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x| = /xZ+ ...+ x5

The Hilbert-Schmidt norm of a matrix A is ||A||ys = 4 /Zijal?j;

Singular values of A are the axi of the ellipsoid ABS, denoted
o1(A) > ... > on(A);

The operator norm ||A|| = supycgn—1 |Ax| = o1(A);
The smallest singular value o,(A) = inf, cgn—1 |Ax]|;

A random variable £ is anti-concentrated if
P(sup,cr|§—2z| < 1) < b€ [0,1).
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Notation / Preliminaries

Recall: there exists a Euclidean epsilon-net N
on the unit sphere of cardinality < @3/
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Preliminaries and history
Main question

Question: how likely is a random n x n matrix A to be invertible?

0
6'“U)<\$ .

A harder question: how likely is the smallest singular value
on(A) = inf,cgn—1]Ax| to be bigger than _?
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History

A'is an n x n Gaussian, with i.i.d. entries a;; ~ N(0,1)

1
on(A) ~ NG

Furthermore, for every € € (0,1),

P(O’() f)<C6

(Edelman, Szareck independently in 1990s)
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History

A is n X n matrix with i.i.d. Bernoulli £1 entries

Conjecture (Erdos) 1950s: P(on(A) =0) = Cn?.27"
(when a pair of columns or rows coincide, and rarely elsewhere)

@ Kolmos 60s: P(on(A)=0)=o0(1);

@ Khan, Kolmos, Szemeredi 1995: P(cn(A) =0) < 0.99";
@ Tao, Vu 2006, 2007: P(on(A) =0) <0.75";

Bourgain, Vu, Wood, 2010: P(on(A) =0) < \/57";

e Tikhomirov, 2019: P(on(A) =0) < (0.5+0(1))"! EOV?
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History

A random variable £ is sub-Gaussian if for all t > 0,

P(lg] > t) < e K.

Ais n X n, has entries aj;

Rudelson, Vershynin 2008:

P (an(A) < &) < Cete .

Note: this combines the behavior of Gaussian matrices and the Bernoulli 1
matrices.

A'is n X n, has entries aj; uniformly anti-concentrated,

Rebrova, Tikhomirov 2016:
gu "$yan

P (an(A) < &) < Cete .
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Remark

In fact, it is enough to assume for any p > 0,

n

1 n 1
> <E|Ae;|2p) Pk Y (IE|ATe,-|2P) ’ < Kn?.

i= i=

Note: in principle, all entries may have infinite second moment, but distribution
has to depend on n.
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A'is nx n, has independent UAC entries, IEIHAH%_,S < Kn?,

L, 2018+ ol iyt

Remark

In fact, it is enough to assume for any p > 0,

n

1 n 1
> <E|Ae;|2p) Pk Y (IE|ATe,-|2P) ’ < Kn?.

i= i=

Note: in principle, all entries may have infinite second moment, but distribution
has to depend on n.

v

Bai, Cook, Edelman, Gordon, Guedon, Huang, Koltchinckii, Latala, Litvak,
Lytova, Meckes, Meckes, Mendelson, Pajor, Paouris, Rebrova, Rudelson,
O’Rourke, Szarek, Tao, Tatarko, Tomczak-Jaegermann, Tikhomirov, Van
Handel, Vershynin, Vu, Yaskov, Yin, Youssef,...
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Results
The smallest singular value: unstructured square case

Theorem (L, Tikhomirov, Vershynin 2019+)

Let A be an nx n random matrix with

@ independent entries aj;

° BJ|Al[}s < Kn?

o ajj are UAC, that is P(sup,cg|aj—z| <1) < b€ (0,1)
Then for every € € (0,1),

Jn

where C and c are absolute constants which depend (polynomially) only on K
and b.

P (a’n(A) < 6) < Cet+e ",
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Litvak, Pajor, Rudelson, Tomczak-Jaegermann, 2005

N>n+ #gn, strong assumptions: P(on(A) < CivV/N) < e @V,

v

Rudelson, Vershynin, 2009

N > n, aj i.i.d. sub-Gaussian, Ea; =0, Ea,-zj = 1. Then for any € € (0,1),

P (U”(A) < 6(\/W— \/ﬁ)) < CleN_n+1 +e—C2N;

\
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Results

Arbitrary aspect ratio: history

Question: what if Ais an N x n random matrix with N > n?

Litvak, Pajor, Rudelson, Tomczak-Jaegermann, 2005

N>n+ #gn, strong assumptions: P(on(A) < CivV/N) < e @V,

Rudelson, Vershynin, 2009

N> n, ajj i.i.d. sub-Gaussian, Ea; =0, IEa,-zj = 1. Then for any € € (0,1),

P (a”(A) <e(vVN+1- \/E)) < GVt 4 e &N,

| \

Tao, Vu, 2010

Replaced sub-Gaussian with Eaijc.l <1, but N € [n,n+ G]

| A

Vershynin, 2011

Replaced sub-Gaussian with Ea;} < 0o but

P (on(A) < e(vVN+1—+/n)) <6(c) e00.
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Results
Arbitrary aspect ratio

Theorem (L. 2018+)

Let N> n>1 be integers. Let A be an N X n random matrix with
@ independent entries aj;
@ i.i.d. rows
e Ea; =0
° Ea,-zj =1

Then for every € > 0,
P (on(A) < e(vN+1—/n)) < (Celog1/e)N ™! eV,

where C and c are absolute constants which depend (polynomially) only on the
concentration function bounds.
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Results
Arbitrary aspect ratio

Theorem (L. 2018+)

Let N> n>1 be integers. Let A be an N X n random matrix with
@ independent entries aj;
@ i.i.d. rows
e Ea; =0
° Ea,-zj =1

Then for every € > 0,
P (on(A) < e(vN+1—/n)) < (Celog1/e)N ™! eV,

where C and c are absolute constants which depend (polynomially) only on the
concentration function bounds.

Remark: a more general result in fact follows...
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Results
Very tall case

Proposition 1 (L. 2018+) tall case with dependent columns

Suppose A is an N X n random matrix with independent rows, IEHAH%,S < KNn,
N > Cyn, and assume for every x € S"_l,

P(sup [(ATer,x) —y| <1) < b€ (0,1). (1)
yeR

Then

Eon(A) > cV/N.
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Results
Very tall case

Proposition 1 (L. 2018+) tall case with dependent columns

Suppose A is an N X n random matrix with independent rows, IEHAH%,S < KNn,
N > Cyn, and assume for every x € sn-1,

P(sup [(ATer,x) —y| <1) < b€ (0,1). (1)
yeR

Then
Eon(A) > cV/N.

Proposition 2 (L. 2018+) tall case with low moments

Fix p > 0. Suppose N > Cjn, Ais an N x n random matrix with independent
UAC entries. Suppose

n 1

> N
3 (E\Ae,-|2p) * < KnNe'r .

i=1

Then

P(on < CiVN) < e~ Cmin(p N,

/957 34



The net theorem

A naive attempt

Goal: P(on(A) <20) <.
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The net theorem

A naive attempt

Goal: P(on(A) <20) <.

Suppose we find a small finite set A/ C R” with
° H#N < &
o Vx €S" 13y e N |A(x —y)| < © with probability > 1— &.

y

P(on(A) <QO)=P ( inf |Ax| < Q?) <
xesn—1

P( injf\/\Ay| gz@) +&=P(EyeN: |Ax|<20)+ & <
S

- sup P(|Ay| <20) + &
yeEN

So if we know that for each y, P(|Ay| < 2Q0) < Q;i we are done!
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The net theorem
The net result

Theorem (L. 2018+) — Lite version

There exists a deterministic net A" C 3 B3\ 3 BY of cardinality 1000” such that
for any integer N and any N X n random matrix A with independent columns,
with probability at least 1 — e 2", for every x € S"~! there exists y € NV such

that
|A(x — y|< \/]EIIAII%IS

/000”/,,% /s

.WHP/

Al < smalll

7
e

coke

(
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The net theorem
Previously known cases

Folklore: A has sub-gaussian independent entries a;;, Eajj = 0, ]Ea,?j = const.

@ Let N be the standard e-net, i.e. such that
S"1 C Uxen (x+€B5),
n
and #N <(1>

@ Then we can estimate |A(x —y)| < ||Al]le < CHAHHS“ !

@ Recall, for any matrix A: WHAHHS <|A|| < ||Al|Hs-

@ But specifically for sub-gaussian mean zero variance 1 case,

(|A|> \29 E||AIl, )<e—5". (1)

e Without strong assumptions, (1) is not true.
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The net theorem
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The net theorem
Previously known cases

Rebrova, Tikhomirov (2016) proved this Theorem assuming i.i.d. entries ajj,
with Eaj; = 0, Ea,?j = const, and N = n. ’

Guedon, Litvak, Tatarko (2018) extended the result of Rebrova and Tikhomirov
in the case of arbitrary n, N, and replaced i.i.d. entries with i.i.d. columns. J

@ Advantage: the Theorem only assumes independence of columns, and no
other structural assumptions!

@ In particular, allowing dependent columns is crucial for the proof of the
arbitrary aspect ratio result.
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Proof of the net theorem

Proof of the net theorem — step 1: comparison via Hilbert-Schmidt

Random rounding (Alon, Klartag 2017; Klartag, L. 2018; Tikhomirov 2018;...)
Vempa by | Ko vrew, SRIn vega .
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Proof of the net theorem

Proof of the net theorem — step 1: comparison via Hilbert-Schmidt

Random rounding (Alon, Klartag 2017; Klartag, L. 2018; Tikhomirov 2018;...)
Vompakh, Kanwon, Srivivasan, ..

\\("\

=
2

Definition

For £ € S"~1, write each & = %(k,-—i—p,-) for ki € Z and p; € [0,1). Consider a
random vector 7° € (¢//n)Z":

77-5 _ ﬁkh with probability 1 — p;
: ﬁ(ki-i-l), with probability p;.
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Proof — step 1: comparison via Hilbert-Schmidt

Random rounding (Alon, Klartag 2017; Klartag, L. 2018; Tikhomirov 2018;...)

Ve pa b y Kaw vaw, Swrin /Vay‘q Wy

2"

Definition

For ¢ € S"~1, write each &y = ﬁ(k,drp,-) for ki € Z and p; € [0,1). Consider a

random vector 7° € (e/+/n)Z":

775 _ ﬁk,-, with probability 1 — p;
b ﬁ(kﬁLl), with probability p;. 15%,

Galyna V. Livshyts An efficient net and singular value estimates



Proof — step 1: comparison via Hilbert-Schmidt

Random rounding ( Alon Kélrt?% 2017, Klartag L. 2018; Tikhomirov 2018;...)
Vempa b avKay, SRin (VOG-

N

Definition
For ¢ € S"~1, write each &y = ﬁ(k,drp,-) for ki € Z and p; € [0,1). Consider a
random vector 7° € (e/+/n)Z":

775 _ ﬁk,-, with probability 1 — p;
b ﬁ(kﬁLl), with probability p;. 1%

Galyna V. Livshyts An efficient net and singular value estimates



Proof — step 1: comparison via Hilbert-Schmidt

Random rounding (Alon, Klartag 2017; Klartag, L. 2018; Tikhomirov 2018;...)

Veompa ba ) Ko vraw, SRIn vaga

A/)m_

/ ;

NG

5 R

Definition

For ¢ € S"~1, write each & = —=(ki+pj) for ki € Z and p; € [0,1). Consider a

v
random vector 7° € (e/+/n)Z":

77,5 _ ﬁk,-, with probability 1 — p;
b ﬁ(kﬁLl), with probability p;. 175

Galyna V. Livshyts An efficient net and singular value estimates



Proof — step 1: comparison via Hilbert-Schmidt

o o
- ' N Hverices

/ \ < [200,"
\ (%)

16733
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Proof — step 1: comparison via Hilbert-Schmidt

./ /.. ' N Hverrices
/ \ < (200,
SQ\VJ’Q e 7

o Therefore, there is a set N such that for all £ € S"™1, we have n¢ € N,
and #N < (100)

Galyna V. Livshyts An efficient net and singular value estimates
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Proof of the net theorem
Proof — step 1: comparison via Hilbert-Schmidt

°Sn1C (100/)(}9+L8n). 5

VP oo R
|, N R verrices
/ \ £ (Eﬂl)”
o%g\vﬁfJl L0} <
K)\/cx‘/v” . |
N !

o Therefore, there is a set A such that for all £ € S"~!, we have 1 € \,
and #N < (100)

o We have [|€ — 7|00 < 5 and En® =¢;

e Hence, using the fact that E(n — &) =0, we get:

2|0|2

E|(n* —¢,0)° < ()
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Proof of the net theorem

Proof — step 1: comparison via Hilbert-Schmidt

Lemma 1 (comparison via Hilbert-Schmidt)
There exists a collection of points F with #F < (%)”71 such that for any
(deterministic) matrix A:R" — RN, for every £ € S"~! there exists an 1 € F

satisfying
€
|A(n =€)l < —=IlAllns-
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Proof of the net theorem
Proof — step 1: comparison via Hilbert-Schmidt

Lemma 1 (comparison via Hilbert-Schmidt)

There exists a collection of points F with #F < (%)”71 such that for any
(deterministic) matrix A:R" — RN, for every £ € S"~! there exists an 1 € F
satisfying
€
|A( =)l < —=IIAllns-

Proof.

Recall: |Ax|? = Z,{V:I(ATe;,x)z, where AT e; are the rows of A;

2 AT /.2
By (V), Ey|(n —¢,ATe)2 < cA =l

@ Summing up, we get

N 2
By A — )2 =By 3 (AT e, — )2 < (c’&HAHHS) ;
i=1

If P(find a red ball in a box) > 0.1 then there exists a red ball in a box.

O
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Proof of the net theorem
Proof — step 2: parallelepipeds

2 2
P(||A]lfys > 10E||A|[s) < 0.1.

n

Thus Lemma 1 implies the Theorem with probability 0.9 rather than 1 — e 5.
Not good:(
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Proof — step 2: parallelepipeds

2 2
P(|Allhs = 10E[|Al[hs) < 0.1.

Thus Lemma 1 implies the Theorem with probability 0.9 rather than 1 — e 5",
Not good:(

Idea of Rebrova and Tikhomirov, 2016: cover with parallelepipeds and not just
cubes! |

18/33

Galyna V. Livshyts

An efficient net and singular value estimates



Proof of the net theorem
Proof — step 2: parallelepipeds

Admissible set of parallelepipeds

@ For a=(ai,...,an) € R" with a; > 0, we fix the parallelepiped

5
"’ Po = {x €R": |xi| < ai}.

Al

>
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<y
A" Po={x€R": |x;| < aj}.

e

ey

@ For k> 1, denote Q, = {a eR": a; €[0,1], H?:l aj > /-c_"}.
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‘ Po = {x €R": |xi| < a;}.
4
p<L
@ For k> 1, denote Q, = {a eR": a; €[0,1], H?:l aj > /-c_"}.
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Proof of the net theorem
Proof — step 2: parallelepipeds

Admissible set of parallelepipeds

@ For a=(ai,...,an) € R" with a; > 0, we fix the parallelepiped

<
” Po ={x€R": |xi| < aj}.
P
7<L
@ For k> 1, denote Q, = {a eR": a; €[0,1], H?:l aj > /-c_"}.

o Note: if o € Qx then Py > (0.5/{)_" — hence the covering is not too big.

y

Lemma 2 (comparison via parallelepipeds)

Pick any a € Q. Let A be any N X n matrix. There exists a net F, with
n
#Fa < (%) such that for every & € S"! there exists an 1 € Fo satisfying

[A(n—9)|

IN

Sl
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Proof of the net theorem
Proof — step 3: B, and nets on nets

Key definition: for any matrix A

Bi(A) = min ajf |Ae,\
a;€[0,1], H Z
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Proof of the net theorem
Proof — step 3: B, and nets on nets

Key definition: for any matrix A

Bi(A) = min a,?|Ae,-\2.
a;€[0,1], H Z;

MinlMy M)
wmvs oF F
oGy N -éalLS’ .

Corollary of Lemma 2

Let A be any N x n matrix. There exists a small enough net F such that for
every £ € S"! there exists an n € F satisfying

|A(n— €)|<7 By(A).
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Proof of the net theorem
Proof — step 3: B, and nets on nets

Key definition: for any matrix A

Bk (A) = min aj|Aej
(A) - Z |Ae 2.
MinlMy V)
s oF F
Gy %alls.

Corollary of Lemma 2

Let A be any N x n matrix. There exists a small enough net F such that for
every £ € S"! there exists an n € F satisfying

|A(n— €)|<7 By(A).

But the net depends on the matrix! Not good:(
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Way out: discretize the admissible set Q.

Jle=f: <elopd, 1< 2ve™]

21733

Galyna V. Livshyts An efficient net and singular value estimates



Proof — step 3: B, and nets on nets

Way out: discretize the admissible set Q.

|

T3, = ﬁ\ :aizo)?fs&f

2733

Galyna V. Livshyts An efficient net and singular value estimates



Proof — step 3: B, and nets on nets

Way out: discretize the admissible set €.

T

JZthKf <elot] Lﬁ%ﬂfj T3¢, fo\ a>o i@ <&§

( negd o Few cmus
° ver the fqéé,/)
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Proof — step 3: B, and nets on nets

Way out: discretize the admissible set Q.

AY

Jl=x i <elopd, <21 TS = fa: 030 Zast]
( negd o Few cumes

N~

o Levemr the /468_/)

The “nets on nets” Lemma

There exists a collection F C Q,.» of cardinality 30" such that for any « € Q4
there exists a 8 € F so that for all i =1,...,n we have oz,2 > B,-z.
In particular, for any N X n matrix A, we have

n
Bi(A) > mi 21 Aei |2
o )_gg;;/%l il

) 21/33
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Proof of the net theorem

A net for deterministic matrices: combining steps 1-3.

Theorem about deterministic matrices

There exists a deterministic net A/ of cardinality 1000” such that for any
integer N and any N X n deterministic matrix A, for every x € S™! there exists

y €N such that
100
[A(x —y)| < ﬁ\/ Bio(A)-
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Proof of the net theorem

A net for deterministic matrices: combining steps 1-3.

Theorem about deterministic matrices

There exists a deterministic net A/ of cardinality 1000” such that for any
integer N and any N X n deterministic matrix A, for every x € S™! there exists

y €N such that
100
[A(x —y)| < ﬁ\/ Bio(A)-

This reduces the proof of the Theorem to estimating the large deviation of
B (A) when A is a random matrix coming from an appropriate model.
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Proof of the net theorem
Step 4: Large deviation of Bj.

Let A be a random matrix with independent columns. Pick any x > 1. Then

P (Bx(4) 2 108]IAl%s ) < (CR) ™"
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Proof of the net theorem
Step 4: Large deviation of Bj.

Lemma

Let A be a random matrix with independent columns. Pick any x > 1. Then

p (BK(A) > 10E|\A|\%,5) < (Cr)=2".

o Denote Y; = |Aej|. If Bx(A) >10) 7 EY?, then for any collection
a1,...,an € [0,1], either

n n
> afv?>10) EYZ
i=1 i=1

n
Ha; <k "
i=1
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Proof of the net theorem
Step 4: Large deviation of Bj.

Lemma

Let A be a random matrix with independent columns. Pick any x > 1. Then

P (Bx(4) 2 108]IAl%s ) < (CR) ™"

o Denote Y; = |Aej|. If Bx(A) >10) 7 EY?, then for any collection
a1,...,an € [0,1], either

n n
> afv?>10) EYZ
i=1 i=1

n
Ha; <k "
i=1

. . . . EY?
@ Consider a collection of random variables oe,? = min (1, v ) .
i
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Proof of the net theorem
Step 4: Large deviation of Bj.

o We estimate

P (Bx(4) 2 108||Al}s ) <

n
. EY?Y 2 2
P> min(1, x| Y7 > 10E|Allis | +

n
_ EY? _
P (Hmm (1, Y.2, ) <K 2") =: P1+P;.
i=1 i
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Proof of the net theorem
Step 4: Large deviation of Bj.

o We estimate

P (Bx(4) > 108]|A|1%s ) <

n
] EY?Y 2 2
P D min (1,775 ) Y7 > 10E||All5s | +

1
n
(. EY? _
P (Hmm (1, Y.2, ) < 2n> — P +P,.
i=1 i

)—2n.

(] P1 =0.
@ By Markov's inequality, P> < (Ck
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Proof of the net theorem
Summary: the non-lite version

Theorem (NON-lite)

Fix n € IN. Consider any S C R". Pick any v € (1,+/n), € € (0, ﬁ) k>1,
p>0ands>0.
There exists a (deterministic) net ' C S+ 4eyBj5, with

Con

N(S,eB3)-(C17)™", if logr < N3,
N(S,eB3) - (Crlogk)", if logk > ;%50%,

i<

such that for every N € IN and every random N X n matrix A with independent
columns, with probability at least

n
1—r 2P (1+i) ,

for every x € S there exists y € A such that

Here C, Cy, Gy, C3 are absolute constants.




Proof of the net theorem
Summary: the non-lite version

Theorem (NON-lite)

Fix n € IN. Consider any S C R". Pick any v € (1,+/n), € € (0, ﬁ) k>1,
p>0ands>0.
There exists a (deterministic) net ' C S+ 4eyBj5, with

G
4N < d N(S:€B3)-(C9) 7%, if logr < ez,
~ | N(S,eBY) - (Crlogk)", if logr > = I°g2

such that for every N € IN and every random N X n matrix A with independent
columns, with probability at least

n
1—r 2P (1+i) ,

for every x € S there exists y € A such that

€vV/s

A(x=y)I < G NG

Here C, Cy, Gy, C3 are absolute constants.




Sketch of the proof of the square case
The Rudelson-Vershynin scheme: idea 1

Point-wise small ball for |Ax|

Fix x € S"L. If ajj are independent and UAC, there exist constants C; and G
such that P(JAx| < C1v/n) < e~ .
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Applying the net argument
o Let S be a subset of S" L.

o Let A/ be a net on S such that w.p. at least 1 — e ™", for all x € S there
is y € N so that

a VEIAIZs ¢
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Ayl < 5= < v

o P(infies|Ax| < §/n) < P (infren |Ax| < C1v/n) < #N e @
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Sketch of the proof of the square case
The Rudelson-Vershynin scheme: idea 1

Point-wise small ball for |Ax|

Fix x € S"L. If ajj are independent and UAC, there exist constants C; and G
such that P(JAx| < C1v/n) < e~ .

Applying the net argument
o Let S be a subset of S" L.

o Let A/ be a net on S such that w.p. at least 1 — e ™", for all x € S there
is y € N so that

(G, EHAH%-/S G
— < =X B g = .
A=yl < 5= =H < SV

o P (infyes|Ax| < §v/n) < P (infeen |Ax| < Civ/n) < #N - @",
o If $=5""1 then A = (100/C;)", and possibly #N >> "

\
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Sketch of the proof of the square case
The Rudelson-Vershynin scheme: idea 1

Point-wise small ball for |Ax|

Fix x € S"L. If ajj are independent and UAC, there exist constants C; and G
such that P(JAx| < C1v/n) < e~ .

Applying the net argument
o Let S be a subset of S" L.

o Let A/ be a net on S such that w.p. at least 1 — e ™", for all x € S there
is y € N so that

a VEIAIZs ¢
= L =2 — Iy L —= .
Ayl < 5= < v

P (infxes|Ax| < §/n) < P (infen |Ax| < Civ/n) < #N e~ O,
o If $=5""1 then A = (100/C;)", and possibly #N >> "
@ But for some small set S we could get #N < =L
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Sketch of the proof of the square case
The Rudelson-Vershynin scheme: idea 2

A distance estimate

o |Ax| = sup,ecgn-1{Ax,u) =sup,cgn-1 1, xi{Aej, u)
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@ Let u =11 be the (random) normal vector to Aey, ..., Aen.

o Note that (Ae;,v1) = dist(Ae1, H1), where Hy = span{Aey, ..., Aen}.
Thus |Ax| > |x;| - dist(Ae;, H;) for every i=1,...,n.

@ Suppose T C S"! is the set of x so that 99% of its coordinates are > .

@ Then, by the counting,

P < infT|Ax| < e,u) < P(#{i : dist(Aej, H;) < e} >0.99n).
X€
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Sketch of the proof of the square case
The Rudelson-Vershynin scheme: idea 2

A distance estimate

o |Ax| = sup,ecgn-1{Ax,u) =sup,cgn-1 1, xi{Aej, u)

@ Let u =11 be the (random) normal vector to Aey, ..., Aen.

o Note that (Ae;,v1) = dist(Ae1, H1), where Hy = span{Aey, ..., Aen}.
Thus |Ax| > |x;| - dist(Ae;, H;) for every i=1,...,n.

@ Suppose T C S"! is the set of x so that 99% of its coordinates are > .

@ Then, by the counting,

P < infT|Ax| < e,u) < P(#{i : dist(Aej, H;) < e} >0.99n).
X€

Conclusion: invertibility via distance estimate

Let T S"~! be such a set of x that for 99% of coordinates, |x;| > 1015'

n

. € C .

P ()(Igf;_|AX| < \/E) < w E 1 P (dist(Aej, H;) < €).
=
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Sketch of the proof of the square case

The Rudelson-Vershynin scheme: combining idea 1 and idea 2

Decomposition of the sphere

gl = Comps, , U Incomps ‘-r (
where
Comps , = {x€S" " {i: |x;|2\%}§6n};q(“’"“/” ,
Incomps , = {x € "1 : {i: |xi| > L1 > sn). —
n
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Decomposition of the sphere
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Sketch of the proof of the square case

The Rudelson-Vershynin scheme: combining idea 1 and idea 2

Decomposition of the sphere

gl = Comps, , U Incomps 5, _—
(nwnf
where
Comps,, = {x€S" " : {i: |x] > \%} < 6n};_,7([°”/° ’
Incomps , = {x € "1 : {i: |xi| > %}zén}. -

@ The set Comp; , has small entropy and one may apply the net argument;

@ The set Incomps , can be handled by the distance estimate, provided that
we can prove the small ball estimate for dist(Ae;, H;).
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The distance theorem
The distance theorem

Theorem about distances (L, Tikhomirov, Vershynin, 2019+ )

Let A have independent UAC entries and E||A||2,s < Kn?. Denote
Hj =span{Ae;: i #j,i=1,...,n};

Take any j < n such that IE|Aej|2 < rn®. Then

P (dist(Aej,Hj) < 5) < Ce+2e ", e>0.

ik

— =

29/ 33



The distance theorem

Sketch of the proof of the distance theorem

Esseen’s Lemma
Given a variable £ with the characteristic function ¢(-) = Eexp(27i€-),
1
s
+(3)

P(l¢l < t) < C/
—il

ds, t>0,

where C > 0 is an absolute constant.
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The distance theorem

Sketch of the proof of the distance theorem

Given a variable £ with the characteristic function ¢(-) = Eexp(27i€-),

ra<oze /|0

where C > 0 is an absolute constant.

ds, t>0,

RLCD - definition

| A

For a random vector X in R”, a (deterministic) vector v in R", and parameters
L>0, ue(0,1), define

RLCDifu(v) = inf{H > 0: Edist?(0v+X,Z") < min(ul6v|?, L2)} .
Here by x we denote the Schur product

vk X = (v X1,...,vaXn).

N
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The distance theorem

Sketch of the proof of the distance theorem

Esseen’'s Lemma

Given a variable & with the characteristic function ¢(-) = Eexp(27i¢-),

ra<oze /|0

where C > 0 is an absolute constant.

ds, t>0,

RLCD - definition

For a random vector X in R”, a (deterministic) vector v in R", and parameters
L>0, ue(0,1), define

RLCDifu(v) = inf{H > 0: Edist?(0v+X,Z") < min(ul6v|?, L2)} .
Here by x we denote the Schur product

vk X = (v X1,...,vaXn).

Note: Rudelson-Vershynin previously defined LCD, a parameter which worked
well to study the i.i.d. case.
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The distance theorem

Sketch of the proof of the distance theorem

Geometrical meaning of RLCD

RLCDX(V) is roughly how much the X-associated lattice has to be scaled
down to get close to v.
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The distance theorem

Sketch of the proof of the distance theorem

Geometrical meaning of RLCD

RLCDX(V) is roughly how much the X-associated lattice has to be scaled
down to get close to v.

Anticoncentration via RLCD

Let X =(Xi,...,Xn) be a random vector with independent coordinates
satisfying max; P(sup,cg | Xi —z| < 1) < b for some b€ (0,1). Let g >0, L>0
and v € (0,1). Then for any vector v € R” with |v| > ¢ and any £ > 0, we have

C

P((X,v) <&) < Ce+ Cexp(—cL®)+ ————.
((X,v) <e) < Ce+ Cexp(—c )+RLCDi<u(v)

Here C > 0,¢ > 0 may only depend on b, ¢, u.

In words

| A

If RLCD of a vector v is large, then the scalar product (X, v) has great
anti-concentration properties!

A\
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The distance theorem

Sketch of the proof of the distance theorem

o Let v be the random normal, orthogonal to columns Aey, ..., Aen.
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Sketch

The distance theorem

of the proof of the distance theorem

Let v be the random normal, orthogonal to columns Aey, ..., Aen.
Goal: RLCD(v) = LARGE.

Let M = [Aey, ..., Aes] |, then Mu = 0 (since it is orthogonal to all the
rows of M).

Consider a net A (from the net theorem) on S"~! with respect to M.
Let Spog = {y € S"~1: RLCD(y) = small but not too small} (a level set)

P(v € Spag) = P(_inf [Mx| =0) < #F - P(IMx| < ev/n),
X € Spad

where F C N which forms a net on Sp,q.

Since on Sp.q RLCD is not too bad, P(|Mx| < ev/n) is small
Most of the points on a lattice have large RLCD!

#F < e~ 4N, since RLCD is stable

Combining these bounds allows to iterate on the level sets and to obtain
the distance theorem.
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The distance theorem

Thanks for your attention!
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