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Quantum Chaos vs Integrable Systems
A central theme in mathematical physics is the dichotomy between 
integrable systems and quantum chaotic systems.
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Quantum Chaos vs Integrable Systems
A central theme in mathematical physics is the dichotomy between 
integrable systems and quantum chaotic systems.

Integrable systems: We expect spectral fluctuations to be Poisson, and 
eigenfunctions to be localized in phase space.

Quantum chaotic systems: We expect spectral fluctuations to be those of 
large random matrices, and eigenfunctions to be equidistributed in 
phase space. 
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Behavior of Eigenfunctions

• [Shnirelman 1974] Quantum Ergodicity Theorem: A Riemannian 
manifold with ergodic geodesic flow is such that almost all high 
energy eigenfunctions of the Laplacian are equidistributed.
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Behavior of Eigenfunctions

• [Shnirelman 1974] Quantum Ergodicity Theorem: A Riemannian 
manifold with ergodic geodesic flow is such that almost all high 
energy eigenfunctions of the Laplacian are equidistributed.

• [Berry 1977] Random wave conjecture: in the high energy limit, 
statistics of eigenfunctions of surfaces with quantum dynamics 
behave like Gaussian random variables with covariance

𝐸𝐸(𝜓𝜓𝑛𝑛 𝑥𝑥 𝜓𝜓𝑛𝑛 𝑦𝑦 ) = 𝐽𝐽0(𝑘𝑘𝑛𝑛 𝑥𝑥 − 𝑦𝑦 ).
• 𝐽𝐽0 is the 0th order Bessel function and 𝑘𝑘𝑛𝑛2 is the eigenvalue of 𝜓𝜓𝑛𝑛. 
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Discrete Graphs as a Model 
for Quantum Chaos
• [Kottos-Smilansky 1997,1999] Initiate using large regular graphs as a 

model for quantum chaos by examining the eigenvectors of the 
discrete Laplacian.

• Rather than take the high energy limit,  we send the number of 
vertices to ∞.
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Discrete Graphs as a Model 
for Quantum Chaos
• [Kottos-Smilansky 1997,1999] Initiate using large regular graphs as a 

model for quantum chaos by examining the eigenvectors of the 
discrete Laplacian.

• Rather than take the high energy limit,  we send the number of 
vertices to ∞.

• [Anantharaman-Le Masson 2015] Prove a statement analogous to 
Shnirelman’s Theorem for large regular graphs. 

• [Elon 2008]: Formulated Berry’s Conjecture for discrete graphs.
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Nodal Domains
• How do we test Berry’s conjecture?
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Nodal Domains
• How do we test Berry’s conjecture?

• One way is to choose a specific statistic, and then measure that 
statistic versus what is implied by Berry’s conjecture. 

• If the statistic matches Berry’s conjecture, then it can be interpreted 
as a suggestion of the conjecture. 

• Nodal domains are a way to measure randomness in both 
continuous and discrete space. 
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Courant’s Nodal Domain 
Theorem

• [Courant] The zero set of the 𝑘𝑘th smallest Dirichlet eigenfunction of 
the Laplacian on a smooth bounded domain in ℝ𝑑𝑑 partitions it into at 
most 𝑘𝑘 components.

• These components, known as nodal domains, have garnered 
significant attention in spectral geometry and mathematical physics.

A heat map of the 6th Dirichlet 
eigenfunction of the square.
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Discrete Version
• There is also a well-studied theory of nodal domains on graphs.
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Discrete Version
• There is also a well-studied theory of nodal domains on graphs.

• The nodal domains of a vector 𝑓𝑓 on the vertices of a graph 𝐺𝐺
are the maximal connected components of all the same sign.
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Discrete Version
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Berry’s Conjecture to Many 
Nodal Domains
• Claim: In both continuous and discrete space, Berry’s conjecture 

implies the existence of many nodal domains. 
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Berry’s Conjecture to Many 
Nodal Domains
• Claim: In both continuous [Bogomolny and Schmit] and discrete 

space [Elon], Berry’s conjecture implies the existence of many 
nodal domains. 

• Goal: Show in the discrete model families of graphs with many 
nodal domains. 



23

Adjacency Matrix
• Encode graphs through an adjacency matrix 𝐴𝐴, with rows/columns 

corresponding to the vertices, and placing a 1 where there is an 
edge.

• Note that as the matrix is symmetric, the eigenvalues are real.

• We can also consider the combinatorial Laplacian 𝐷𝐷 − 𝐴𝐴, where 𝐷𝐷 is 
the diagonal matrix of degrees.

1

2

3 4

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0
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Graph Nodal Domains
• [Fiedler 1975] The eigenvector of the 𝑘𝑘th smallest eigenvalue of 

the combinatorial Laplacian of a tree has exactly 𝑘𝑘 nodal 
domains.
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Graph Nodal Domains
• [Fiedler 1975] The eigenvector of the 𝑘𝑘th smallest eigenvalue of 

the combinatorial Laplacian of a tree has exactly 𝑘𝑘 nodal 
domains.

• [Davies et al. 2000] For any graph, under general assumptions 
the 𝑘𝑘th eigenvector has at most 𝑘𝑘 nodal domains.

• [Berkolaiko 2008] For a graph on 𝑛𝑛 vertices and 𝑛𝑛 + ℓ − 1 edges, 
the 𝑘𝑘th eigenvector of a Schrödinger operator of arbitrary 
potential has between 𝑘𝑘 − ℓ and 𝑘𝑘 nodal domains (generalizes 
the above two results).

• Question: Can we lower bound the number of nodal domains 
for graphs that have many edges?

• What about random graphs?



29

Erdős-Rényi Graphs
• For a graph on 𝑛𝑛 vertices, include each of the 𝑛𝑛2 potential 

edges independently with probability 𝑝𝑝. This distribution is 
denoted by 𝐺𝐺(𝑛𝑛,𝑝𝑝). 

Sampled from 𝐺𝐺(10,0.5)
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Results for Erdős-Rényi Graphs
• [Dekel-Lee-Linial 2011] For a 𝐺𝐺(𝑛𝑛,𝑝𝑝) graph for fixed 𝑝𝑝 ∈ (0,1), with 

high probability every eigenvector of the adjacency matrix besides 
the first has all but 𝑂𝑂(1) vertices in two nodal domains.
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high probability every eigenvector besides the first has exactly two 
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Results for Erdős-Rényi Graphs
• [Dekel-Lee-Linial 2011] For a 𝐺𝐺(𝑛𝑛,𝑝𝑝) graph for fixed 𝑝𝑝 ∈ (0,1), with 

high probability every eigenvector of the adjacency matrix besides 
the first has all but 𝑂𝑂(1) vertices in two nodal domains.

• [Arora-Bhaskara 2011] For a 𝐺𝐺(𝑛𝑛,𝑝𝑝) graph with 𝑝𝑝 ∈ (𝑛𝑛−1/20, 1) with 
high probability every eigenvector besides the first has exactly two 
nodal domains.

• [Rudelson 2017] With high probability, every vertex neighbors the 
nodal domain of the opposite sign.

• [H. Huang-Rudelson 2020] For bulk eigenvectors with 𝑝𝑝 ∈ 𝑛𝑛−𝑐𝑐 , 1
and edge eigenvectors for fixed 𝑝𝑝 ∈ (0,1) the nodal domains are 
approximately the same size.
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Random Regular Graphs
• Erdős-Rényi graphs are too dense to have more than two nodal 

domains for 𝑝𝑝 ≥ 𝑛𝑛−𝑐𝑐. 
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Random Regular Graphs
• Erdős-Rényi graphs are too dense to have more than two nodal 

domains for 𝑝𝑝 ≥ 𝑛𝑛−𝑐𝑐. 

• Dekel, Lee, and Linial also observed that according to simulations, 
the 𝑘𝑘th eigenvector of a randomly selected 𝑑𝑑-regular graph on 𝑛𝑛
vertices has a number of nodal domains that increases with 𝑘𝑘.
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Random Regular Graphs
• Erdős-Rényi graphs are too dense to have more than two nodal 

domains for 𝑝𝑝 ≥ 𝑛𝑛−𝑐𝑐. 

• Dekel, Lee, and Linial also observed that according to simulations, 
the 𝑘𝑘th eigenvector of a randomly selected 𝑑𝑑-regular graph on 𝑛𝑛
vertices has a number of nodal domains that increases with 𝑘𝑘.

• Our question: can we prove nontrivial structure of nodal domains for 
a randomly selected 𝑑𝑑-regular graph, for fixed 𝑑𝑑.
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Random Regular Graphs
• Choose a graph from the set of graphs on 𝑛𝑛 vertices that are 𝑑𝑑-

regular. We denote this distribution by 𝐺𝐺(𝑛𝑛,𝑑𝑑). 

• Sampled from 𝐺𝐺(20,3)
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Quantum Chaos through 
Nodal Domains
• Showing many nodal domains for random 𝑑𝑑-regular graphs would 

give evidence towards Berry’s conjecture on discrete graphs.
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Result
[Ganguly-M-Mohanty-Srivastava] Fix 𝑑𝑑 ≥ 3 and 𝛼𝛼 > 0. Then with 
probability 1 − 𝑜𝑜𝑛𝑛 1 , every eigenvector of the adjacency matrix of 
a 𝐺𝐺(𝑛𝑛,𝑑𝑑) sampled graph with eigenvalue 𝜆𝜆 ≤ −2 𝑑𝑑 − 2 − 𝛼𝛼 has 
Ω(𝑛𝑛/polylog(𝑛𝑛)) nodal domains.
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• The limiting spectral measure of random regular graphs means 
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enough 𝑛𝑛 and some fixed 𝑐𝑐 > 0.
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Result
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there are at least 𝑐𝑐𝑑𝑑−3/2𝑛𝑛 eigenvalues in this interval for large 
enough 𝑛𝑛 and some fixed 𝑐𝑐 > 0.

• This is the first result lower bounding the number of nodal 
domains for random regular graphs.

• For regular graphs, 𝐴𝐴 and the combinatorial Laplacian 𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴
have the same eigenvectors, so we can rephrase the result as 
concerning the high energy eigenvectors of the Laplacian.
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Outline
• We split into cases based on whether the eigenvector is 

localized or delocalized (whether the mass of the eigenvector 
is well spread or not).

• Definition: an eigenvector 𝜓𝜓 is delocalized if for fixed 𝜖𝜖, 𝛿𝛿 > 0, 
𝑣𝑣 ∈ 𝑉𝑉|𝜓𝜓2 𝑣𝑣 ≥ 𝜖𝜖/𝑛𝑛 ≥ 𝛿𝛿𝑛𝑛.
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• If the eigenvector is delocalized, we can use the proximity of an 
eigenvector of a random regular graph to a Gaussian 
distribution.
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The Gaussian Wave
• Recall the covariance in Berry’s conjecture is

𝐸𝐸 𝜓𝜓𝑛𝑛 𝑥𝑥 𝜓𝜓𝑛𝑛 𝑦𝑦 = 𝐽𝐽0(𝑘𝑘𝑛𝑛 𝑥𝑥 − 𝑦𝑦 ).
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• An analogous statement on graphs would mean that entries are 

Gaussian and 𝐸𝐸(𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ) should depend on the distance between 
𝑢𝑢 and 𝑣𝑣.
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The Gaussian Wave
• Recall the covariance in Berry’s conjecture is

𝐸𝐸 𝜓𝜓𝑛𝑛 𝑥𝑥 𝜓𝜓𝑛𝑛 𝑦𝑦 = 𝐽𝐽0(𝑘𝑘𝑛𝑛 𝑥𝑥 − 𝑦𝑦 ).
• An analogous statement on graphs would mean that entries are 

Gaussian and 𝐸𝐸(𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ) should depend on the distance between 
𝑢𝑢 and 𝑣𝑣.

• Almost everywhere, a random regular graph will locally look like a 
tree (they converge to the infinite tree 𝑇𝑇𝑑𝑑 in the sense of Benjamini
and Schramm).
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The Gaussian Wave
• Recall the covariance in Berry’s conjecture is

𝐸𝐸 𝜓𝜓𝑛𝑛 𝑥𝑥 𝜓𝜓𝑛𝑛 𝑦𝑦 = 𝐽𝐽0(𝑘𝑘𝑛𝑛 𝑥𝑥 − 𝑦𝑦 ).
• An analogous statement on graphs would mean that entries are 

Gaussian and 𝐸𝐸(𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ) should depend on the distance between 
𝑢𝑢 and 𝑣𝑣.

• Almost everywhere, a random regular graph will locally look like a 
tree (they converge to the infinite tree 𝑇𝑇𝑑𝑑 in the sense of Benjamini
and Schramm).

• Therefore, first we can try to understand covariance in the infinite    
𝑑𝑑-regular tree.
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The Gaussian Wave
• [Elon 2009] There is a unique joint Gaussian distribution on the 

vertices of 𝑇𝑇𝑑𝑑 that
1. Has unit variance in each entry
2. Is automorphism invariant
3. Satisfies the eigenvector equation at each vertex.

• This joint Gaussian is called the Gaussian wave.
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Gaussian Wave
𝑋𝑋1

𝑋𝑋𝑜𝑜
𝑋𝑋2 𝑋𝑋3

1. Has unit variance in each entry
2. Is automorphism invariant
3. Satisfies the eigenvector 

equation at each vertex
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Gaussian Wave
𝑋𝑋1

𝑋𝑋𝑜𝑜
𝑋𝑋2 𝑋𝑋3

1. Has unit variance in each entry
2. Is automorphism invariant
3. Satisfies the eigenvector 

equation at each vertex

𝜆𝜆𝑋𝑋𝑜𝑜 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣
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Gaussian Wave
𝑋𝑋1

𝑋𝑋𝑜𝑜
𝑋𝑋2 𝑋𝑋3

1. Has unit variance in each entry
2. Is automorphism invariant
3. Satisfies the eigenvector 

equation at each vertex

𝜆𝜆𝑋𝑋𝑜𝑜 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣

𝜆𝜆𝑋𝑋𝑜𝑜2 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣 𝑋𝑋𝑜𝑜
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Gaussian Wave
𝑋𝑋1

𝑋𝑋𝑜𝑜
𝑋𝑋2 𝑋𝑋3

1. Has unit variance in each entry
2. Is automorphism invariant
3. Satisfies the eigenvector 

equation at each vertex

𝜆𝜆𝑋𝑋𝑜𝑜 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣

𝜆𝜆𝑋𝑋𝑜𝑜2 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣 𝑋𝑋𝑜𝑜

𝜆𝜆𝐸𝐸 𝑋𝑋𝑜𝑜2 = ∑𝑣𝑣∼𝑜𝑜 𝐸𝐸(𝑋𝑋𝑣𝑣 𝑋𝑋𝑜𝑜)
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Gaussian Wave
𝑋𝑋1

𝑋𝑋𝑜𝑜
𝑋𝑋2 𝑋𝑋3

1. Has unit variance in each entry
2. Is automorphism invariant
3. Satisfies the eigenvector 

equation at each vertex

𝜆𝜆𝑋𝑋𝑜𝑜 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣

𝜆𝜆𝑋𝑋𝑜𝑜2 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣 𝑋𝑋𝑜𝑜

𝜆𝜆𝐸𝐸 𝑋𝑋𝑜𝑜2 = ∑𝑣𝑣∼𝑜𝑜 𝐸𝐸(𝑋𝑋𝑣𝑣 𝑋𝑋𝑜𝑜)
𝜆𝜆 = 𝑑𝑑𝐸𝐸(𝑋𝑋1𝑋𝑋𝑜𝑜)
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Gaussian Wave
𝑋𝑋1

𝑋𝑋𝑜𝑜
𝑋𝑋2 𝑋𝑋3

1. Has unit variance in each entry
2. Is automorphism invariant
3. Satisfies the eigenvector 

equation at each vertex

𝜆𝜆𝑋𝑋𝑜𝑜 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣

𝜆𝜆𝑋𝑋𝑜𝑜2 = �
𝑣𝑣∼𝑜𝑜

𝑋𝑋𝑣𝑣 𝑋𝑋𝑜𝑜

𝜆𝜆𝐸𝐸 𝑋𝑋𝑜𝑜2 = ∑𝑣𝑣∼𝑜𝑜 𝐸𝐸(𝑋𝑋𝑣𝑣 𝑋𝑋𝑜𝑜)
𝜆𝜆 = 𝑑𝑑𝐸𝐸(𝑋𝑋1𝑋𝑋𝑜𝑜)
𝐸𝐸 𝑋𝑋𝑜𝑜𝑋𝑋1 = 𝜆𝜆/𝑑𝑑
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Convergence to the Gaussian wave
• This means that if Berry’s conjecture were true in the discrete 

setting, the covariances should be those of the Gaussian wave.
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Convergence to the Gaussian wave
• This means that if Berry’s conjecture were true in the discrete 

setting, the covariances should be those of the Gaussian wave.

• [Backhausz-Szegedy 2019] Prove a form of Berry’s conjecture.
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• For any 𝑅𝑅, 𝜖𝜖 > 0, for large enough 𝑛𝑛, with probability at least  
1 − 𝜖𝜖, a random regular graph has the following property:

• For any eigenvector of the adjacency matrix, sample a vertex 
uniformly at random. 

• The distribution of values in the 𝑅𝑅 neighborhood of the vertex is 
at most 𝜖𝜖 in the weak topology from the distribution of the 𝑅𝑅-
neighborhood in a multiple of the Gaussian wave.

Backhausz and Szegedy
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Illustration of BS 19

𝐺𝐺 𝑇𝑇𝑑𝑑
The distribution of 𝑛𝑛(𝑣𝑣𝑜𝑜, 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3) when the central vertex is selected uniformly 
at random is close to the distribution of the Gaussian wave 𝜎𝜎 ⋅ 𝑋𝑋0,𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 for 
some 𝜎𝜎 ∈ [0,1].

𝑣𝑣𝑜𝑜

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3
𝑋𝑋𝑜𝑜

𝑋𝑋1

𝑋𝑋2 𝑋𝑋3
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Localization
• For negative 𝜆𝜆, there is a constant probability that entries in the 

Gaussian wave correspond to a singleton nodal domain. 

+

--

-
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Localization
• For negative 𝜆𝜆, there is a constant probability that entries in the 

Gaussian wave correspond to a singleton nodal domain. 

• However, the Gaussian wave our distribution is close to could 
have low variance (even variance 0). In this case, the eigenvector 
distribution’s proximity to the Gaussian wave does not imply 
that there are many nodal domains.

• In this case, the eigenvector is localized.

+

--

-
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Localization

If the eigenvector entries are close to a Gaussian with nonzero variance, then the 
proximity to the Gaussian wave implies many nodal domains
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Localization

If the eigenvector entries are close to a Gaussian with nonzero variance, then the 
proximity to the Gaussian wave implies many nodal domains

If the entries are close to a Gaussian with variance close to zero, then there is no 
such implication, but we also know that most eigenvector entries are concentrated 
around 0.
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Localization

-.31-.35

-.28

+.39
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Localization

-.31-.35

-.28

+.39

✓

-.29-.36

-.27

+.41
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Localization

-.31-.35

-.28

+.39

✓

-.03-.02

-.01

+.01

-.29-.36

-.27

+.41
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Localization

-.31-.35

-.28

+.39

✓

-.03-.02

-.01

+.01

-.29-.36

-.27

+.41
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Localization

-.31-.35

-.28

+.39

✓

X

-.03-.02

-.01

+.01

-.03-.02

-.01

-.01

-.29-.36

-.27

+.41
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Outline
• We split into cases based on whether the eigenvector is 

localized or delocalized (whether the mass of the eigenvector 
is well spread or not).

• Definition: an eigenvector 𝜓𝜓 is delocalized if for fixed 𝜖𝜖, 𝛿𝛿 > 0, 
𝑣𝑣 ∈ 𝑉𝑉|𝜓𝜓2 𝑣𝑣 ≥ 𝜖𝜖/𝑛𝑛 ≥ 𝛿𝛿𝑛𝑛.

• If the eigenvector is delocalized, we can use the proximity of an 
eigenvector of a random regular graph to a Gaussian 
distribution.

• If the eigenvector is localized, then we can argue using the local 
structure of random regular graphs. 

✓
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Outline
• We split into cases based on whether the eigenvector is 

localized or delocalized (whether the mass of the eigenvector 
is well spread or not).

• Definition: an eigenvector 𝜓𝜓 is delocalized if for fixed 𝜖𝜖, 𝛿𝛿 > 0, 
𝑣𝑣 ∈ 𝑉𝑉|𝜓𝜓2 𝑣𝑣 ≥ 𝜖𝜖/𝑛𝑛 ≥ 𝛿𝛿𝑛𝑛.

• If the eigenvector is delocalized, we can use the proximity of an 
eigenvector of a random regular graph to a Gaussian 
distribution.

• If the eigenvector is localized, then we can argue using the local 
structure of random regular graphs. 

✓
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Green’s Function Bound
• It remains to solve the problem when the eigenvector is localized. 

• We use another connection between the infinite tree and the 
random regular graph. 

• [Bauerschmidt-Huang-Yau 2019, Huang-Yau 2021+ ] With high 
probability, the adjacency matrix 𝐴𝐴𝐺𝐺 of a random regular graph 𝐺𝐺
sampled from 𝐺𝐺 𝑛𝑛,𝑑𝑑 is such that for any 𝑧𝑧 ∈ ℂ with ℑ 𝑧𝑧 ≥
log𝐶𝐶𝑛𝑛/𝑛𝑛

𝑧𝑧 − 𝐴𝐴𝐺𝐺 −1
𝑢𝑢,𝑣𝑣 ≈ 𝑧𝑧 − 𝐴𝐴𝑇𝑇𝑑𝑑

−1
𝑢𝑢∗,𝑣𝑣∗

where 𝑢𝑢∗, 𝑣𝑣∗ ∈ 𝑇𝑇𝑑𝑑 and the graph distance of 𝑢𝑢∗ and 𝑣𝑣∗ is the
graph distance of 𝑢𝑢 and 𝑣𝑣.
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Function Bound Continued
• We want to use the Green’s function to analyze the structure of 

one eigenvector. However, because we must have ℑ 𝑧𝑧 ≥ log𝐶𝐶𝑛𝑛/𝑛𝑛, 
we cannot separate one eigenvector from its closest log𝐶𝐶𝑛𝑛
neighbors. 
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𝒛𝒛’s Distance from the Real Line
𝑧𝑧

Distance ≈ 1/𝑛𝑛

• As the average distance between eigenvalues is 1/𝑛𝑛, for 𝑧𝑧 − 𝐴𝐴 −1 to 
“focus” on one eigenvector, we should have ℑ 𝑧𝑧 = Θ 1/𝑛𝑛 .



81

𝒛𝒛’s Distance from the Real Line
𝑧𝑧

Distance ≈ 1/𝑛𝑛

• As the average distance between eigenvalues is 1/𝑛𝑛, for 𝑧𝑧 − 𝐴𝐴 −1 to 
“focus” on one eigenvector, we should have ℑ 𝑧𝑧 = Θ 1/𝑛𝑛 .

𝑧𝑧

Distance ≈ 1/𝑛𝑛

• If ℑ 𝑧𝑧 ≥ log𝐶𝐶𝑛𝑛/𝑛𝑛, then we cannot separate the desired eigenspace 
from the closest log𝐶𝐶𝑛𝑛 eigenspaces.
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Infinity norm
• Nevertheless, the Green’s function bound implies a nearly 

optimal bound on the ∞-norm.

• [Bauerschmidt-Huang-Yau ’19, Huang-Yau ‘21+] Corollary: With 
high probability, any eigenvector 𝜓𝜓 of the adjacency matrix of a 
𝐺𝐺(𝑛𝑛,𝑑𝑑) graph satisfies

𝜓𝜓 ∞ ≤ log𝐶𝐶/2𝑛𝑛/ 𝑛𝑛.
• Using this, then further analyzing properties of the localized 

vector, we can prove our result.
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Proof for very negative 
eigenvalues
• Here we present a simpler version of our ideas, that only uses 

eigenvector delocalization, and no other properties of random 
regular graphs. 
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Proof for very negative 
eigenvalues continued
• Assume that 𝜓𝜓 is an eigenvector of eigenvalue 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖.



85

Proof for very negative 
eigenvalues continued
• Assume that 𝜓𝜓 is an eigenvector of eigenvalue 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖.
• Consider a vertex 𝑢𝑢 that is not a singleton nodal domain such that 

𝜓𝜓 𝑢𝑢 ≥ 1
2 𝑛𝑛

. 
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Proof for very negative 
eigenvalues continued
• Assume that 𝜓𝜓 is an eigenvector of eigenvalue 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖.
• Consider a vertex 𝑢𝑢 that is not a singleton nodal domain such that 

𝜓𝜓 𝑢𝑢 ≥ 1
2 𝑛𝑛

. 

𝜆𝜆𝜓𝜓 𝑢𝑢 = �
𝑣𝑣∼𝑢𝑢

𝜓𝜓 𝑣𝑣
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Proof for very negative 
eigenvalues continued
• Assume that 𝜓𝜓 is an eigenvector of eigenvalue 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖.
• Consider a vertex 𝑢𝑢 that is not a singleton nodal domain such that 

𝜓𝜓 𝑢𝑢 ≥ 1
2 𝑛𝑛

. 

𝜆𝜆𝜓𝜓 𝑢𝑢 = �
𝑣𝑣∼𝑢𝑢

𝜓𝜓 𝑣𝑣

• As 𝑢𝑢 has at most 𝑑𝑑 − 1 neighbors such that 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ≤ 0, it must be 
the case that there is some neighbor 𝑣𝑣1 of 𝑢𝑢 such that 

|𝜓𝜓 𝑣𝑣1 | ≥ 1 +
𝜖𝜖

𝑑𝑑 − 1
|𝜓𝜓 𝑢𝑢 |
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Proof for very negative 
eigenvalues continued
• Assume that 𝜓𝜓 is an eigenvector of eigenvalue 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖.
• Consider a vertex 𝑢𝑢 that is not a singleton nodal domain such that 

𝜓𝜓 𝑢𝑢 ≥ 1
2 𝑛𝑛

. 

𝜆𝜆𝜓𝜓 𝑢𝑢 = �
𝑣𝑣∼𝑢𝑢

𝜓𝜓 𝑣𝑣

• As 𝑢𝑢 has at most 𝑑𝑑 − 1 neighbors such that 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ≤ 0, it must be 
the case that there is some neighbor 𝑣𝑣1 of 𝑢𝑢 such that 

|𝜓𝜓 𝑣𝑣1 | ≥ 1 +
𝜖𝜖

𝑑𝑑 − 1
|𝜓𝜓 𝑢𝑢 |

• If 𝑣𝑣1 is not a singleton nodal domain, we can repeat this process. 
Doing this 𝑘𝑘 times we have 𝑣𝑣𝑘𝑘 with 𝜓𝜓 𝑣𝑣𝑘𝑘 ≥ 1 + 𝜖𝜖

𝑑𝑑−1

𝑘𝑘
|𝜓𝜓 𝑣𝑣𝑘𝑘 |. 

However, by the ∞-norm bound, we must have 𝑘𝑘 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛, 
meaning we must reach a singleton nodal domain within this number 
of steps.
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Proof for very negative 
eigenvalues continued
• Assume that 𝜓𝜓 is an eigenvector of eigenvalue 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖.
• Consider a vertex 𝑢𝑢 that is not a singleton nodal domain such that 

𝜓𝜓 𝑢𝑢 ≥ 1
2 𝑛𝑛

. 

𝜆𝜆𝜓𝜓 𝑢𝑢 = �
𝑣𝑣∼𝑢𝑢

𝜓𝜓 𝑣𝑣

• As 𝑢𝑢 has at most 𝑑𝑑 − 1 neighbors such that 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ≤ 0, it must be 
the case that there is some neighbor 𝑣𝑣1 of 𝑢𝑢 such that 

|𝜓𝜓 𝑣𝑣1 | ≥ 1 +
𝜖𝜖

𝑑𝑑 − 1
|𝜓𝜓 𝑢𝑢 |

• If 𝑣𝑣1 is not a singleton nodal domain, we can repeat this process. 
Doing this 𝑘𝑘 times we have 𝑣𝑣𝑘𝑘 with 𝜓𝜓 𝑣𝑣𝑘𝑘 ≥ 1 + 𝜖𝜖

𝑑𝑑−1

𝑘𝑘
|𝜓𝜓 𝑣𝑣𝑘𝑘 |. 

However, by the ∞-norm bound, we must have 𝑘𝑘 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛, 
meaning we must reach a singleton nodal domain within this number 
of steps.

• By delocalization, there are many such starting vertices 𝑢𝑢, meaning 
there are many singleton nodal domains.
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Small sets on random graphs
• With high probability, a 𝐺𝐺(𝑛𝑛,𝑑𝑑) graph does not have 

eigenvalues below −2 𝑑𝑑 − 1 − 𝑜𝑜𝑛𝑛(1), whereas this method 
works for 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖. Therefore, this is not useful for 
random regular graphs when 𝑑𝑑 ≥ 5.
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Small sets on random graphs
• With high probability, a 𝐺𝐺(𝑛𝑛,𝑑𝑑) graph does not have 

eigenvalues below −2 𝑑𝑑 − 1 − 𝑜𝑜𝑛𝑛(1), whereas this method 
works for 𝜆𝜆 ≤ −𝑑𝑑 + 1 − 𝜖𝜖. Therefore, this is not useful for 
random regular graphs when 𝑑𝑑 ≥ 5.

• To achieve our better bound, we work globally rather than 
locally.
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Global Argument
• Consider the set of vertices 𝑢𝑢 such that 𝜓𝜓 𝑢𝑢 ≥ 𝜖𝜖/ 𝑛𝑛 for some 

small 𝜖𝜖. Namely, there is nontrivial eigenvector mass on the 
vertex.
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Global Argument
• Consider the set of vertices 𝑢𝑢 such that 𝜓𝜓 𝑢𝑢 ≥ 𝜖𝜖/ 𝑛𝑛 for some 

small 𝜖𝜖. Namely, there is nontrivial eigenvector mass on the 
vertex.

• Assume that none of these vertices are singleton nodal 
domains. Then we can remove an edge neighboring each of 
these vertices while only decreasing the Rayleigh quotient. 
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Global Argument

• 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 = ∑𝑢𝑢∼𝑣𝑣 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 = 𝜆𝜆.

+

--

-

+

-

-

+
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Global Argument

• 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 = ∑𝑢𝑢∼𝑣𝑣 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 = 𝜆𝜆.

• If 𝑢𝑢 is a singleton nodal domain, then all terms corresponding to 𝑢𝑢
in 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 are negative. 

+

--

-

+

-

-

+
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Global Argument

• 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 = ∑𝑢𝑢∼𝑣𝑣 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 = 𝜆𝜆.

• If 𝑢𝑢 is a singleton nodal domain, then all terms corresponding to 𝑢𝑢
in 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 are negative. 

• However, if 𝑢𝑢 is not a singleton nodal domain, then there is at least 
one term that is positive.

+

--

-

+

-

-

+
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Subgraphs
• We first localize onto the set of vertices that contain the majority of 

the ℓ2 mass in the eigenvector.
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Subgraphs
• We first localize onto the set of vertices that contain the majority of 

the ℓ2 mass in the eigenvector.

• If there are few vertices that are singleton nodal domains, we further 
localize onto vertices that are not singleton nodal domains.
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Subgraphs
• We first localize onto the set of vertices that contain the majority of 

the ℓ2 mass in the eigenvector.

• If there are few vertices that are singleton nodal domains, we further 
localize onto vertices that are not singleton nodal domains.

• We then delete all edges (𝑢𝑢, 𝑣𝑣) such that 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ≥ 0.
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Subgraphs
• We first localize onto the set of vertices that contain the majority of 

the ℓ2 mass in the eigenvector.

• If there are few vertices that are singleton nodal domains, we further 
localize onto vertices that are not singleton nodal domains.

• We then delete all edges (𝑢𝑢, 𝑣𝑣) such that 𝜓𝜓 𝑢𝑢 𝜓𝜓 𝑣𝑣 ≥ 0.

• As there are no singleton nodal domains, we have deleted at least 
one edge from each remaining vertex. 

• We are left with a subgraph 𝐻𝐻 of maximum degree 𝑑𝑑 − 1 such that 
the vector projected onto this subgraph has Rayleigh quotient 

𝜓𝜓𝐻𝐻𝑇𝑇𝐴𝐴𝐻𝐻𝜓𝜓𝐻𝐻 ≤ 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 + 𝜖𝜖
for some small 𝜖𝜖.
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Process

At no step did we significantly increase the Rayleigh quotient of 𝜓𝜓. 
Therefore, 𝜓𝜓𝑆𝑆𝑇𝑇𝐴𝐴𝑆𝑆𝜓𝜓𝑆𝑆 ≤ 𝜆𝜆 + 𝜖𝜖. 

This subgraph is small and has maximum degree 𝒅𝒅 − 𝟏𝟏.
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Local Structure
• Once again, random regular graphs locally look like trees. 

• We are localized on a small set, so our graph is close to tree-like.

• Theorem [Kesten 1959]: The spectral radius of the adjacency matrix 
of a tree of degree at most Δ is at most 2 Δ − 1.

• Claim: Because the maximum degree is 𝑑𝑑 − 1 and the graph is close 
to tree-like, the spectral radius cannot be more than 2 𝑑𝑑 − 2 + 𝜖𝜖. 

• This can be proven through proving that the quadratic form on this 
tree-like graph is a convex combination of the quadratic forms of 
1 + 𝛿𝛿 𝜓𝜓𝐴𝐴𝑇𝑇𝜓𝜓, where 𝐴𝐴𝑇𝑇 is the adjacency matrix of a subtree. 
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Local Structure Continued

• The resulting graph is close to treelike and has maximum degree 𝑑𝑑 − 1. 
Therefore, the spectral radius is ≤ 2 𝑑𝑑 − 2 + ϵ

𝜆𝜆 = 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 ≈ 𝜓𝜓𝐻𝐻𝑇𝑇𝐴𝐴𝐻𝐻𝜓𝜓𝐻𝐻 ≥ −2 𝑑𝑑 − 2 − 𝜖𝜖
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Local Structure Continued

• The resulting graph is close to treelike and has maximum degree 𝑑𝑑 − 1. 
Therefore, the spectral radius is ≤ 2 𝑑𝑑 − 2 + ϵ

𝜆𝜆 = 𝜓𝜓𝑇𝑇𝐴𝐴𝜓𝜓 ≈ 𝜓𝜓𝐻𝐻𝑇𝑇𝐴𝐴𝐻𝐻𝜓𝜓𝐻𝐻 ≥ −2 𝑑𝑑 − 2 − 𝜖𝜖
• By the ∞-norm bound, we must have deleted many edges. 
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Recap
• As is the case with previous nodal domain results, we require 

bounds on the delocalization of our eigenvector, even though we 
prove a lower bound instead of an upper bound on the number of 
nodal domains. 
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Recap
• As is the case with previous nodal domain results, we require 

bounds on the delocalization of our eigenvector, even though we 
prove a lower bound instead of an upper bound on the number of 
nodal domains. 

• We even do this in the localized case. 
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In the Future
• We want to improve the parameters of our theorem.

[Ganguly-M-Mohanty-Srivastava] Fix 𝑑𝑑 ≥ 3 and 𝛼𝛼 > 0. Then with 
probability 1 − 𝑜𝑜 1 , every eigenvector of the adjacency matrix of a 
𝐺𝐺(𝑛𝑛,𝑑𝑑) sampled graph with eigenvalue 𝜆𝜆 ≤ −2 𝑑𝑑 − 2 − 𝛼𝛼 has 
Ω(𝑛𝑛/polylog(𝑛𝑛)) nodal domains.
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• To quantify the 1 − 𝑜𝑜(1) term, we would need to bound the rate 
of convergence of Backhausz-Szegedy to the Gaussian wave. 
This would involve analyzing the entropy of the limiting process.
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In the Future
• We want to improve the parameters of our theorem.

[Ganguly-M-Mohanty-Srivastava] Fix 𝑑𝑑 ≥ 3 and 𝛼𝛼 > 0. Then with 
probability 1 − 𝑜𝑜 1 , every eigenvector of the adjacency matrix of a 
𝐺𝐺(𝑛𝑛,𝑑𝑑) sampled graph with eigenvalue 𝜆𝜆 ≤ −2 𝑑𝑑 − 2 − 𝛼𝛼 has 
Ω(𝑛𝑛/polylog(𝑛𝑛)) nodal domains.

• To quantify the 1 − 𝑜𝑜(1) term, we would need to bound the rate 
of convergence of Backhausz-Szegedy to the Gaussian wave. 
This would involve analyzing the entropy of the limiting process.

• To improve the bound on 𝜆𝜆, perhaps we could utilize the lack of 
nodal domains of different sizes besides just singletons, or find 
other “holes” in the spectrum.
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In the Future
• Another problem is if we were able to prove “no gaps” 

delocalization then we would show that the local structure is 
governed by the Gaussian wave. 
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In the Future
• Another problem is if we were able to prove “no gaps” 

delocalization then we would show that the local structure is 
governed by the Gaussian wave. 

• This would predict that there are many nodal domains for all 
eigenvectors with eigenvalue ≤ 2 𝑑𝑑 − 1 − 𝜖𝜖, and would also 
predict their distribution. 

• We expect there to be many nodal domains of small size, and 
then two large nodal domains that contain almost all vertices.

Claim: At least 1 − 5
𝑑𝑑

vertices lie in the largest negative and 
largest positive nodal domain.
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In the Future
• Finally, it is worth mentioning that in the original Erdős-Rényi

case, little is known about 𝐺𝐺(𝑛𝑛, 𝑝𝑝) for 𝑝𝑝 ≤ 𝑛𝑛−1/20. Eldan, H. 
Huang and Rudelson suggested considering the critical level for 
connectivity 𝑝𝑝 = 𝑐𝑐 𝐶𝐶𝐶𝑛𝑛/𝑛𝑛 to see if for 𝑝𝑝 at this level there are 
many nodal domains.
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In the Future
• Finally, it is worth mentioning that in the original Erdős-Rényi

case, little is known about 𝐺𝐺(𝑛𝑛, 𝑝𝑝) for 𝑝𝑝 ≤ 𝑛𝑛−1/20. Eldan, H. 
Huang and Rudelson suggested considering the critical level for 
connectivity 𝑝𝑝 = 𝑐𝑐 𝐶𝐶𝐶𝑛𝑛/𝑛𝑛 to see if for 𝑝𝑝 at this level there are 
many nodal domains.

• Linial suggested to consider the geometry of nodal domains. 
This includes classifying vertices by their distance to the 
boundary of the nodal domain.
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Thank you!
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