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Marginal density

Marginal density
If f is a probability density on Rn and E is a subspace, the marginal density of
f on E is defined by

πE (f )(x) =
∫

E⊥+x
f (y)dy (x ∈ E).

Example: consider K ⊂ Rn such that |K |= 1. Let f = 1K . Then

πE (f )(x) =
∫

E⊥+x
1K (y)dy = |K ∩E⊥+ x | (x ∈ E).
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Small ball inequality for projections

Projecting random vectors
Let X be a random vector on Rn distributed with the density f .

Let E be a
subspace. Then PE X (the projection of X onto E) is distributed with the
marginal density πE (f )(x).

Small ball inequality
For each z ∈ E ,

P
(
|PE X − z| ≤ ε

√
k
)
≤ ||πE (f )(x)||∞(

√
2eπε)k .

Hence it is of interest to bound ||πE (f )(x)||∞ from above and the bound
should ideally look like Ck . A number of related studies were conducted by:
Ball, Barthe, Bobkov, Brzezinski, Chistyakov, Dann, Gluskin, Koldobsky, König,
Paouris, Pivovarov, Rogozin, Rudelson, Vershynin,...
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Ball’s Theorems about unit cube

Consider a unit (in volume) cube Q ⊂ Rn.

What is its largest section?

Theorem 1 (Keith Ball)

For every dimension n and for every unit vector u ∈ Rn,

|Q∩u⊥| ≤
√
2.

This estimate is sharp!
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Ball’s Theorems about unit cube

What about subspaces of other dimensions?

Theorem 2 (Keith Ball)
Fix k ∈ [1,n]. For every subspace H of codimension k,

|Q∩H| ≤min
(( n

n−k

) n−k
2
,2k/2

)
.

The estimate 2k/2 is sharp for k ≤ n
2 .

The estimate
( n

n−k
) n−k

2 ≤
√

ek is sharp for the case n−k |k.
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Theorem of Rudelson and Vershynin

Theorem (M. Rudelson, R. Vershynin)

Consider a product density f (x) =
∏n

i=1 fi (xi ) on Rn. Assume that ||fi ||∞ ≤ 1.

Let E be a k−codimensional subspace in Rn.
Then

||πE (f )(x)||∞ ≤ Ck ,

where C is an absolute constant.

Can C =
√
2 like in the case of the unit cube?
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Main result

Theorem (L, Paouris, Pivovarov)

Consider a product probability density f (x) =
∏n

i=1 fi (xi ) on Rn.

Let 1≤ k < n. Pick a k−codimensional subspace E .
Then there exists a collection of numbers {γi}ni=1 ⊂ [0,1] with

∑n
i=1 γi = k

such that

||πE (f )||∞ ≤min
(( n

n−k

) n−k
2
,2k/2

) n∏
i=1
||fi ||γi

∞.

Corollary

Consider a product density f (x) =
∏n

i=1 fi (xi ) on Rn. Assume that ||fi ||∞ ≤ 1.
Let E be a k−codimensional subspace in Rn.
Then

||πE (f )(x)||∞ ≤min
(( n

n−k

) n−k
2
,2k/2

)
.
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Tools for the proof

Identity for the marginal

Let 1≤ k < n and E ∈ Gn,k . Then there exist vectors w1, . . . ,wn in
Rn−k = span{e1, . . . ,en−k} such that In−k =

∑n
i=1 wi ⊗wi and for any

integrable function f (x) =
∏n

i=1 fi (xi ) with fi : R→ [0,∞),

πE (f )(0) =
∫
Rn−k

n∏
i=1

fi (〈y ,wi 〉)dy .

Using the identity above along with the rearrangement inequality of
Rogers and Brascamp-Lieb-Luttinger, we get that it is enough to assume
that each of the fi is symmetric-decreasing.
Idea of the proof: Layers of product measures with symmetric decreasing
components are coordinate boxes. We shall estimate sections of coordinate
boxes using Ball’s techniques for the cube and the layer-cake formula.
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Ball-like propositions

Proposition 1
Let 1≤ k < n and H ∈ Gn,n−k .

Then there exists {βi}ni=1 ⊂ [0,1] with∑n
i=1βi = n−k such that for any z1, . . . ,zn ∈ R+, the box

B =
∏n

i=1[−zi/2,zi/2] satisfies

|B∩H| ≤
( n

n−k

) n−k
2

n∏
i=1

zβi
i .

Proposition 2
Let 1≤ k ≤ n/2 and H ∈ Gn,n−k . Then there exists {βj}nj=1 ⊂ [0,1] with∑n

i=1βi = n−k such that for any z1, . . . ,zn ∈ R+, the box
B =

∏n
j=1[−zj/2,zj/2] satisfies

|B∩H| ≤ 2k/2
n∏

j=1
zβj

j .
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Proof of the Theorem

Denote ci = ||fi ||∞.

πE (f )(0) =
∫
Rn−k

n∏
i=1

fi (〈y ,wi 〉)dy

≤
∫
Rn−k

n∏
i=1

f ∗i (〈y ,wi 〉)dy

=
∫ c1

0
· · ·
∫ cn

0

∫
Rn−k

n∏
i=1

1{f ∗i >ti}(〈x ,wi 〉)dxdt1 . . .dtn

=
∫ c1

0
· · ·
∫ cn

0
|B(t1, ..., tn)∩E⊥|dt1 . . .dtn.
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Proof of the Theorem

From the Proposition 2 we get:

|B(t1, ..., tn)∩E⊥| ≤
√
2k
·

n∏
i=1
|{f ∗i > ti}|βi .

Write dt = dt1 . . .dtn.

πE (f )(0) ≤
√
2k
∫

C

n∏
i=1
|{f ∗i > ti}|βi dt

≤
√
2k

n∏
i=1

c1−βi
i ·

n∏
i=1
||f ∗i ||

βi
L1(R)

≤
√
2k

n∏
i=1

c1−βi
i =

√
2k

n∏
i=1
||fi ||γi

∞�
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Proof of the Proposition 2

Proposition 2
Let 1≤ k ≤ n/2 and H ∈ Gn,n−k . Then there exists {βj}nj=1 ⊂ [0,1] with∑n

i=1βi = n−k such that for any z1, . . . ,zn ∈ R+, the box
B =

∏n
j=1[−zj/2,zj/2] satisfies

|B∩H| ≤ 2k/2
n∏

j=1
zβj

j .

Proof. We shall assume that |B|= 1 and rescale later. The proof splits into
two cases:

CASE 1: for all unit vectors b ∈ H⊥, the coordinates bi ≤ 1√
2
for each

i = 1, . . . ,n.
CASE 2: there exists a unit vector b ∈ H⊥ and i ∈ [1,n] such that
bi ≥ 1√

2
.
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CASE 1: for all unit b ∈ H⊥, bi ≤ 1√
2 for each i = 1, . . . ,n

Notation and set up
Fix the notation:

P̃ = PH⊥ – orthogonal projection onto H⊥.

ui = P̃ei

||P̃ei ||
.

ai = ||P̃ei ||.
X is a random vector uniform on B.
Y is a random vector uniform on the unit cube Q.
P̃X is a random vector on H⊥ with density πH(1B) and characteristic
function Φ : H⊥→ R.

Note that

(i)
n∑

i=1
a2

i ui ⊗ui = IH⊥ , (ii)
n∑

i=1
a2

i = k.

Note: ai ≤ 1√
2
.
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CASE 1: for all unit b ∈ H⊥, bi ≤ 1√
2 for each i = 1, . . . ,n

Using inversion
By Fourier inversion formula,

|B∩H|= πH⊥(1B)(0) = 1
(2π)k

∫
H⊥

Φ(w)dw .

Estimating the characteristic function of P̃X :

Φ(w) = Eexp
(

i〈w , P̃X〉
)

= Eexp

(
i

n∑
j=1

Xjaj〈w ,uj〉

)

= Eexp

(
i

n∑
j=1

Yjzjaj〈w ,uj〉

)

=
n∏

j=1

2sin 1
2 zjaj〈w ,uj〉

zjaj〈w ,uj〉
.
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CASE 1: for all unit b ∈ H⊥, bi ≤ 1√
2 for each i = 1, . . . ,n

Upshot

|B∩H| ≤ 1
πk

∫
H⊥

n∏
j=1

Φj (〈w ,uj〉)dw ,

where Φj : R→ [0,∞) is defined by Φj (t) =
∣∣∣ sinzj aj t

zj aj t

∣∣∣ .

Theorem 1 (Ball)

Let u1, ...,un be unit vectors in Rk , k ≤ n, and c1, ...,cn > 0 satisfying∑n
1 ci ui ⊗ui = Ik . Then for integrable functions f1, ..., fn : R→ [0,∞),∫

Rk

n∏
i=1

fi (〈ui ,x〉)ci dx ≤
n∏

i=1

(∫
R

fi
)ci

.

There is equality if the f ′i s are identical Gaussian densities.
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CASE 1: for all unit b ∈ H⊥, bi ≤ 1√
2 for each i = 1, . . . ,n

The above Theorem of Ball is used with cj = 1
a2

j
:

|B∩H| ≤ 1
πk

n∏
j=1

(∫
R

Φj (t)
1

a2
j dt
)a2

j

=
n∏

j=1

(
1
π

∫
R

∣∣∣∣ sinzjaj t
zjaj t

∣∣∣∣ 1
a2
j dt

)a2
j

Theorem 2 (Ball)
For every p ≥ 2,

1
π

∫ ∞
−∞

∣∣∣ sin t
t

∣∣∣p dt ≤
√

2
p .

• Application of the above Theorem with p = 1
a2

j
and rescaling finish the proof

in the case 1.
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CASE 2: there exists a unit vector b ∈ H⊥ and i ∈ [1,n] such that bi ≥ 1√
2

Assume that the proposition is true for all dimensions at most n−1 and
for all k.
Note that

|B∩H| ≤ 1
bi
|B̃∩ H̃|,

where B̃ is an (n−1) dimensional box with sides {zj}j 6=i and H̃ = Pi H is a
(k−1)-codimensional subspace in Rn−1.
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CASE 2: there exists a unit vector b ∈ H⊥ and i ∈ [1,n] such that bi ≥ 1√
2

If k = 1, then
|B̃∩ H̃|= |B̃|=

∏
j 6=i

zj ,

and thus
|B∩H| ≤

√
2
∏
j 6=i

zj ,

hence the proposition holds with βj = 1 for j 6= i .

If k ≥ 2, we use induction. �
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Thanks for your attention!
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