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Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

Notation

Rn – euclidean n-dimensional space with standard basis e1, ...,en;
B

n

2 – euclidean unit ball in Rn;
Sn≠1 – unit sphere in Rn;
|x | =


x2

1 + ... + x2
n ;

The Hilbert-Schmidt norm of a matrix A is ||A||HS =
Òq

i,j a2
ij
;

Singular values of A are the axi of the ellipsoid AB
n

2 , denoted
‡1(A) Ø ... Ø ‡n(A);
The operator norm ||A|| = supxœSn≠1 |Ax | = ‡1(A);
The smallest singular value ‡n(A) = infxœSn≠1 |Ax |;
A random variable › is anti-concentrated if
P(supzœR |› ≠ z| < 1) < b œ [0,1).
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Recall: there exists a Euclidean epsilon-net N 
on the unit sphere of cardinality < (3/  ) .
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Main question

Question: how likely is a random n ◊ n matrix A to be invertible?

A harder question: how likely is the smallest singular value
‡n(A) = infxœSn≠1 |Ax | to be bigger than ?
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History

A is an n ◊ n Gaussian, with i.i.d. entries aij ≥ N(0,1)

‡n(A) ¥ 1Ô
n

.

Furthermore, for every ‘ œ (0,1),

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘.

(Edelman, Szareck independently in 1990s)

4/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

History

A is an n ◊ n Gaussian, with i.i.d. entries aij ≥ N(0,1)

‡n(A) ¥ 1Ô
n

.

Furthermore, for every ‘ œ (0,1),

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘.

(Edelman, Szareck independently in 1990s)

4/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

History

A is an n ◊ n Gaussian, with i.i.d. entries aij ≥ N(0,1)

‡n(A) ¥ 1Ô
n

.

Furthermore, for every ‘ œ (0,1),

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘.

(Edelman, Szareck independently in 1990s)

4/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

History

A is n ◊ n matrix with i.i.d. Bernoulli ±1 entries

Conjecture (Erdos) 1950s: P(‡n(A) = 0) = Cn
2 · 2≠n

(when a pair of columns or rows coincide, and rarely elsewhere)
Kolmos 60s: P(‡n(A) = 0) = o(1);
Khan, Kolmos, Szemeredi 1995: P(‡n(A) = 0) Æ 0.99n;
Tao, Vu 2006, 2007: P(‡n(A) = 0) Æ 0.75n;

Bourgain, Vu, Wood, 2010: P(‡n(A) = 0) Æ
Ô

2≠n;
Tikhomirov, 2019: P(‡n(A) = 0) Æ (0.5 + o(1))n!
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History

A random variable › is sub-Gaussian if for all t > 0,

P(|›| Ø t) Æ e
≠Kt

2
.

A is n ◊ n, has entries aij i.i.d. sub-Gaussian, Eaij = 0, Ea
2
ij = 1

Rudelson, Vershynin 2008:

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘ + e

≠cn.

Note: this combines the behavior of Gaussian matrices and the Bernoulli ±1
matrices.

A is n ◊ n, has entries aij uniformly anti-concentrated, i.i.d., Eaij = 0, Ea
2
ij = 1

Rebrova, Tikhomirov 2016:

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘ + e

≠cn.
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History

A is n ◊ n, has independent UAC entries, E||A||2
HS

Æ Kn
2, i.i.d. rows

L, 2018+

P

3
‡n(A) Æ ‘Ô

n

4
Æ C‘ + e

≠cn.

Remark
In fact, it is enough to assume for any p > 0,

nÿ

i=1

1
E|Aei |2p

2 1
p

Æ Kn
2;

nÿ

i=1

1
E|AT

ei |2p

2 1
p

Æ Kn
2.

Note: in principle, all entries may have infinite second moment, but distribution
has to depend on n.

Bai, Cook, Edelman, Gordon, Guedon, Huang, Koltchinckii, Latala, Litvak,
Lytova, Meckes, Meckes, Mendelson, Pajor, Paouris, Rebrova, Rudelson,
O’Rourke, Szarek, Tao, Tatarko, Tomczak-Jaegermann, Tikhomirov, Van
Handel, Vershynin, Vu, Yaskov, Yin, Youssef,...
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The smallest singular value: unstructured square case

Theorem (L, Tikhomirov, Vershynin 2019+)
Let A be an n ◊ n random matrix with

independent entries aij

E||A||2
HS

Æ Kn
2

aij are UAC, that is P(supzœR |aij ≠ z| < 1) < b œ (0,1)
Then for every ‘ œ (0,1),

P

3
‡n(A) <

‘Ô
n

4
Æ C‘ + e

≠cn,

where C and c are absolute constants which depend (polynomially) only on K

and b.
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Arbitrary aspect ratio: history

Question: what if A is an N ◊ n random matrix with N Ø n?

Litvak, Pajor, Rudelson, Tomczak-Jaegermann, 2005

N Ø n + n

C log n
, strong assumptions: P(‡n(A) Æ C1

Ô
N) Æ e

≠C2N .

Rudelson, Vershynin, 2009

N Ø n, aij i.i.d. sub-Gaussian, Eaij = 0, Ea
2
ij = 1. Then for any ‘ œ (0,1),

P

!
‡n(A) Æ ‘(

Ô
N + 1 ≠

Ô
n)

"
Æ C1‘N≠n+1 + e

≠C2N ;

Tao, Vu, 2010

Replaced sub-Gaussian with Ea
C1
ij

Æ 1, but N œ [n,n + C2]

Vershynin, 2011

Replaced sub-Gaussian with Ea
4
ij < Œ but

P

!
‡n(A) Æ ‘(

Ô
N + 1 ≠

Ô
n)

"
Æ ”(‘) æ‘æ0 0.
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Arbitrary aspect ratio

Theorem (L. 2018+)
Let N Ø n Ø 1 be integers. Let A be an N ◊ n random matrix with

independent entries aij

i.i.d. rows
Eaij = 0
Ea

2
ij = 1

Then for every ‘ > 0,

P

!
‡n(A) < ‘(

Ô
N + 1 ≠

Ô
n)

"
Æ (C‘ log1/‘)N≠n+1 + e

≠cN ,

where C and c are absolute constants which depend (polynomially) only on the
concentration function bounds.

Remark: a more general result in fact follows...
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Very tall case

Proposition 1 (L. 2018+) tall case with dependent columns

Suppose A is an N ◊ n random matrix with independent rows, E||A||2
HS

Æ KNn,

N Ø C0n, and assume for every x œ Sn≠1,

P(sup
yœR

|ÈAT
ei ,xÍ ≠ y | Æ 1) Æ b œ (0,1). (1)

Then
E‡n(A) Ø c

Ô
N.

Proposition 2 (L. 2018+) tall case with low moments

Fix p > 0. Suppose N Ø C
Õ
0n, A is an N ◊ n random matrix with independent

UAC entries. Suppose
nÿ

i=1

1
E|Aei |2p

2 1
p

Æ KnNe

c0N

n .

Then
P(‡n Æ C1

Ô
N) Æ e

≠C2 min(p,1)N .
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A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸ with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4
Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙ Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!

11/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸

with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4
Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙ Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!

11/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸ with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4
Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙ Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!

11/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸ with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4

Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙ Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!

11/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸ with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4
Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙

Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!

11/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸ with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4
Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙ Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!

11/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

A naive attempt

Goal: P(‡n(A) Æ 2¸) Æ ˚.

Discretize Sn≠1:
Suppose we find a small finite set N µ Rn with

#N Æ ˝;
’x œ Sn≠1 ÷y œ N : |A(x ≠ y)| Æ ¸ with probability Ø 1 ≠ ˙.

Then we write:

P(‡n(A) Æ ¸) = P

3
inf

xœSn≠1
|Ax | Æ ¸

4
Æ

P

3
inf

yœN
|Ay | Æ 2¸

4
+ ˙ = P (÷y œ N : |Ax | Æ 2¸) + ˙ Æ

˝ · sup
yœN

P(|Ay | Æ 2¸) + ˙.

So if we know that for each y , P(|Ay | Æ 2¸) Æ ˚≠˙
˝ , we are done!

11/ 33



Preliminaries and history Results The net theorem Proof of the net theorem Sketch of the proof of the square case The distance theorem

The net result

Theorem (L. 2018+) – Lite version

There exists a deterministic net N µ 3
2 B

n

2 \ 1
2 B

n

2 of cardinality 1000n such that
for any integer N and any N ◊ n random matrix A with independent columns,
with probability at least 1 ≠ e

≠5n, for every x œ Sn≠1 there exists y œ N such
that

|A(x ≠ y)| Æ 100Ô
n

Ò
E||A||2

HS
.
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Previously known cases

Folklore: A has sub-gaussian independent entries aij , Eaij = 0, Ea
2
ij = const.

Let N be the standard Á-net, i.e. such that

Sn≠1 µ fixœN
!
x + ÁB

n

2
"

,

and #N Æ (3Á)n.

Then we can estimate |A(x ≠ y)| Æ ||A||Á Æ C
||A||HS ÁÔ

n
?

Recall, for any matrix A: 1Ô
n

||A||HS Æ ||A|| Æ ||A||HS .

But specifically for sub-gaussian mean zero variance 1 case,

P

3
||A|| Ø 100Ô

n

Ò
E||A||2

HS

4
Æ e

≠5n. (1)

Without strong assumptions, (1) is not true.
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Previously known cases

Rebrova, Tikhomirov (2016) proved this Theorem assuming i.i.d. entries aij ,
with Eaij = 0, Ea

2
ij = const, and N = n.

Guedon, Litvak, Tatarko (2018) extended the result of Rebrova and Tikhomirov
in the case of arbitrary n,N, and replaced i.i.d. entries with i.i.d. columns.

Advantage: the Theorem only assumes independence of columns, and no
other structural assumptions!
In particular, allowing dependent columns is crucial for the proof of the
arbitrary aspect ratio result.
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Proof of the net theorem – step 1: comparison via Hilbert-Schmidt

Random rounding (Alon, Klartag 2017; Klartag, L. 2018; Tikhomirov 2018;...)

Definition

For › œ Sn≠1, write each ›i = ‘Ô
n

(ki + pi ) for ki œ Z and pi œ [0,1). Consider a
random vector ÷› œ (‘/

Ô
n)Zn:

÷›
i

=

I
‘Ô
n

ki , with probability 1 ≠ pi

‘Ô
n

(ki + 1), with probability pi .
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Proof – step 1: comparison via Hilbert-Schmidt

Sn≠1 µ
t(100/‘)n

j=1

1
xj + ‘Ô

n
Bn

Œ

2
.

Therefore, there is a set N such that for all › œ Sn≠1, we have ÷› œ N ,
and #N Æ

! 100
‘

"n;
We have Î› ≠ ÷›ÎŒ Æ ‘Ô

n
and E÷› = ›;

Hence, by Hoe�dings inequality, for any › œ Sn≠1, t > 0 and ◊ œ Rn,

P(|È÷› ≠ ›,◊Í| Ø t) Æ 2exp
3

≠ cnt2

|◊|2‘2

4
;

In particular, E|È÷› ≠ ›,◊Í|2 Æ ‘2|◊|2

n
(*).

Galyna V. Livshyts An e�cient net and singular value estimates
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Proof – step 1: comparison via Hilbert-Schmidt

Sn≠1 µ
t(100/‘)n

j=1

1
xj + ‘Ô

n
B

n
Œ

2
.

Therefore, there is a set N such that for all › œ Sn≠1, we have ÷› œ N ,
and #N Æ

! 100
‘

"n;

We have Î› ≠ ÷›ÎŒ Æ ‘Ô
n

and E÷› = ›;

Hence, using the fact that E(÷› ≠ ›) = 0, we get:

E|È÷› ≠ ›,◊Í|2 Æ ‘2|◊|2

n
(¸)
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Proof – step 1: comparison via Hilbert-Schmidt

Lemma 1 (comparison via Hilbert-Schmidt)

There exists a collection of points F with #F Æ ( C

‘ )n≠1 such that for any
(deterministic) matrix A : Rn æ RN , for every › œ Sn≠1 there exists an ÷ œ F
satisfying

|A(÷ ≠ ›)| Æ ‘Ô
n

||A||HS .

Proof.

Recall: |Ax |2 =
q

N

i=1ÈAT
ei ,xÍ2, where A

T
ei are the rows of A;

By (¸), E÷|È÷› ≠ ›,AT
ei Í|2 Æ C

‘2|AT
ei |2

n
;

Summing up, we get

E÷|A(÷› ≠ ›)|2 = E÷

Nÿ

i=1
ÈAT

ei ,÷
› ≠ ›Í2 Æ

3
C

Õ ‘Ô
n

||A||HS

42
;

If P(find a red ball in a box) Ø 0.1 then there exists a red ball in a box.
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Proof – step 2: parallelepipeds

Remark

P(||A||2HS Ø 10E||A||2HS) Æ 0.1.

Thus Lemma 1 implies the Theorem with probability 0.9 rather than 1 ≠ e
≠5n.

Not good:(

Idea of Rebrova and Tikhomirov, 2016: cover with parallelepipeds and not just
cubes!
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Proof – step 2: parallelepipeds

Admissible set of parallelepipeds
For – = (–1, ...,–n) œ Rn with –i > 0, we fix the parallelepiped

P– = {x œ Rn : |xi | Æ –i }.

For Ÿ > 1, denote �Ÿ =
)

– œ Rn : –i œ [0,1],
r

n

i=1 –i > Ÿ≠n
*

.

Note: if – œ �Ÿ then P– Ø (0.5Ÿ)≠n – hence the covering is not too big.

Lemma 2 (comparison via parallelepipeds)
Pick any – œ �Ÿ. Let A be any N ◊ n matrix. There exists a net F– with
#F– Æ

! 100Ÿ
‘

"n such that for every › œ Sn≠1 there exists an ÷ œ F– satisfying

|A(÷ ≠ ›)| Æ ‘Ô
n

ı̂ıÙ
nÿ

i=1
–2

i
|Aei |2.
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P– = {x œ Rn : |xi | Æ –i }.

For Ÿ > 1, denote �Ÿ =
)

– œ Rn : –i œ [0,1],
r

n

i=1 –i > Ÿ≠n
*

.

Note: if – œ �Ÿ then P– Ø (0.5Ÿ)≠n – hence the covering is not too big.

Lemma 2 (comparison via parallelepipeds)
Pick any – œ �Ÿ. Let A be any N ◊ n matrix. There exists a net F– with
#F– Æ

! 100Ÿ
‘

"n such that for every › œ Sn≠1 there exists an ÷ œ F– satisfying

|A(÷ ≠ ›)| Æ ‘Ô
n

ı̂ıÙ
nÿ

i=1
–2

i
|Aei |2.
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Proof – step 3: BŸ and nets on nets

Key definition: for any matrix A

BŸ(A) := min
–i œ[0,1],

r
n

i=1 –i ØŸ≠n

nÿ

i=1
–2

i |Aei |2.

Corollary of Lemma 2
Let A be any N ◊ n matrix. There exists a small enough net F such that for
every › œ Sn≠1 there exists an ÷ œ F satisfying

|A(÷ ≠ ›)| Æ ‘Ô
n


BŸ(A).

But the net depends on the matrix! Not good:(
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Proof – step 3: BŸ and nets on nets

Way out: discretize the admissible set �Ÿ.

The “nets on nets” Lemma
There exists a collection F µ �Ÿ2 of cardinality 30n such that for any – œ �Ÿ

there exists a — œ F so that for all i = 1, ...,n we have –2
i Ø —2

i .
In particular, for any N ◊ n matrix A, we have

BŸ(A) Ø min
—œF

nÿ

i=1
—2

i |Aei |2.

Galyna V. Livshyts An e�cient net and singular value estimates
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A net for deterministic matrices: combining steps 1-3.

Theorem about deterministic matrices
There exists a deterministic net N of cardinality 1000n such that for any
integer N and any N ◊n deterministic matrix A, for every x œ Sn≠1 there exists
y œ N such that

|A(x ≠ y)| Æ 100Ô
n


B10(A).

This reduces the proof of the Theorem to estimating the large deviation of
BŸ(A) when A is a random matrix coming from an appropriate model.
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Step 4: Large deviation of BŸ.

Lemma
Let A be a random matrix with independent columns. Pick any Ÿ > 1. Then

P

1
BŸ(A) Ø 10E||A||2HS

2
Æ (CŸ)≠2n.

Proof.

Denote Yi = |Aei |. If BŸ(A) Ø 10
q

n

i=1EY
2
i , then for any collection

–1, ...,–n œ [0,1], either
nÿ

i=1
–2

i Y
2
i Ø 10

nÿ

i=1
EY

2
i ,

or
nŸ

i=1
–i < Ÿ≠n.

Consider a collection of random variables –2
i = min

1
1,

EY
2
i

Y 2
i

2
.
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Step 4: Large deviation of BŸ.

Proof.
We estimate

P

1
BŸ(A) Ø 10E||A||2HS

2
Æ

P

A
nÿ

i=1
min

3
1,

EY
2
i

Y 2
i

4
Y

2
i Ø 10E||A||2HS

B
+

P

A
nŸ

i=1
min

3
1,

EY
2
i

Y 2
i

4
< Ÿ≠2n

B
=: P1 + P2.

P1 = 0.

By Markov’s inequality, P2 Æ (CŸ)≠2n.
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Summary: the non-lite version

Theorem (NON-lite)

Fix n œ IN. Consider any S µ Rn. Pick any “ œ (1,
Ô

n), ‘ œ (0, 1
20“ ), Ÿ > 1,

p > 0 and s > 0.
There exists a (deterministic) net N µ S + 4‘“B

n

2 , with

#N Æ

I
N(S,‘Bn

2 ) · (C1“)
C2n

“0.08 , if logŸ Æ log 2
“0.09 ,

N(S,‘Bn

2 ) · (CŸ logŸ)n, if logŸ Ø log 2
“0.09 ,

such that for every N œ IN and every random N ◊ n matrix A with independent
columns, with probability at least

1 ≠ Ÿ≠2pn

1
1 + 1

sp

2n

,

for every x œ S there exists y œ N such that

|A(x ≠ y)| Æ C3
‘“

Ô
sÔ

n

ı̂ıÙ
nÿ

i=1
(E|Aei |2p)

1
p .

Here C ,C1,C2,C3 are absolute constants.

“ is the “sparsity” parameter
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The Rudelson-Vershynin scheme: idea 1

Point-wise small ball for |Ax |

Fix x œ Sn≠1. If aij are independent and UAC, there exist constants C1 and C2
such that P(|Ax | Æ C1

Ô
n) Æ e

≠C2n.

Applying the net argument

Let S be a subset of Sn≠1.
Let N be a net on S such that w.p. at least 1 ≠ e

≠5n, for all x œ S there
is y œ N so that

|A(x ≠ y)| Æ C1
2


E||A||2

HSÔ
n

Æ C1
2

Ô
n.

P

!
infxœS |Ax | Æ C1

2
Ô

n

"
Æ P

!
infxœN |Ax | Æ C1

Ô
n

"
Æ #N · e

≠C2n.

If S = Sn≠1 then N = (100/C1)n, and possibly #N >> e
C2n!

But for some small set S we could get #N Æ e
0.5C2n...
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The Rudelson-Vershynin scheme: idea 2

A distance estimate

|Ax | = supuœSn≠1 ÈAx ,uÍ = supuœSn≠1
q

n

i=1 xi ÈAei ,uÍ

Let u = ‹1 be the (random) normal vector to Ae2, ...,Aen.

Note that ÈAe1,‹1Í = dist(Ae1,H1), where H1 = span{Ae2, ...,Aen}.

Thus |Ax | Ø |xi | · dist(Aei ,Hi ) for every i = 1, ...,n.

Suppose T µ Sn≠1 is the set of x so that 99% of its coordinates are Ø µ.
Then, by the counting,

P

3
inf

xœT

|Ax | Æ Áµ

4
Æ P (#{i : dist(Aei ,Hi ) < ‘} Ø 0.99n) .

Conclusion: invertibility via distance estimate

Let T µ Sn≠1 be such a set of x that for 99% of coordinates, |xi | Ø 1
10Ô

n
.

P

3
inf

xœT

|Ax | <
ÁÔ
n

4
Æ C

n

nÿ

i=1
P (dist(Aei ,Hi ) < ‘) .
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The Rudelson-Vershynin scheme: combining idea 1 and idea 2

Decomposition of the sphere

Sn≠1 = Comp”,fl fi Incomp”,fl,

where
Comp”,fl = {x œ Sn≠1 : {i : |xi | Ø flÔ

n
} Æ ”n};

Incomp”,fl = {x œ Sn≠1 : {i : |xi | Ø flÔ
n

} Ø ”n}.

The set Comp”,fl has small entropy and one may apply the net argument;
The set Incomp”,fl can be handled by the distance estimate, provided that
we can prove the small ball estimate for dist(Aei ,Hi ).
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The distance theorem

Theorem about distances (L, Tikhomirov, Vershynin, 2019+)

Let A have independent UAC entries and E||A||2
HS

Æ Kn
2. Denote

Hj = span{Aei : i ”= j, i = 1, . . . ,n} ;

Take any j Æ n such that E|Aej |2 Æ rn
2. Then

P

!
dist(Aj ,Hj) Æ Á

"
Æ CÁ + 2e

≠cn, Á Ø 0.
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Sketch of the proof of the distance theorem

Esseen’s Lemma
Given a variable › with the characteristic function Ï(·) = Eexp(2fii›·),

P(|›| < t) Æ C

⁄ 1

≠1

----Ï
1

s

t

2----ds, t > 0,

where C > 0 is an absolute constant.

RLCD – definition
For a random vector X in Rn, a (deterministic) vector v in Rn, and parameters
L > 0, u œ (0,1), define

RLCD
X

L,u(v) := inf
Ó

◊ > 0 : Edist
2(◊v ı X ,Zn) < min(u|◊v |2,L2)

Ô
.

Here by ı we denote the Schur product

v ı X := (v1X1, . . . ,vnXn).

Note: Rudelson-Vershynin previously defined LCD, a parameter which worked
well to study the i.i.d. case.
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Sketch of the proof of the distance theorem

Geometrical meaning of RLCD

RLCD
X (v) is roughly how much the X -associated lattice has to be scaled

down to get close to v .

Anticoncentration via RLCD
Let X = (X1, . . . ,Xn) be a random vector with independent coordinates
satisfying maxi P(supzœR |Xi ≠z| < 1) Æ b for some b œ (0,1). Let c0 > 0, L > 0
and u œ (0,1). Then for any vector v œ Rn with |v | Ø c0 and any Á Ø 0, we have

P(ÈX ,vÍ < Á) Æ CÁ + C exp(≠ÂcL
2) + C

RLCDX

L,u(v)
.

Here C > 0,Âc > 0 may only depend on b,c0,u.

In words
If RLCD of a vector v is large, then the scalar product ÈX ,vÍ has great
anti-concentration properties!
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Sketch of the proof of the distance theorem

Let ‹ be the random normal, orthogonal to columns Ae2, ...,Aen.

Goal: RLCD(‹) = LARGE .

Let M = [Ae2, ...,Aen]T , then M‹ = 0 (since it is orthogonal to all the
rows of M).
Consider a net N (from the net theorem) on Sn≠1 with respect to M.

Let Sbad = {y œ Sn≠1 : RLCD(y) = small but not too small} (a level set)

P(‹ œ Sbad ) = P( inf
xœSbad

|Mx | = 0) Æ #F · P(|Mx | < ‘
Ô

n),

where F µ N which forms a net on Sbad .
Since on Sbad RLCD is not too bad, P(|Mx | < ‘

Ô
n) is small

Most of the points on a lattice have large RLCD!
#F Æ e

≠Cn#N , since RLCD is stable
Combining these bounds allows to iterate on the level sets and to obtain
the distance theorem.
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Thanks for your attention!
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