A+B:={a+blac Abe B},

A :={)a|a € A}
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The Brunn Minkowki inequality

Definition (Minkowski sum)

A BCR"
A+B:={a+blac Abec B},

A :={)a|a € A}

Theorem (Brunn-Minkowski)

A, B C R™ nonempty Borel sets, 0 < A < 1.

Vol,, (1 = A)A+ AB)Y/™ > (1 — A) - Vol,,(4)Y™ 4+ X - Vol,,(B)Y/".
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The Brunn Minkowski inequality - Riemannian setting

Definition (Riemannian Minkowski average)

(M, g) Riemannian Manifold, dim M =n, A, BC M,0<A<1,

[A: B]x :={~v(\) | v minimizing geodesic ,v(0) € A,~v(1) € B}.
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The Brunn Minkowski inequality - Riemannian setting

Definition (Riemannian Minkowski average)

(M, g) Riemannian Manifold, dimM =n, A, BC M,0< A< 1,
[A: B]x :={~v(\) | v minimizing geodesic ,v(0) € A,~v(1) € B}.

e.g. A =1/2: all midpoints of minimizing geodesics joining A, B.

Theorem (Cordero-Erausquin, McCann, Schmuckenschlaeger

'01, Sturm '06)

(M, g) complete Riemannian Manifold, Ricgy > 0,
A, B C M Borel, nonempty, 0 < A <1, =

Vol ([A : Bly)Y™ > (1 = X) - Voly (A)Y™ + X - Vol (B)Y/™.
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Brunn - Minkowski on the Sphere

\RY~g*

Wwl~e
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Brunn-Minkowski on the hyperbolic plane

p,q € H, d(p,q) = ¢, A:= Bi(p), B := Bi(q).

Area ([A: Bl )9) N
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Brunn-Minkowski on the hyperbolic plane

N
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geodesics

horocycles
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Horocycles

» Disc model: circles tangent to the boundary.

7/23



Horocycles

» Disc model: circles tangent to the boundary.

» Upper half plane model: circles tangent to the boundary,

horizontal lines.

7/23



Horocycles

» Disc model: circles tangent to the boundary.

» Upper half plane model: circles tangent to the boundary,

horizontal lines.

» Limits of circles passing through a fixed point, as their center
tends to infinity in some direction.

7/23



Horocycles

» Disc model: circles tangent to the boundary.

» Upper half plane model: circles tangent to the boundary,

horizontal lines.

» Limits of circles passing through a fixed point, as their center
tends to infinity in some direction.

» Curves of constant geodesic curvature 1.

7/23



Horocycles

» Disc model: circles tangent to the boundary.

» Upper half plane model: circles tangent to the boundary,

horizontal lines.

» Limits of circles passing through a fixed point, as their center
tends to infinity in some direction.

» Curves of constant geodesic curvature 1.

» Every two points in H are joined by two horocycle arcs.

7/23



Horocycles

» Disc model: circles tangent to the boundary.

» Upper half plane model: circles tangent to the boundary,

horizontal lines.

» Limits of circles passing through a fixed point, as their center

tends to infinity in some direction.
» Curves of constant geodesic curvature 1.
» Every two points in H are joined by two horocycle arcs.

» Through every tangent vector there are two horocycle arcs.
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Horocycles
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Oriented horocycles

We fix an orientation of H and consider only constant-speed

oriented horocycles.
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Oriented horocycles

We fix an orientation of H and consider only constant-speed

oriented horocycles.

» Disc model: counterclockwise constant-speed circles tangent

to the boundary.

» Upper half plane model: counterclockwise constant-speed
circles tangent to the boundary, constant-speed horizontal

lines in the positive direction.

» Through every two points in H there exists a unique

unit-speed oriented horocycle.

» Through every tangent vector there exists a unique

constant-speed oriented horocycle.
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Oriented horocycles
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Horocyclic Brunn-Minkowski

A BCH 0<\A<1

[A: B% := {y()\) | v horocycle, v(0) € A,~(1) € B}.
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Horocyclic Brunn-Minkowski

A BCH,0<\<1

[A: B]% := {y()\) | v horocycle,v(0) € A,~(1) € B}.

Theorem (A., Klartag '22)

A, B C H Borel, nonempty, 0 < A < 1,
Area([A : BI)Y2 > (1 — X) - Area(A)'/? 4+ X - Area(B)'/2.

When A, B are concentric discs, or if A or B is a singleton,
equality holds.
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Horocyclic Borell-Brascamp-Lieb inquality
Theorem (A., Klartag '22)

Let f,g,h: H — [0,00) be measurable, with f and g integrable
with a non-zero integral. Let 0 < A <1 and p € [-1/2,+0o0].
Assume that for any x,y € H with f(x)g(y) > 0,

P(lo: ) = My(f(@),9(y);N),  where

(1 = X)aP + XbP)Y/P p ¢ {0, £o00}

M,(a,b; \) al p=0

a,b;\) =

P max{a, b} p=+00
min{a, b} P = —00.

Then

/hZMp/(1+2p) (/ f,/g;)\)-
H H H
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Path spaces

Let M be a smooth n-dimensional manifold. A path space on M
is a collection I' of smooth parametrized curves, such that
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Path spaces

Let M be a smooth n-dimensional manifold. A path space on M

is a collection I' of smooth parametrized curves, such that

» Each v € I is defined on an open interval I, C R.

» For every nonzero v € T'M there is a unique curve v, € I’
with 4, (0) = v. The curve ~, and the endpoints of I,

depend smoothly on v.

> If v €T then vto’)‘ € I' for every to € R and A > 0, where
YO () = v (At — t0)) and L = A"1L, + to.

> For every p,q € M there exists at least one path v € I such
that v(t) = p and v(¢') = ¢ for some ¢t < t'.
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Path spaces

Let M be a smooth n-dimensional manifold. A path space on M

is a collection I' of smooth parametrized curves, such that

» Each v € I is defined on an open interval I, C R.

» For every nonzero v € T'M there is a unique curve v, € I’
with 4, (0) = v. The curve ~, and the endpoints of I,

depend smoothly on v.

> If v €T then vto’)‘ € I' for every to € R and A > 0, where
YO () = v (At — t0)) and L = A"1L, + to.

> For every p,q € M there exists at least one path v € I such
that v(t) = p and v(¢') = ¢ for some ¢t < t'.

» [ is projectively Finsler - metrizable.
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Minkowski averaging with respect to a path space

I' Path space on M,
A BCM,0<A<1

[A: BI} := {7(\) | ¥ € T,7(0) € 4,~(1) € B}.
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Minkowski averaging with respect to a path space

I' Path space on M,
A BCM,0<A<1

[A: BI} := {7(\) | ¥ € T,7(0) € 4,~(1) € B}.

Problem

Suppose that M is endowed with a measure 1 with a smooth
density. Under what conditions on T', ;n and N does the above
operation satisfy the Brunn-Minkowski inequality

p([A: BIOYY = (1= A) - p(AVN + - w(B)VY

for every A, B Borel, nonempty and every 0 < A < 17
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Theorem (A. '22+)

Let (M, g) be a Riemannian surface (dim M = 2) and let T" be a

path space on M consisting of constant-speed curves.
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Theorem (A. '22+)

Let (M, g) be a Riemannian surface (dim M = 2) and let T" be a

path space on M consisting of constant-speed curves.

» Suppose that for every A, B C U Borel, non empty,

1/2

(x) Vol ([A: BJY)"" > (1—\)-Voly(4)/2+X-Voly(B)'/2.

Then there exists a function x : M — R such that I is the set
of solutions to the equation Vs~ = w(¥) 5|7+, and

K+ K% — |Vk|, > 0.
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Theorem (A. '22+)
Let (M, g) be a Riemannian surface (dim M = 2) and let T" be a
path space on M consisting of constant-speed curves.

» Suppose that for every A, B C U Borel, non empty,

1/2

(x) Vol ([A: BJY)"" > (1—\)-Voly(4)/2+X-Voly(B)'/2.

Then there exists a function x : M — R such that I is the set
of solutions to the equation Vs~ = w(¥) 5|7+, and

K+ K% — |Vk|, > 0.

» Suppose that ' has the form above. Then (%) holds locally:
for every p € M there exists a neighborhood U > p such that
(%) holds for every A, B C U Borel, nonempty.
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Theorem (A. '22+)

Let (M, g) be a Riemannian surface (dim M = 2), let I be a path
space on M consisting of constant-speed curves, and let

dp = e*VdVolg be a smooth density on M.
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Theorem (A. '22+)

Let (M, g) be a Riemannian surface (dim M = 2), let I be a path
space on M consisting of constant-speed curves, and let

dp = e*VdVolg be a smooth density on M.

» Suppose that for some N > 2, and for every A, B C M Borel,
nonempty,

®) w(A: BN =@ =N w YN + X w(B)N.

Then there exists a function k : M — R such that I is the set
of solutions to the equation V.7 = r(%)|5|5+, and

(K +k2)g+HessV — (N —2)"LdV@dV +¢" /gxd(rke™) > 0
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Theorem (A. '22+)

Let (M, g) be a Riemannian surface (dim M = 2), let I be a path
space on M consisting of constant-speed curves, and let

dp = e*VdVolg be a smooth density on M.
» Suppose that for some N > 2, and for every A, B C M Borel,

nonempty,
®) w(A: BN =@ =N w YN + X w(B)N.

Then there exists a function k : M — R such that I is the set
of solutions to the equation V.7 = r(%)|5|5+, and

(K +k2)g+HessV — (N —2)"LdV@dV +¢" /gxd(rke™) > 0

» Suppose that ' has the form above. Then (%) holds locally.
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Needle decomposition
Strategy: localization (“needle decomposition”) - Klartag '14,

Payne - Weinberger '60 , Gromov - Milman '87, Lovasz -
Simonovitz '93.
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Needle decomposition

Strategy: localization (“needle decomposition”) - Klartag '14,
Payne - Weinberger '60 , Gromov - Milman '87, Lovasz -
Simonovitz '93.

Fix A, B € H Borel, nonempty. Suppose we could find a

disintegration of measure:
Area(S) = / iy (S)dv(S) for all S C H Borel,
A

where
1. A is a collection of disjoint horocycle arcs,
2. Each pi4 is a measure supported on the curve 7 (“needle”),

3. v is a measure on A.
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Needle decomposition

Area([A : B]})f) = /Aﬂ'y([A : B]];)dV(V)
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Needle decomposition

Area([A : B]})f) = AMV([A : B]]i)dV(V)

2 ((1 —A) (A2 4+ UW(B)1/2>2 dv(7)
A
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Needle decomposition

Area([A : B]})f) = /AMV([A : B]]/{)dVW)

é/A (1= 2y ()2 42 uv(B)1/2>2 dv(v)

_ im(B)\ 7\
= [ ((1—A>+A- (=3) ) v ()
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Needle decomposition

py([A = BIR)dv(y)

=~

Area([A : B]}) =

2 ((1 —A) (A2 4+ /w(19)1/2>2 dv(7)

1/2\ 2
- wm(u—mm-(ﬁ;g;) )dum

A
rea 1/2 ?
fo (4) ((1 x4 (o) ) av()

S~

=
=~
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Needle decomposition

Area([A : B ([

( A (B)2) ()
2
s ( o (448 o
2
ot (-2 (3205) ) o
= (¢

2
1—))-Area(A)2 + X Area(B )1/2) .

(AVAS
>\ >\>\

I~
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Needle decomposition

So we need:

1. A disintegration of measure:
Area(S) = / i (S)dv(S) for all S Borel
A

2. Mass balance:

ir(4) _ Area(A)
= for v - a.e. A.
10 (B) ~ Arca(B) orv-ae yE€E

3. Needlewise Brunn-Minkowski:

Hv([A : B]Ii)l/Z > (1-2) 'MW(A)1/2+)"M’Y(B)1/2 v € A.
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Finsler metrization

Theorem (CaffarelIi-FeIdman—McCann '02, Klartag '14, Ohta '15)

Steps 1 and 2 can be acheived in the case of geodesics.
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Finsler metrization

Theorem (CaffarelIi-FeIdman—McCann '02, Klartag '14, Ohta '15)

Steps 1 and 2 can be acheived in the case of geodesics.

Proposition (Crampin, Mestdag '13)

There exists a Finsler structure ® on H such that the collection of
oriented horocycles coincide with the geodesics of ® up to

orientation - preserving reparametrization.

Corollary

Steps 1 and 2 can be acheived for horocycles.

In general, not every path space can be projectively Finsler -
metrized. In dimension 2 this is possible locally.
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Needlewise Brunn-Minkowski

Lemma

Let F: [0,T] x (—e,e) — H be a locally Lipschitz map such that
det dF' # 0 a.e., and for a.e. every s € (—¢,¢), the curve

t — F(t,s) is a constant-speed oriented horocycle.
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Needlewise Brunn-Minkowski

Lemma

Let F:[0,T] x (—e,e) — H be a locally Lipschitz map such that
det dF' # 0 a.e., and for a.e. every s € (—¢,¢), the curve
t — F(t,s) is a constant-speed oriented horocycle. Then the map

t — det dF(t,s)

is affine-linear for almost every s € (—¢,¢). Here det is with
respect to the Euclidean area form on [0,T] x (—¢,¢) and the

hyperbolic area form on H.

Corollary

Each needle ji, is given by ji, = y4(m.) for some measure m.,

with an affine density on an interval I C R.
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Needlewise Brunn-Minkowski
Theorem (Borell '75)

Let m be a Borel measure on an interval I. Suppose that m has a
concave density with respect to the Lebesgue measure. Then m is
1/2-concave, i.e.

m((1 = A)A+AB)Y2 > (1 —X)-m(A)Y2 + X-m(B)"/?

for every A, B C I Borel, nonempty.
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Needlewise Brunn-Minkowski
Theorem (Borell '75)

Let m be a Borel measure on an interval I. Suppose that m has a
concave density with respect to the Lebesgue measure. Then m is
1/2-concave, i.e.

m((1 = A)A+AB)Y2 > (1 —X)-m(A)Y2 + X-m(B)"/?
for every A, B C I Borel, nonempty.

Corollary (up to orientation issues)

Forv-a.e. v € A,
py([A: BIDYZ = (1= A) - 1y (A)2 + Ay (B)2.
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Thank you!
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